
Letters in Mathematical Physics 12 (1986) 87-91. 
�9 1986 by D. Reidel Publishing Company. 

87 

Some Remarks on the Transverse Poisson 

Structures of Coadjoint Orbits 

YONG-GEUN OH 
Department of Mathematics, University of California, Berkeley, California, U.S.A. 

(Received: 3 January 1986; revised version: 14 April 1986) 

Abstract. In this paper, we describe how to compute the transverse Poisson structures of coadjoint orbits 
using Dirac's constraint bracket formula, and we prove that if the isotropy algebra admits a complementary 
subalgebra, then the transverse structure is, at most, quadratic. 

1. Introduction 

It is well known that there is a natural Poisson structure on the dual ~* of Lie algebra 
~i, the so-called 'Lie-Poisson structure' on ~*. Many completely integrable systems turn 
out to be closely related to this special Poisson structure. In this regard, the 
'Kostant-Symes theorem' is an important result. (See [1, 3, 4].) One version of this 
theorem says that if ~ = 91 ~ ~ ,  where 91 and ~ are subalgebras, then the restrictions 
to 91" (or ~*)  of any two coadjoint invariant functions on ~* commute with respect to 

the Lie-Poisson structure on 91" (or ~*). 
We prove that if the isotropy algebra ~ ,  o f#  ~ ~i* admits a complementary subalgebra, 

then the transverse Poisson structure at # is, at most, quadratic. Notice that the 
hypothesis in our result is incidentally(?) the same as that of Kostant-Symes. This leads 
us to suspect that there may be some interesting connection between our result and the 
Kostant-Symes. Another interesting aspect of our result is that it explains how a 
quadratic Poisson structure naturally arises from a geometric structure like our 
hypothesis. Recall that any linear Poisson structure is a Lie-Poisson structure, i.e., has 
its origin in a Lie algebra structure. Therefore, our theorem indicates that it might be 
interesting to classify the quadratic Poisson structures, which are not linearizable, with 
respect to some hidden geometry behind them. 

2. Statement and Proof 

In his paper [5], A. Weinstein gave the following 'splitting theorem' for Poisson 
manifolds. 

PROPOSITION 1 (A. Weinstein [5]). Let  x o be anypoint  in a Poisson manifold P. Then 

there is a neighborhood U o f  x o in P an isomorphism ~s  • ~,v f rom U to a product S • N 
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such that S is symplectic and the rank of N at (P,v(Xo) is zero. The factors S and N are unique 
up to local isomorphism. 

Weinstein called the Poisson structure on N the 'transverse Poisson structure' at x o . 
Although the isomorphism class of the structure is well defined, there is no natural 
representative, and so it was not so easy to compute the transverse structure. Meanwhile, 
T. Courant and R. Montgomery observed that Dirac's constraint bracket formula is 
useful for explicit computation and formulated the following proposition. 

PROPOSITION 2. Let Xo, U be as in Proposition 1. And let the q~'s --- 1, . . . ,  2k, be 

functions on U such that 

N = {x e U[ opt(x) = const. �9 = 1 . . . .  , 2k}. 

(C~t~) = {cp~, dpt3}, and (C ~ )  be the inverse of (C~t3). Then the bracket formula for the 
transverse Poisson structure in N is given as follows; 

2 k  

{F, = {:, - Z {L (*) 
~,/~ 

for all x ~ N, where F, H are functions on N, and F, H are extensions of F, H to a 
neighborhood of N. 

Proof See the appendix. []  

Notice that the formula (*) does not depend on the extensions of F, H but depends 
only on F, H themselves, and that the Xc ' s  which are the Hamiltonian vector fields 
generated by the tp~'s, span the tangent space of the symplectic leaf at x o . 

Now, let us restrict our attention to the case of the coadjoint orbits. Let # e ~i* and 
(gu be the coadjoint orbit of #. To compute the transverse structure of (.9~, using the 
formula (*), we need to choose a transverse manifold N and corresponding tp~'s. Our 
main observation is that there is a kind of 'natural procedure' for choosing the ~ ' s  

and N. 
Recall that the tangent space of the symplectic leaf at a point in that symplectic leaf 

is generated by Hamiltonian vector fields. (See Lemma 1.1 in [5].) Thus, the tangent 
• using elementary linear algebra, where space of (9, at # can be identified with # + ~i~, 

~i, = {y~ ~lad* # = 0} and ~i~ is the annihilator o f ~  in I~i*. So we can choose N to 
be # + ~•  where ~ is a complementary subspace of ~i~,, i.e., ~ = ~ ,~91 ,  and 
{~b~}~=l . . . .  2k to be a basis of ~ since ~ + 91 •  {tp~(x)= const. (=  ~(~)) ,  

--- 1,... ,2k}. With these observations, we are almost ready to state the main theorem. 

DEFINITION.  We say that a Poisson structure is quadratic if we can choose a local 
coordinate system {~O~}i= 1 ..... v in which {~b;, 4}  are polynomials of a degree ~<2 in the 
~O~'s on a coordinate neighborhood U. 
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THEOREM. I f  e~, is a "Lie summand, i.e., it has a complementary subalgebra 9~ on ~, 
then the transverse structure of (~ is quadratic. 

Proof One of the key observations is that if we choose {~p=} and N as above so that 
9~ may be a subalgebra which exists by the hypothesis, then C=p = {~p~, q~p} and so the 
C ~a are constants in N, since 9~ is a subalgebra; {(p~, (pa} is a linear combination of the 
q~'s and so { ~ ,  (p~}(x) = {(p=, ~)(~),  constant for all x e #  + !11 • 

Another observation is that we can choose, as a coordinate system on N, the linear 
functions on (~*. Furthermore, we can choose a basis of ~u as the coordinate system 
since they are independent on 9~ • Let's write a basis of ~u by {~h~}, i = 1 . . . . .  p 
(p + 2k = dim ~). Then, 

2k 

{r ~}u(x) = {~,, ~ } ~ . ( x ) -  ~ {~., (p,}~. C=a(x){q~t~, ~)~.(x), l~<i, j<~p. 
(**) 

Here, {r (P,}, {~,, ~} are, at most, linear functions of ~O i in N because the (p,'s and 
~.'s together form a basis of ~ and qb, - const, in N. So the first term in (**) is linear 
and the second sum is, at most, quadratic for all i, j. So the theorem is proved. [] 

REMARK. It is known that the transverse structure of (g~ is isomorphic to ~* when 
�9 u has a complementary subspace such that [0~, 9/] c 9~ (See [6].) This can be easily 
proved by our 'natural procedure'. 

In Section 4 of [6], Weinstein discussed two examples whose transverse Poisson 
structures are not linearizable. One is the adjoint orbit of 

//001~ 
/~ = ~000 / in ~t3(3"N) 

\ 0 0 0 /  

which is the example given by Givental. (Notice that ~ ( 3 : ~ )  is semisimple and so 
~ * ( 3  : P) can be identified with ~ ( 3  : •) by using the Killing form.) The other is the 
singular orbit of the points z = 0, x 2 + y2 > 0 in ~4 with the structure 

{x,y} =z,  {t,x} = x ,  {t,y} = y  and {t,z} =2z. 

By our 'natural procedure' of choosing N and the ~b~'s, we can easily show that these 
two examples satisfy the hypothesis of our theorem and so they are quadratic. Somewhat 
long but trivial calculation (see [2]) shows that the explicit structure of Givental's 
example is given as follows: 

0 

(W~ = ({~" ~}) = ~b 2 - 6~h4: 
3 

-- ~ l  

,4 3:1  -~-~O, qJ4 - qJ2 + 6q& z ~ , 
o 
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Appendix: Proof of Proposition 2 

The induced structure on N is given by the composed map 

T*N ~*, T * P  B ,~ } TNP '~ TN 

(See Prop. 1.4 of [5].) where n is the bundle projection along the symplectic leaves in 
U onto TN and n-* is its adjoint. In other words, 

{F, H} (Xo) = We(n'* dF(xo), n* dH(xo) ) 

where Wp is the Poisson tensor of P. Let F,/-7 be any extensions of F, H, respectively. 
Then, 

n-* dF(xo) - dff(Xo) = ~ a~(xo) dr 
Gt 

because 

(z* dF(xo) - dP(xo)(rxoN ) = 0, 

i.e., re* dF(xo) - dff(Xo)e (TxoN) • in T*oe which is exactly the span of {dq~(Xo)}, 
= 1, . . . ,  2k. Now, extend {q~}~= 1 ..... 2k to a coordinate system in a neighborhood of 

x o in P so that 

Then, 

because 

in this coordinate system. 
Now, 

d 
- - ( X o )  = 

Thus, 

- d f f ( / o ) ( ~ ( X o ) )  = -  ~, C~'~'(xo) dff(xo)X,,(Xo) = ~.,, C"(Xo) { ff  , q~,}(/o) 

therefore 

n*dF(xo) = dff(Xo) + ~ C:'r(Xo) {if, ~r} (Xo) dq~(Xo). 
ct,  ),  



TRANSVERSE POISSON STRUCTURES OF COADJOINT ORBITS 

Similarly, 

~* dH(xo) = dlT(xo) + ~ CPa(Xo) {/-7, ~}  (Xo) dq~a(Xo). 
p,a 

Therefore, 

{F, H} (Xo) = WAdP(xo) + Z C~(Xo){P, ~} (Xo) d~(Xo), 

dIT(xo) + Z Ca~(Xo) {/-7, tba} (Xo) d~ba(xo) ) 
p,a 

= We(dF(xo) , d/-I(xo)) + 

+ Z c~(~o) cP'(Xo) (P, ~)(Xo){,q, ~}(Xo) x 
~,p,~,6 

x We{dq~(Xo), d~ba(Xo) } 

= {P, n}(Xo) + Z c~(Xo) c~(Xo) c~(Xo) x 
ot,B, v,6 

• {P, ep~)(Xo) {,q, r (Xo) 

= {P,,q)(Xo) + Y~ c~P(Xo) {P, ~} (Xo){~7, ~)(Xo) 

= {~, ,q} (Xo) - Z {P, r (Xo) c~(Xo) {r n}  (Xo) 
a:, f l  
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