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Q U A N T U M  A N D  C L A S S I C A L  L O G I C :  

T H E I R  R E S P E C T I V E  R O L E S *  

I. CLASSICAL OR Q U A N T U M  L O G I C ?  

That quantum mechanics is different from classical mechanics, in what it 
says about the physical world and how it says it, needs no proof. How 
precisely to describe and explain these differences, and what significance 
to attach to them is being continually discussed. 

One of the claims that is being made is that the most significant differ- 
ence between classical mechanics and quantum mechanics is that the 
latter uses or needs to use a non-classical kind of propositional logic, a 
logic that has been called a 'quantum logic'. The classical logic is often 
described as Aristotelian. More accurately, it is the propositional logic 
of two-valued truth-functional propositions, the logic of classes and the 
logic of quantification as, for example, these are developed in Russell and 
Whitehead's Principia Mathematica (PM). 

G. Birkhoff and J. von Neumann were the first in 1936 to put forward 
the view that the 'physical quantities' of quantum mechanics constitute 
an orthocomplemented non-distributive lattice, and not the Boolean 
algebra of classical PM logic. 1 Other proposals were made about the 
same time and later by Reichenbach, yon Weizs~icker, Heisenberg and 
others in favor of multi-valued logics in which the classical principle 
tertium non datur is violated. Bas C. van Fraasen has given a brief and 
systematic survey to the various quantum logics in his paper 'The 
Labyrinth of Quantum Logics'. I shall not be concerned in this paper 
with multi-valued quantum logics, but only with the view common to 
Birkhoff and von Neumann, Segal, Mackey, Finkelstein, Jauch, 
Putnam 2 and others, that quantum logic is a non-distributive lattice. 

This theory says that the basic empirical propositions of quantum 
mechanics obey, not the axioms and rules of classical P M  logic, but 
those of a logic obtained from classical logic by dropping the distributive 
laws for 'and' and 'or' and replacing them by what looks like a weaker 
form of connection. In Jauch's version, the basic empirical propositions 

Synthese 21 (1970)2-33. Copyright © 1970 by D. Reidel Publishing Co., 
Dordrecht-Holland, All Rights Reserved 



Q U A N T U M  A N D  C L A S S I C A L  L O G I C  

of quantum mechanics are those which express the outcome of Yes-no 
tests "[Yes-no tests] are observations which permit only o n e  of two alterna- 
tives as an answer (hence the name Yes-no experiment). Such experiments 
are part of the daily routine of every experimental physicist: for example, 
a counter which registers the presence of a particle within a certain region 
of space . . . .  Every measurement on a physical system can be reduced at 
least in principle to measurements with a certain number of Yes-no ex- 
periments . . . .  Each measurable quantity has a certain range of values 
which may be indicated as a subset of the real line (or perhaps a Euclidean 
space). A determination of this quantity is obtained by dividing the real 
line into smaller intervals and then deciding whether the measured value 
falls within any one of the intervals. By making the intervals sufficiently 
small, one can determine the value of the quantity to any desired accu- 
racy." z It is claimed that the kind of logic which these propositions obey 
is an orthocomplemented non-distributive lattice of weak modularity. 4 

In favor of this proposal are two sets of arguments, one positive the 
other negative. The negative argument is twofold: it is an attack on a 
priori intuitionistic arguments used to justify the retention of classical 
logic and it is an attempt to show that the retention of classical logic 
involves the rejection of quantum mechanics in its present form. The 
positive argument is the claim that logic, like physical geometry, is 
subject to empirical confirmation and disconfirmation procedures, and 
that quantum mechanics has disconfirmed classical logic in the micro- 
domain. It is consistent with Putnam's position and, I think, also with 
Finkelstein's, that as a consequence of the alleged breakdown of classical 
logic in the quantum domain, the distributive law of classical logic is to 
be held, at least suspect, in all domains (except in the postulational one 
of mathematics). By a kind of correspondence principle, it can be treated 
as a rough and ready approximate rule in everyday affairs, much as 
Euclidean geometry remains the rough and ready approximate geometry 
of the everyday world even after the general theory of relativity has 
shown that the physical world is in fact non-Euclidean. 

II .  THE CASE F O R  A Q U A N T U M  L O G I C  I N  Q U A N T U M  M E C H A N I C S  

The role which a quantum logic would play in resolving some 
of the seemingly paradoxical aspects of quantum mechanics can be 
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illustrated with reference to the two-slit experiment (see Figure 1). 
Let al, a2 and b be the following sentences: 

al : Electrons of the beam pass through slit 1 
a2: Electrons of the beam pass through slit 2 
b: The distribution of electrons at the screen is the arith- 

metic sum of the distributions obtained when only one 
slit at a time is open. 

It is an experimental fact that b is false. 
Consider now the following argument: 

MajorS: (a 1 v a2) ~ b 
Minor: ~ b 
Conclusion: ~ (al v a2). 

The conclusion says that it is not true that electrons of the beam pass 
through one or both of the slits. Let us suppose this conclusion is un- 
acceptable, since we can suppose that the screen is shielded in such a way 
that electrons arriving at it could only have reached it via the slits 
in the diaphragm. We now ask ourselves how one might avoid the 
conclusion of  the argument. One might avoid it by denying the major, or 
the minor, or the scheme of inference (the modus tollens), or by making 
distinctions in one or both of the premises. Putting distinctions aside, let 
us consider the three principal ways of voiding the argument. 

> 
ELECTRON slit 1 

BEAM slit 2 
> 

SCREEN 

Fig. 1. Diagram of the two-slit experiment. 
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The minor is the statement of an experimental fact and let us suppose 
it is untouchable. 

One might consider adopting a new logic in which the modus tollens 
was an invalid deductive scheme. None of the writers, however, seems to 
have considered this possibility. It happens that the modus tollens is a 
valid scheme within the quantum logic of Birkhoff and yon Neumann, 
Finkelstein, Jauch and others. The quantum logic referred to, however, 
does exclude some important classical schemes, e.g., the scheme, 

p v q  
,.~q 

P 

The third possibility consists in declaring the major premise false. Now 
the major premise involves three sentences, al, a2 and b, each formulated 
within the language of classical physics and supposing the truth of the 
basic conceptual framework of classical physics. These sentences are 
joined together by two logical functors ' v '  ('or') and '  = '  ('implies'). 

Now the most natural solution which suggests itself is that the language 
framework and concepts of classical physics do not apply to electrons in 
the two slit experiment. Underlying the belief that (as v a2) = b is the set 
of classical assumptions that each particle is an independent kinematical 
unit, that each travels along a uniquely determined trajectory from the 
source to the screen, that each particle consequently passes through one 
and only one slit. In this model, the set of particles arriving at any area of 
the screen would be the set theoretic union of two sets of particles, of 
those that pass through slit 1 and of those that pass through slit 2. In 
rejecting the validity of classical descriptive assumptions for the 2-slit 
experiment, one can falsify the major without impugning the validity of 
classical logic. On the other hand, one might claim that, whether or not 
classical assumptions are correct, the classical logic of classes which is 
used in the deriviation of b, is invalid. This latter position seems to be the 
residue of the claim that classical logic - or the part of it which is the 
logic of classes - is not valid in the kinematical description of quantum 
mechanical systems. 

The position just outlined is not a very revolutionary one, even sup- 
posing it were unexceptional. Some of the more articulate and public 
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spokesmen on the side of quantum logic, Putnam for example and 
Finkelstein, have made broader claims for the validity of quantum logic, 
ones which are quite revolutionary. They would argue that the discovery 
of quantum logic dethrones classical logic in all empirical domains as the 
discovery of the general theory of relativity dethroned Euclidean geometry 
in the domain of physics. The argument goes: Just as the general theory 
of relativity has shown that what one was accustomed to call a 'straight 
line' is not an Euclidean object, so what one was accustomed to call a 
'proposition' is not a PM-classical object, but an object subject to the 
weaker logic of a non-distributive lattice. 

I I I .  A B O U T  THE A L L E G E D  U N I V E R S A L I T Y  OF Q U A N T U M  L O G I C  

It is not my purpose, however, to add my endorsement to the view that 
quantum logic in the form proposed say, by Jauch, Finkelstein and 
Putnam, is correct but rather to criticize this view and to transform it into 
what I believe is a better account of the role of various logics in quantum 
mechanics. 

My first move is against the more extreme thesis that the truth of 
quantum logic in the quantum domain calls into question the truth of 
classical logic in every empirical domain. The main argument is a reason- 
ing by analogy with the fate of Euclidean geometry in general relativistic 
physics. The principal author of this argument is Putnam, although it is 
supported by Heisenberg, von Weizs~icker, Finkelstein and others. It is 
based upon the analogy between physical geometry and logic. Putnam 
puts down the proportional equation: 

Euclidean geometry Classical logic 

General theory of relativity Quantum mechanics 

In his paper 'Is Logic Empirical?' given to this colloquium, Putnam 
wrote: "I regard the analogy between the epistemological situation in 
logic and the epistemological situation in geometry as a perfect one." 6 A 
propos of classical logic, he writes: "Quantum mechanics explains the 
approximate validity of classical logic 'in the large' just as non-Euclidean 
geometry explains the approximate validity of Euclidean geometry 'in the 
small'." 

To explore the analogy between geometry and logic, it is necessary to 
state Putnam's views about geometry. They are summarized in the 
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following points. (i) Arguments in favor of Euclidean geometry based 
upon intuitionistic a priori reasons are unacceptable and false. (ii) With- 
out empirical evidence there is no truth. The one physically correct 
geometry is to be determined by objective, empirical, scientific criteria. 
(iii) Conventionalism, or the view that a variety of geometries is admissible 
depending upon the rule of congruence conventionally chosen, is false to 
the extent that it allows human arbitrariness and subjective bias and 
prejudice to enter where objective criteria are or should be the sole 
relevant criteria. 

One can have a great deal of sympathy with the thrust of these argu- 
ments, without agreeing with Putnam's interpretation of conventionalism 
and the consequence he draws from his rejection of it, namely, the belief 
that there is a unique objective physical geometry, one which is alto- 
gether removed from free conventions. I prefer to think that his views 
about conventionalism spring from certain options as to what he believes 
knowledge and objectivity imply or should imply. Putnam's belief in a 
unique empirically determined geometry is carried over into his belief 
that there is a unique kind of empirically determined logic. Since there 
are already a sufficient number of Putnam's adversaries in the field of 
geometry, I shall accept a challenge made by Putnam to present an 
elegant refutation of Putnam by Putnam. 7 

Putnam is committed to the defence of the position that only those 
schemes of inference are valid which are derivable from quantum logic. 
Among the invalid schemes of inference is one I have already noted: 

p v q  
,...q 

P 

(To illustrate in what sense this scheme is held by quantum logicians to 
be invalid in quantum mechanics, one might consider the following 
example 8: 

p v q: The electron has spin up or spin horizontally to the left 
~q:  The electron has not spin horizontally to the left 

p" The electron has spin up 

The major is taken to mean that the spin state of the electron is some 
linear superposition of spin up and spin horizontally to the left. Such a 
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set of spin states spans the entire spin space. Hence, the only legitimate 
conclusion from the minor is that the spin of the electron is horizontally 
to the right. This solution satisfies the major and the minor, but it is 
different from p, the only conclusion authorized by classical logic. The 
classical scheme breaks down whenever it is a question of complementary 
propositons p and q.) 

Now it is interesting to note that the principal argument of Putnam's 
paper 'Is Logic Empirical?' is one whose natural expression falls into the 
scheme I have just referred to. After an exposition of quantum logic 9, the 
structure of the argument in support of quantum logic goes this way: 
Either quantum logic is correct or classical logic is correct; but it is not 
true that classical logic is correct (since this would involve the use of 
hidden variables, the observer-observed cut, a perturbation theory of 
measurement, etc.); hence quantum logic is correct. The scheme of 
inference for this argument is the one I have just mentioned and it is 
formally invalid in quantum logic if the two members of the disjunction 
are complementary. Putnam does not discuss whether or not his disjuncts 
are complementary: he seems to be unaware he is using a scheme which is 
no longer universally valid. I believe the propositions are complementary, 
but the proof depends on accepting the conclusions of this paper - 
namely, that one can have a quantum logic on the level of a meta-context- 
language of conditions together with a classical logic on the level of 
quantum event language. 

What I have done in this section is to overturn the argument used by 
Putnam to support that aspect of his universal thesis which says that 
quantum logic is the kind of logic to be used on all occasions. I am not 
taking issue with that other aspect of his thesis which says that empirical 
evidence is relevant to the kind of propositional logic one endorses. This 
part of the thesis, I think, is true. My complaint, however, is that Putnam 
draws unwarranted conclusions and that he fails to be sufficiently 
attentive to the quality of the empirical evidence available. 

IV. QUANTUM LOGIC IN QUANTUM MECHANICS 

My next move is to examine the substance of the more modest claim that 
in the domain of quantum physics, quantum mechanical propositions 
obey a special empirical logic, the so-called quantum logic, which is 
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an orthocomplemented non-distributive lattice with weak modularity. 
In all the recent discussions of quantum logic, the argument has taken 

the following form: If the received version of quantum mechanics entails 
the use of quantum logic, then the rejection of quantum logic entails the 
rejection of the received version of quantum mechanics, and this conse- 
quence is further taken to entail the belief that the true theory of micro- 
physical phenomena will be one of a classical kind not yet formulated, 
with 'hidden variables'. 

When one turns to the recent works on quantum logic, one naturally 
looks for the sense in which it is novel, exciting, significant and contro- 
versial to say that quantum mechanics entails the use of a special quantum 
logic. I do not find a clear answer in the literature. For in the development 
of the argument, the antecedent is usually taken trivially to do nothing 
more than to label a well-known structural property of quantum me- 
chanics related to its Hilbert space formulation. The real thrust of the 
argument is in the consequent, which is not really about logic, but about 
quantum mechanics and the alternatives to quantum mechanics. 

Now the question of hidden variables or the observer-observed cut or 
the perturbation theory of measurement are not new problems and merely 
to express them in new terminology is neither novel, exciting, significant 
nor controversial. It is not my intention in this paper to speak about the 
alternatives to the present version of quantum mechanics. I am not 
challenging quantum mechanics in its present form, but I am concerned 
with the kinds of logic compatible with or required by the present form of 
quantum mechanics. 

I am claiming that the recent defenders of quantum logic are quite 
confused about some fundamental things - in what they conceive to be 
the objects of a quantum logic within quantum physics, and in what the 
true significance of the new quantum logical operations consists. 

Most of the current writers on quantum mechanics give as its domain 
the domain of those categorical propositions expressing the outcome of 
Yes-no tests. I say this claim is simply false. I do not deny, however, that 
a special quantum logic has a place within quantum physics but I put it 
on the level of a recta-context-language about the conditions under 
which particular quantum event-languages are applicable, and not, as the 
writers on quantum logic are accustomed to put it, on the level of quan- 
tum event-language itself. 
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The accounts writers give of what constitutes the class of quantum 
mechanical propositions which is subsumed under quantum logic are 
subject to at least one systematic ambiguity which conceals the real 
significance and true role of quantum logic. Let me first of all try to make 
clear the different types of propositions involved in this discussion before 
taking on the role of critic. 

V. VARIETIES OF QUANTUM MECHANICAL PROPOSITIONS 

Let me start with a class of propositons each of which states the outcome 
of a Yes-no experiment. 10 1 shall call the categorical statement asserting 
or denying the outcome of a Yes-no experiment, a simple empirical 
proposition. Let me list the necessary and sufficient conditions which 
warrant a simple empirical proposition. 

A simple empirical proposition presupposes a fully specified kind of 
measurement situation, and one in which only a definite part of the range 
of the observables is considered. If the quantum system relative to the 
observables in question falls into the part of the range being considered, 
a positive symbol '1', standing for Yes! is produced; if the quantum 
system does not fall within the range considered, a negative '0' standing 
for No t is produced. The sentence token standing for the Yes-propositions 
will have some form like: 'The observables X, Y for the electron now in 
the apparatus fall within the range A~yeB(Rx®Ry)', where B(Rx®Ry ) is 
the set of Borel sets in the direct product of the ranges R~ and Ry of the 
observables X and Y. Let us call this proposition a. The No-proposition 
will have the form: 'The observables X, Y for the electron now in the 
apparatus do not fall within the range A~yeB(Rx®Rr)'. Since in both 
cases, the measurement situation is the same, the latter No-proposition is 
equivalent to the following Yes-proposition: 'The observables AT, Y for 
the electron now in the apparatus fall within the complement of the range 
A ~y in B(R~® Ry)'. Let us call this proposition ,-~ a. The kind of negation in 
question is called by van Fraasen 'choice negation', as distinct from what 
he calls 'exclusion negation'. In order to warrant a or ~a,  it is necessary 
and sufficient that the physical measurement situation be fully specified in 
kind. 

Let us suppose, what I presume Jauch and other writers on quantum 
logic supposed, that the observables X and Y are compatible observables, 
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represented by commuting self-adjoint operators. We shall return to 
criticize this assumption later on in the paper. 

There is also a class of more abstract propositions of the following 
kind: 'The projection operator P(S) on the subspace S of the Hilbert 
space H preserves the state vector ~k; i.e., P(S)~ = ~k'. Let us call this a 
'simple theoretical proposition', and denote it by q~. Then the space of ~b's 
obey a non-classical logic which is isomorphic with the orthocomple- 
mented non-distributive lattice of subspaces of a Hilbert space. I doubt 
that it is necessary to prove this assertion. It has been proved by Birkhoff 
and von Neumann and every writer on two-valued quantum logic has 
used this theorem since. 

Now let us suppose that the simple empirical proposition a implies 
( = def. ' e  (S) ~k = ~') through the semantical rules or uniformities, where 

S is the subspace of H spanned by the eigenvectors of X and Y whose 
eigenvalues lie in the range Axr Then ,~a implies ~b'(=d~f. P(S ) ~ = ~  ) 
where S" is the orthogonal complement of S in H. In other words, 

a=~ (1) 
and 

~a=q~' (2) 

Since botla a and ~ a presuppose a fully specified kind of measurement 
situation, and q~ does not; neither (1) nor (2) are in general biconditionals. 
That is, it is not true in general that 

~b=a 

The reason there is no biconditional relation between a and q9 in general is 
that, as long as X and Y are supposed to be compatible observables, the 
subspace S might possibly be spanned by other observables, say, Uand V, 
one or both of which are incompatible with X and Y. For example, if the 
proposition a is 'The spin of the electron is k and polarized vertically up 
or down', the subspace S corresponding to this proposition is the entire 
spin space. The physical situation, however, also includes an apparatus 
for measuring vertically polarized spin. Consider, now, the proposition b 
'The spin of the electron is ½ and polarized horizontally to right or left.' 
The subspace corresponding to b is also S. However, in this case the 
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physical situation includes an apparatus for measuring horizontally 
polarized spin. Both a and b imply ~, but ~b does not imply a or b sepa- 
rately, although it does imply a v b v. . .  where the disjunctions include 
all possible simple empirical propositions which imply ~. 

I do not know to what to attribute the oversight in recent literature of 
the problem that maybe there is not in general a biconditional relation 
between a Yes-no test and a simple theoretical proposition which the 
Yes-no test implies. Birkhoff and von Neumann seemed to be aware of 
the problem: they spoke of an equivalence class of experimental propo- 
sitions. But none of the recent literature mentions it. Perhaps, the authors 
thought it was too trivial a matter to point out. Trivial though it may 
seem to be, however, big and important consequences follow from it. 

In the general case, then, there is at least one other simple empirical 
proposition b, of type a but incompatible with a, which also implies q~. In 
other words, a ~  qS, b= q~ but a is not compatible with b. Either a or b 
gives full empirical warrant to the proposition q~, but the truth of tk does 
not justify a nor does it justify b, although it does justify 

a v b v  ... 

where the disjunction includes all possible simple empirical propositions 
of type a which imply q~. 

Now the empirical propositions which constitute the space of quantum 
logic are not propositions of type a, simple empirical propositions (since 
they are not in biconditional relation to qS) but they are propositions of 
the type 

a v b v  . . . .  (3) 

I shall call a*(~b) the 'empirical interpretation of the simple theoretical 
proposition ~b'. A biconditional relation exists between q~ and the chain of 
disjunctions a*(~b), that is, 

a*(dp)=(avbv . . . )  if and only if q~ (4) 

The a*(~)'s then constitute a space of propositions isomorphic with the 
space of ~b under the logical functors 'and', 'or', 'implies' and 'not' as 
these function within quantum logic. 

We have distinguished then three types of propositions in quantum 
mechanics: simple empirical propositions (or propositions of type a), 
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simple theoretical propositions (propositions of type ~b) and the empirical 
interpretations of simple theoretical propositions (or propositions of type 

A simple empirical proposition a implies the fulfillment of the following 
conditions, both necessary and sufficient in their respective orders: (1) in 
the linguistic order: that there be an event-language La with the names of 
objects (or other referring expressions), descriptive predicates correspond- 
ing to the observables of the commuting set X and Y, and the logical 
grammar of classical logic. Note that La does not contain the descrip- 
tive predicates for observables U or V which are not compatible with X 
and Y. (ii) In the physical order: some standard measuring conditions for 
measuring the ranges A~ and Ay of the observables X and Y in question. 
Let me call this the 'physical context of the system'. (iii) In the mathemati- 
cal order: that the subspace S_= H be coordinatized by the eigenvectors of 
the commuting self-adjoint operators which represent the physical 
observables X, Y mentioned in (ii), and which the descriptive predicates 
mentioned in (i) stand for. 

Returning to the language L,. Let us identify it with the set of those 
sentences which can be correctly formulated, asserted or denied in the 
standard measuring conditions described in (ii) above. La is a picturing 
language. Out of its resources a variety of linguistic pictures can be put 
together. One of these is a; another is ~ a. But b, which is a proposition 
incompatible with a, and which implies its own language Lb, is not one of 
these pictures. That is, a~L~, but bCL,. Similarly, b~Lb, but aCLb. The 
set of linguistic pictures that can be formulated in L, is the mapping of 
the manifold of possible physical events that could occur within the 
limitations of the physical milieu described in (ii) above. 

The standard measuring conditions of a physical context are themselves 
invariant relative to the manifold of possible events that could occur 
within that physical context. The constancy of the standard measuring 
conditions is correlated with the domain of applicability of language L,, 
La being the linguistic invariant of the manifold of possible pictures. 
There is nothing special about the logic intrinsic to La or to Lb separately; 
it is or could be the classical propositional logic of PM, a Boolean 
algebra of statements under the operations of 'and', 'or', 'implies' and 
'not'. The logic of simple empirical propositions is or could be classical. 

The second type of proposition I mentioned is a simple theoretical 
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proposition or a proposition of type ¢. The space of these propositions 
constitute an orthocomplemented non-distributive lattice of the kind 
called a quantum logic. This was proved by Birkhoff and von Neumann 
in 1936 for quantum mechanics in what we now call its received form. 

Are the ~b's, however, the basic propositions about quantum mechanics 
to which the quantum logicians refer when they make their claim that 
quantum mechanical propositions obey a special non-classical logic? It 
would be easy to quote passages from the writings of Jauch, Finkelstein, 
Putnam and others to show that whatever else they had in mind this at 
least was part, and possibly even the whole of what quantum logic was 
all about. Jauch, for example, writes: "Elementary propositions of 
quantum mechanics are represented by projection operators, or equiva- 
lently by closed linear subspaces." 11 But if this is all the quantum logicians 
intend to say, then I have no criticism to make. All I would say is that 
their claim is neither novel, exciting, significant nor controversial. 

In fact, however, additional claims are made, that these simple theo- 
retical propositions are also empirical propositions, in the sense that they 
represent the answer to Yes-no experimental questions. Jauch writes: 
"We shall refer to Yes-no experiments simply as propositions of the 
physical system." 12 But Yes-no experiments are not isomorphic to simple 
theoretical propositions, as I have shown. A simple theoretical propo- 
sition is correlated with a disjunction of simple empirical propositions 
expressing the outcome of competing and generally mutually incom- 
patible Yes-no tests. In this fact lies the empirical relevance of qL But is ~b 
itself a statement of empirical fact? To state an empirical fact is generally 
to picture a state of affairs in a picturing language. A picturing language 
generally has no more than the following resources: names of objects (or 
other referring expressions), empirical predicates and a logical vocab- 
ulary. The empirical picturing predicates of quantum mechanics are the 
observables. To say of a quantum system that its state vector lies in a 
certain subspace of a Hilbert space is then not to picture the quantum 
system since no observable predicate has been used. 

Perhaps, however, it is the implicit but esoteric claim of the quantum 
logicians that q~ is a picturing. 18 That would indeed be a novel, exciting, 
significant and controversial claim. But if that is the significant claim 
they want to make, they seem not to have noticed its unusual character. 
For if ¢ were a true picturing, then each subspace of H would have to 
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correspond to a unique empirical predicate. There is at present no 
warrant for this. The traditional interpretation of quantum mechanics 
permits and indeed implies two different kinds of picturings, O) of the 
sentences within a particular language La which picture the manifold of 
events in a physical context and (ii) of the set of competing languages 
La, Lb, ... which themselves picture the manifold of  possible physical 
contexts. (Note: A physical context constitutes the conditions for a 
definite manifold of events; it is then invariant relative to the events of 
the manifold. In other words, two different events of the same manifold 
share the same physical context; two events from different manifolds do 
not share the same physical context.) 

I said above that the empirical interpretation of ~b, authorized by ~b, is: 

a*(~b) = (a v b v . . . )  

We are now in a position to amplify and correct this assertion. Since 
a~La, but aCLb and b~Lb, but bq~L~, the members of the disjunction 
a*(~) are sentences belonging to different languages. Let us group 
together in a*(~b) the sentences that belong to each language, repeating a 
sentence, if necessary, so that each language group is complete. We write, 

a*(q~) = (al v a2 v . . . )  v (b 1 v b 2 v ...) v (c 1 v c 2 v ...) v . . .  
(5) 

where al, a2 ... all belong to L,, bl, b2 ... all belong to Lb and so on. 
What is entailed then by ~b, is not a disjunction of sentences within a 
common language, but a disjunction of languages. Thus, the correct 
revised form of a*(~b) is: 

a (q~)= ( 'Za '  V 'Zb'V 'Zc'V "") (6) 

where 'La', "Lb', etc. represent statements within a higher-order meta- 
context-language re(L); 'L,', for instance standing for the statement 
'This physical context is an 'L~'-type context' or some equivalent formu- 
lation, a(~b) is then a statement in m(L); not in any one of the event 
languages La, Lb, etc. 

Let us look at the lattice structure of m(L). A partial ordering relation 
'-~' (read 'implies') can be introduced into a set of propositions a (q~): 
let 

a(~bl)~a(~2) if and only if ~bl--.~b 2 
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then, since a(4) is isomorphic with 4, the logic of the a(4)'s, i.e., of m(L) 
is isomorphic with the logic of the 4's; that is, is isomorphic with the 
non-distributive lattice of the subspaces of a Hilbert space. We can define 
greatest lower bounds (g.l.b.) of two sentences, a(41)Qa(42) (read 'a(41) 
and a(4z)'), least upper bounds (1.u.b.) of two sentences, a (41)~a(4z) 
(read 'a(41) or a(42)') and complements, a'(4a) (read 'not-~b')in the 
usual way: 

a(43)=a(~,)Qa(42) if and only if 
a(44) =a  (~bl)¢a(42) if and only if 
a(~bs)=a'(~bl) if and only if 
a ( 4 6 )  = 0 if and only if 
a (47) = 1 if and only if 

'~  = 4~@'/'~ 
44=4~e42 

46 =0 
~b 7 = H  

where '®' ,  ' ~ '  and complementation on the right hand side refer to the 
logical operations of conjunction, disjunction and negation in the domain 
of simple theoretical propositions. The functors '®',  'G '  and ' ~ '  on the 
left hand side can then be interpreted as the logical functors 'and', 'or' 
and 'implies' of a quantum logic in the meta-context-language m (L), with 
complementation as negation. The logic of the a (4)'s on the left hand 
side is then an orthocomplemented non-distributive lattice isomorphic 
with the lattice of subspace of a Hilbert space. 

Let me point out some of the attributes of the meta-context-language 
m(L). In the first place, m(L) is not an event-language; its objects are the 
manifold of possible event-language and the manifold of conditions for 
the correct use of each. Its subject matter is the set of physical contexts in 
which it is relevant to use one linguistic or conceptual framework rather 
than another. I have called it a meta-context-language, because its 
subject matter is the semantical applicability of event-languages. As I 
have already pointed out, re(L) is a picturing language; it pictures the 
manifold of physical contexts, each of the physical contexts constitutes a 
domain of possibility for some manifold of events. 

It is on the level of m(L) that I believe the real significance of quantum 
logic lies. For while the logic of the recta-context-language of quantum 
mechanics is a non-distributive lattice, the analogous context-language of 
classical physics is a Boolean algebra isomorphic with the logic of subsets 
of the Euclidean phase-space of classical physics. 14 

The situating of the characteristic logics of classical and quantum 
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physics in a Beta-context-language throws light on the root cause of the 
difference in form between these two sciences. The quantum logic part of 
quantum physics expresses the context-dependent character of simple 
empirical propositions in quantum physics. The equation: 

a (~bl)@ a (~b2) = a (~b 1 @ ~2) (7) 

can be interpreted to mean that if  one were to enlarge the physical context 
of a quantum system satisfying a ( ~ )  so as to include conditions which 
satisfy a(~b2), then one would obtain a new kind of physical context 
a (~b~ ~)~b2) in which the new manifold of possible events is different from 
the set theoretic union of the separate manifolds of events which cor- 
responded to the former physical contexts in isolation from each other. 
That it is the context dependent character of simple empirical statements 
in quantum mechanics which generates a non-classical logic at the level 
of the Beta-context-language m (L) can be shown by examples constructed 
outside of the realm of physics. 

For example, consider the philosophical languages used by two phi- 
losophers - let us call them, Joseph and Abner - each possessing a 
distinct and different philosophical perspective, but each capable of 
entering into dialogue with the other without yielding anything of which 
he considers essential to his perspective. Let La be the set of philosophical 
statements which Abner uses in a context that does not involve dialogue 
with Joseph; L B be the set of philosophical statements used by Joseph in 
a context that does not involve dialogue with Abner, and La~ the com- 
mon language of dialogue. In order to get a non-distributive lattice all we 
need to suppose is (i) that LaB contains sentences not in L A or in L~ and, 
(ii) since within LaB both Joseph and Abner can preserve their different 
philosophical prespectives, L a and LB are subsets of LaB. We can then 
define complements of L a and L~ in the following set theoretic way: 

L'A = (La~ - L.4) u Lu 

L'~ = (LAB -- L~) t3 L A 

And we can define implication ( ' ~ ' )  in such a way that Lx-'Ly, if and 
only if every sentence of Lx is also a sentence of Lr. Then, the following 
objects constitute a lattice (Lo, La, LB, I/a, L'B, LaB = 1), where L o is the set 
theoretic intersection of L• and LB. The operations of '® ' ,  '~9' and ' ~ '  
are schemafized in the diagram below. We can interpret the objects in the 
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figure below as sentences in a meta-context-language of conditions m(L): 
for La@LB, read 'This is an 'LA'-type situation and/or an 'LB'-type 
situation'; for L'B®LA, read 'This is an 'La'-type situation and it is not an 
'Ln'-type situation'; and so on. Then we have the result that m(L) is 
isomorphic to the orthocomplemented lattice represented in Figure 2. 

1--LAB =L A ~ L  e = etc. 

e a ® L~ =L BOL o =Ls=etc. 

Lo=L A®L B=etc. 

Fig. 2. 

L~ =LIB • L 4 =L~ ®LAB = etc.  

L A =LA~ L o =LA®L8 = etc. 

Lattice of the meta-context language m (L). 

The arrows represent the partial ordering ' - . '  (or 'implies') among the 
elements. The 1.u.b.'s (representing disjunctions in m(L) and the g.l.b.'s 
(representing conjunctions in m(L)) can be read off from the figure. The 
lattice is non-distributive as can be seen from the relations. 

but, 

L. (L, ® = m. 

Hence the logic intrinsic to the meta-context-language rn (L), which has 
its subject matter La, LB, LAn and the conditions for their correct 
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use is an orthocomplemented non-distributive lattice like quantum 
logic. 

The point I am making is that one does not have to look to physics to 
find quantum logic. One finds it in the meta-context-language of context- 
dependent statements. You can construct your own examples: the 
language of work and the language of leisure, the language of esthetic 
beauty and the language of functional utility. Nor is it necessary to 
appeal to the actions or emotions of human subjects. In chemistry, there 
is the language of heterogeneous gasses. In quantum physics, there is the 
language of single slit experiments and the language of double slit ex- 
periments. 

Since I started this paper with the example of the two slit experiment, I 
might point out how to read the above diagram as descriptive of the 
meta-context-language of the two slit experiment. Let La be the single 
slit language relevant to the physical situation of slit 1 open, and let LB be 
the single slit language relevant to the physical situation of slit 2 open, 
and let LaB be the double slit language relevant to the situation of both 
slits open. Then, the solution to the problem we started with, namely, 
how to void the argument 

(a 1 v a2)~b 
~ b  

~ 

is the following. Either al belongs to La and a 2 belongs to LB, then the 
major is not well-formed, since we have no rules for disjoining sentences 
belonging to different languages. Or al, a2 and b are to be interpreted as 
sentences in LaB. The major of the argument is then false both empirically 
and theoretically, not, however, logically by virtue of a special logic. 

I hope it is clear from these examples that the general character of 
non-distributivity in the meta-context-language is a direct consequence 
of the fact that although there are disjoint contexts, say, of Joseph phi- 
losophizing to the exclusion of dialogue with Abner and vice versa, the 
joint interaction context of Joseph and Abner in dialogue has broader 
possibilities than the sum total of those offered by the disjoint non-inter- 
acting contexts. We find just such context dependence in quantum 
mechanics. 
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VI. G E N E R A L  Q U A N T U M  M E C H A N I C A L  L A N G U A G E  A N D  

G E N E R A L I Z E D  C O M P L E M A N T A R I T Y  

Remembering that a physcial context is those physical conditions which 
specify, antecedently to the outcome of any experimental observation, 
the manifold of possible events to which any experimental outcome will 
belong, and which, consequently, remain invariant throughout the course 
of any experimental test, one can ask how the separation and union of  
contexts is represented in quantum mechanics. Consider the following 
two equations: 

a((o) = ('La' v 'Lb' v . . . )  (6) 
and 

a(#l)Ga(q~z) = a (~bl e~b2) (7) 

We can ask; (i) how can one physical context - somehow associated with 
~b - be consistent with a set of  mutually exclusive physical contexts like 
those associated with La, Lb, etc.? and (ii) Does it not seem from the 
form of (7) that q~ (and not 'La' or 'Lb' etc.) pictures the physical context 
of the system? 

The answer to the former is that the physical context associated with ~b 
is that of  the preparation of state, while those associated with 'La', 'Lb' 
etc. are those associated with a subsequent measuring process. 

Turning to the latter question: to say that the system is prepared in 
state q~ is to say something about the physical world, actually about the 
preparation of state. But is it a picturing? We have already raised this 
question and the answer given was, No ! However, at that time, all we had 
at our disposal was quantum event-language, i.e., the language of  Yes-no 
tests. The suggestion is now made that possibly 'q5' is a picturing in m(L), 
the meta-context-language that deals with the kind of language ap- 
propriate to a physical context rather than with specific quantum events. 
But if the 'L, '-type context and the 'Lb'-type context are absolutely 
mutually exclusive, then there is no term in the linguistic resources of  
re(L) with which to designate a generalphysical context, uniquely corre- 
lated with '~b', of which the 'La'-type context and the 'Lb'-type context are 
specific particularizations. Under these circumstances '~b' can only denote 
a class of mutually exclusive contexts - not a general type of physical 
context. 
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If, however, the 'L.'-type physical context and the 'Lb'-type physical 
context are not absolutely mutually exclusive, a general physical context 
might exist of which the 'L.'-type and the 'Lb'-type were specifications (as 
it were, limiting or special cases of the general case). This would imply 
the existence of a general language appropriate to this context, say, 
L.b~.., of which L., Lb, L~ etc. would be subsets corresponding to special 
or limiting cases. The enlarged possibilities of united contexts then imply 
that, although La_ L.b~.., Lb--~.b~.. etc., it is also the case that 

The meta-context-language, re(L), then, would contain, besides the 
names 'L,', 'Lb', 'Lc' etc., the name 'L,bc..' of the general context L, bc... 
It seems plausible to the author that the mutual exclusivity of complemen- 
tary physical contexts may not be absolute, and that there may exist a 
general physical context 'Lab~..' uniquely correlated with '~b'. This is 
suggested by the use which Bohr and Heisenberg make of the Indeter- 
minacy Principle when they apply it to an individual quantum system in 
one and the same physical context. This cannot be done without the 
simultaneous attribution of both position and momentum predicates 
(though evidently not the classical ones) to a quantum system in a general 
physical context. If L,b~.. exists, then there is a general physical context 
pictured by 'L,b~..', and it would indeed become plausible to say that 'q~' 
pictures - not, however, within any of the event-languages L,, Lb, L~ etc., 
but within the recta-context-language re(L). The disjunction a(~b) would 
then include an extra term, 

a(O)= ('Lo' v %'  v ' r / v . . .  v 'Labo..') 

and since L,, Lb, Lc etc. are all subsets of L,bc. ., this reduces simply to, 

a((o)=('Labc. .') 

Under these circumstances, we can drop the assumption made earlier 
that the observables X and Y referred to in the description of a Yes-no 
test be commuting observables. Even if they do not commute, they belong 
to the general language L, bc." within which the physical context of the 
Yes-no test can now be uniquely described. 

The situation we have just described suggests that the notion of comple- 
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mentarity be extended to the set of mutually exclusive event-languages 
L a, Lb, Lc etc. on condition that there exist a general event-language 
Lab~.. which contains all of them, but is richer in expressive power than 
La, Lb, L~ etc. taken in contextual isolation. This supposes that the con- 
texts A, B, C, etc. which specify the conditions for the valid use of La, Lb, 
L~ etc. are mutually exclusive but not absolutely so. It supposes that 
there exists a general or synthetic context ABC.. to which there cor- 
responds a general language Lab~.. satisfying the following conditions: 

and 

L a ~_ Lab c . .  

Lc ~- Lab~.. etc. 

Labc# L .  u u u . . .  

(8) 

(9) 

It further supposes that there is a way of defining complements La, L'b, L'c 
etc. of La, Lb, Lc etc. respectively such that (Lo, La, Lb, Lc,..., La, L'b, L'c ..... 
Lab~..) constitutes an orthocomplemented non-distributive lattice. 

This claim is illustrated and justified by the author in another paper, 
for the case of two event-languages La and Lb .15 The complements E, and 
L'b can be defined in the following way: 

Zta = (Lab  - -  Z a  ) tJ  Z b 

rb  = (Lab - Lb) u La 

The partial ordering ' ~ '  ('implies') of the lattice is to be understood in 
such a way that, Lx--*Ly if and only if every sentence that can be correctly 
used (either by affirmation or negation) in context X can also be correctly 
used in context Y. La and Lb are said to be complementary in Lab. In this 
situation, the meta-context-language m(L) will be a domain of non- 
classical logic, even though each of the event-languages La, Lb and Lab 
obey or could obey classical/'M-logic. 

In the paper referred to, the author worked out some examples taken 
from quantum mechanics, as, for example, the paradigm case of the 
relation between quantum mechanical position language (La) and quan- 
tum mechanical momentum language (Lb) and the general quantum 
mechanical kinematical language (Lab). The author also uses this logic 
of contexts (or context-logic) to show the relationship between the 
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Aristotelian and the Augustinian-Platonic languages in the philosophy 
of Aquinas and suggests the usefulness of the method of context-analysis 
in the history of philosophy, the history of science and in the metascience 
of both philosophy and scienceJ 6 

In the case of four event-languages, La, Lb, Lc and Lab c which satisfy 
(8) and (9), it may be possible to define appropriate complements so that 
the set (Lo, La, L~, Lc, L'=, L'b, L'~, L~b~) constitutes an orthocomplemented 
non-distributive lattice. In this case, L~, Lb and L c are said to be comple- 
mentary in L,bc. The structure of such a lattice is represented in Figure 3 
below. 

Labe 

L; L" L~ 

Fig. 3. Diagram 

L o 

of a non-Boolean lattice for three complementary languages 
L~, L, and Lc, 

In the light of what has been said about the pervasive character of 
contextual dependence in our experience, classical physics with its 
context-independence begins to appear in some sense as incomplete, as 
lacking a contextual dimension one feels every physical statement should 
have, and one begins to suspect that perhaps this is due to a smoothing, 
smearing or averaging of many context-dependent results. That this may 
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be so, is suggested by the fact that we can construct certain context- 
independent variables, called expectation-values, for ensembles of 
identically prepared quantum systems, which obey the same laws as their 
counterparts in classical physics. 

The separation of two levels of picturing in quantum mechanics also 
throws light on the reduction of the wave packet. If  it is true that whatever 
concerns the real order is expressible either in the picturing metalanguage 
m(L) or in one of the competing first level picturing languages, La, L~, ... 
then nothing need be postulated to belong to the real world if it cannot be 
stated in re(L) or in one or other of the first level languages. The conver- 
sion from the pure state to a mixture (the so-called 'reduction of the wave 
packet') is consequently neither a rule of nor a proposition about reality, 
but is part of the manipulation of certain abstract mathematical objects. 
This, of course, is not a novel conclusion; but it has never been reached 
before in this way. The dual level of picturing can also suggest how one 
might go about working out the (descriptive) ontology of the quantum 
domain of physical systems. But I shall not pursue this matter now. i7 

VII. CRITICAL REMARKS 

In Section IV, I made the claim that much of the recent writing on 
quantum logic was fundamentally confused and had failed to appreciate 
the true significance of quantum logic. I ought to make explicit, if it is not 
already clear, what these confusions are and where their source lies. 

The principal confusion is in the characterization of those basic 
quantum mechanical propositions which, it is claimed, obey quantum 
logic and not classical logic. Birkhoff and von Neumann describe these 
propositions as equivalence classes of categorical statements of fact, 
each statement supposing a definite set of commuting observables. They 
have the logical form of Equation (3) above, and Birkhoff and von 
Neumann do not pursue the analysis to the point of deriving Equation 
(6). 

Putnam and Finkelstein, on the other hand, are dealing, not with 
categorical propositions but with subjunctive conditionals of the form: 
'If a certain test were to be made, then the system would pass it'. They 
are not statements of fact but of the dispositions which a quantum system 
has. They have the desirable property, however, of being isomorphic with 
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simple theoretical proposition, i.e., i fp is one of those propositions, then 

p o ~  

The logic of these subjunctive conditionals is then a quantum logic 
isomorphic with the lattice of subspaces of a Hilbert space. 

How satisfactory is this solution from the logical point of view? And 
with what warrant are these subjunctive conditionals called the 'empiri- 
cal propositions of quantum mechanics'? 

From the point of view of either classical or quantum logic a sub- 
junctive or counterfactual conditional is not a clear and definite structure. 
It suffers from the ambiguities and latent paradoxes which are the subject 
matter of an extensive and inconclusive literature. 18 Moreover, if the 
implications of a single subjunctive conditional are not always clear, the 
logical product of two such sentences is perilous indeed. Consider the 
sentences: 'If I were drunk, I would dance a jig' and 'If I were sober, I 
would trim the hedge'. The former implies I am not drunk; the latter 
implies I am not sober. What then would the conjunction of the two 
sentences imply? If the basic sentences of quantum mechanics were sub- 
junctive conditionals, the antecedents of the basic sentences would include 
all the mutually exclusive physical conditions into which the system 
could be placed. Just as in the example I have chosen and for the same 
reason, if a conjunction of a set of basic sentences were formed, it would 
not be clear what such a conjunction would imply. 

Again, as statements about the physical constitution of the world, 
counterfactual conditionals leave open and undetermined, or if you like, 
to be determined by the subject or by nature (but more often by the 
subject), the final conditions (or physical context) without which nothing 
is or can be observed, and no matter of fact established. In Heisenberg's 
language, they refer to the potentiae of nature. One might perhaps be con- 
tent with this situation if one subscribed to the view espoused by von 
Weizs/icker and endorsed by Heisenberg, that the subject matter of 
quantum physics is the subject-object interaction between a human 
observer and nature. Then, the empirical content of physics might be 
expected to reflect the initiatives which a scientist-observer takes spon- 
taneously and unpredictably in his relation with the world. But it is not 
necessary, I believe, and it is certainly contrary to the ideal aims of 
natural science, that quantum physics renounce its right to make objective 
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and categorical statements about the world and not merely about its 
potentiae which are true independently of observers. 

Moreover, calling these subjunctive conditionals the 'empirical propo- 
sitions of science' is unwarranted, for the thrust of work on quantum 
logic has been and is the attempt to articulate the 'logic of nature' as 
revealed by quantum mechanics in the sense of the 'interrelatedness of 
things' in nature. Such a 'logic of nature' would be pictured in empirical 
propositions of a categorical kind, not in counterfactual conditionals. It 
is true that certain experimental conditions are mentioned which anchor 
the conditional statement in the real world. These give empirical warrant 
to the subjunctive conditionals. But wherever there is a warranted sub- 
junctive conditional its warrant is in some set of objective laws linking the 
antecedent and the consequent. 19 These are the links which express the 
'logic of nature', and these are the empirical propositions of quantum 
mechanics. Now these links are categorical propositions. There are, I 
claim, two levels of such propositions: the level of quantum event- 
languages and the level of a meta-context-language m (L) about the 
conditions for the use of quantum eveut-languages. 

My criticism of Jauch's very elegant treatise The Foundations of 
Quantum Mechanics is that he too seems not to have considered the 
variety of propositional types employed in quantum mechanics. Some- 
times he speaks as if the basic quantum mechanical propositions were 
simple empirical propositions, the results of Yes-no experiments, some- 
times as if they were simple theoretical propositions about subspaces of a 
Hilbert space, and at other times as if they were counterfactual conditionals. 
Moreover, while it is understandable that quantum logicians would want 
to ground their claims in empirical fact, it happens that this empiricist 
urge sometimes caricatures itself, as we see, for example, in the case of 
Jauch and Ludwig. They describe the construction of an infinite experi- 
mental filter for two incompatible propositions a®b. 2° One wonders 
with what right an infinite experimental filter that cannot be made or 
used is termed 'experimental'. 

A P P E N D I X :  SOME TERMS, DEFINITIONS,  AXIOMS AND FORMULAS 

I. By classical logic is meant a Boolean algebra of sentences 

A. A Boolean algebra is a set B of at least two distinct elements with 
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two binary operations u(cup)  and n (cap) and one unary operation ' 
(prime) such that B is closed with respect to each of these three operations 
and for all a, b and c belonging to B the following axioms are satisfied: 

A1 a w b = b u a  
A2 a n b = b n a  
A3 a u (b u c) = ( a  u b) u c 
A4 a n (b n c ) = ( a  n b) n c 
A5 There is an element 0 belonging to B such that a u 0 = a 
A6 There is an element I belonging to B such that a n ! = a 
A7 a w a ' = I  
A8 a n a ' = 0  
A9 a u (b n c ) = ( a  w b) n (a u c) 
A10 a n ( b u c ) = ( a n b ) w ( a n c )  

A9 and A10 are the distributive laws. 
Def.: a _~ b if  and only if a u b = b 

B. A Boolean algebra of  sentences is obtained by adding the following 
interpretation to the formal syntax A: 

a, b, c, stand for sentences 
0 stands for the absurd sentence (always false) 
1 stands for 
a u b stands for 
a n b stands for 
a' stands for 
a _ b stands for 

the trivial sentence (always true) 
a and/or b (the logical sum) 
a and b (the logical product) 
not-a 
a implies b 

II. By a quantum logic is meant an orthocomplemented non-distributive 
lattice of sentences. 

A. An orthocomplemented non-distributive lattice is obtained (rather 
than an algebra) if the axioms A9 and A10 are dropped in IA. Using '@', 
' ® '  a n d ' ~ '  instead of  cup, cap and '  _~' to distinguish the non-distributive 
lattice operations from the Boolean operations, we use the following 
terminology for a lattice: 

a@b is called the 'least upper bound'  or 'l.u.b. of a, b' 
a®b is called the 'greatest lower bound'  or 'g.l.b. of  a, b' 
a~b stands for a implies b 
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B. A quantum logic is obtained by adding to the axioms of I IA,  the 
following interpretation: 

a@b stands for a and/or b 
a®b stands for a and b 
a '  stands for not-a 
a ~ b  stands for a implies b 

where a, b, c, 0, I are sentences, 0 is the absurd sentence and I is the trivial 
sentence. 

III .  Fig. 4 representing the relations between the elements of  an ortho- 
complemented non-distributive lattice of  six elements. The arrows indicate 
implication. 

/ I.=a~b=a'(~b'=a (~a'=b ~ b' 

\ 
b'® I=b'@ ~ --b'{D a =b" "a'=a" ~ ~ :a'~ b: a'® I 

~=a®b =a'@ b'=a ® a'= b® b" 

Fig. 4. 

This lattice is non-distributive since: 

a@ (b ®b') = a ~) ~b = a 
(at~ b)® (aO) b') = I ® b' = b' 
and a ¢ b' 

Dept. of  Philosophy, Fordham University 

BIBLIOGRAPHY 

Bergmarm, G., 'The Logic of Quanta', American J. of Physics 15 (1947) 497-508. 
Beth, E. W., 'Analyse srmantique des throries physiques', Synthese 7 (1948-9) 206-207. 
Beth, E. W., 'Towards an Up-to-Date Philosophy of Natural Sciences', Methodos 1 

(1949) 178-185. 
Beth, E. W., 'Semantics of Physical Theories', Synthese 12 (1960) 172-175. 
Beth, E. W., Mathematical Thought, D. Reidel, Dordrecht, 1966. 
Birkhoff, G., Lattice Theory, 2nd ed., Amer. Math. Sot., Providence, R. I., 1948. 



QUANTUM AND CLASSICAL LOGIC 29 

Birkhoff, G. and J. von Neumatm, 'The Logic of Quantum Mechanics', Annals of  
Math. 37 (1936) 823-843. 

Bunge, M., Quantum Theory and Reality, vol. 2, Springer-Verlag, Berlin 1967. 
Destouches, J., 'Les principes de la m6eanique g6n6rale' Aetualitgs scientifiques et 

industrielles 140, 1934. 
Destouches, J., 'Intervention d'tme logique modalit6 dans une th6orie physique', 

Synthese 7 (1948-9) 411-417. 
Destouches-F6vrier, P., 'Les relations d'incertitude de Heisenberg et la logique', 

Comptes Rendus de l'Academie des Sciences, 204 (1937) 481-483. 
Destouches-F6vrier, P., 'Logique et th6ories physiques', Synthese 7 (1948-9) 400-410. 
Destouches-F6vrier, P., La structure des thdories physiques, Paris 1951. 
Destouches-F6vrier, P., 'La logique des propositions experimentales', in Applications 

scientifiques de la logique mathdmatique, Paris, 1954, pp. 115-118. 
Destouches-F6vrier, P., 'Logical Structures of Physical Th6ories', in Axiomatic Method 

(ed. by L. Henkin, P. Suppes, and A. Tarski), North-Holland Publ. Co., Amsterdam, 
1959, pp. 376--389. 

Dirac, P. A. M., 'The Quantum Algebra', Proc. Camb. Philos. Soc. 23 (1926) 412-418. 
Emch, G. and J. M. Jauch, 'Structures logiques et math6matiques en physique quan- 

tique', Dialeetica 19 (1965) 259-79. 
Falk, G., 'Axiomatics as a Method for the Formation of Physical Theories', Z. Phys. 

130 (1951) 51. 
Feyerabend, P., 'Reichenbach's Interpretation of Quantum Mechanics', Philos. Studies 

9 (1958) 49-59. 
Feyerabend, P., 'Bemerkungen zur Verwendung nicht-klassischer Logiken in Quan- 

tentheorie', in Deskription, Analytizitiit, und Existenz (ed. by. P. Weingartner), 
Salzburg 1966, pp. 351-359. 

Fine, A., 'Logic, Probability and Quantum Theory', Philos. of  Sci. 35 (1968) 101-111. 
Finkelstein, D., 'The Logic of Quantum Physics', Trans. New York Acad. Sci., 2 Set. 2, 

25 (1962-3), 621-637. 
Finkelstein, D., 'The Physics of Logic', lnternat. Centre for Theor. Phys., Trieste, 

Report IC/68/35, 631-637. 
Finkelstein, D., 'Matter, Space and Logic', in Boston Studies in the Philosophy o f  

Science, vol. V (ed. by R. S. Cohen and M. Wartofsky), D. Reidel, Dordrecht, 1969, 
pp. 199-215. 

Van Fraasen, Bas, 'Meaning Relation among Predicates', Nous 1 (1967) 161-179. 
Van Fraasen, Bas, 'Presuppositions and Supervaluations and Free Logic', in The 

Logical Way of  Doing Things (ed. by K. Lambert), New Haven, Yale University Press, 
1969. 

Van Fraasen, Bas, 'The Labyrinth of Quantum Logics', paper read at the Bienniel 
Meeting o f  the Philosophy o f  Science Association, Pittsburgh, October 1968. 

Van Fraasen, Bas, 'Presupposition, Implication and Self-reference', Jour. o f  Philos. 65 
(1968) 136--152. 

Van Fraasen, Bas, 'Singular Terms, Truth-value Gaps and Free Logic', Jour. o f  Philos. 
63 (1966) 481-495. 

Fuchs, W. R., 'Ans~itze zu einer Quantenlogik', Theoria 30 (1964) 137-140. 
Gudder, S., 'Systems of Observables in Axiomatic Quantum Mechanics', J. Math. Phys. 

8 (1967) 2109. 
Guenin, M., 'Axiomatic Foundations of Quantum Theories', J. Math. Phys. 7 (1966) 

271. 



30 PATRICK HEELAN 

Hack, M., 'Relation Between Measurement Theory and Symbolic Logic', Nuovo 
Cimento 54B (1968) 147. 

Hubuer, K., '13ber den Begriff der Quantenlogik', Sprache in techn. Zeitalter, 1964, 
725-734. 

Jauch, J. M., 'Systems of Observables in Quantum Mechanics', Heir. Phys. Acta 33 
(1960) 711-726. 

Jauch, J. M., 'The Problem of Measurement in Quantum Mechanics', Helv. Phys. Acta 
37 (1964) 293-316. 

Jauch, J. M., Foundations of  Quantum Mechanics, Addison-Wesley, New York, 1968. 
Jauch, J. M., and C. Piron, 'Can Hidden Variables Be Excluded in Quantum Me- 

chanics?', Helv. Phys. Acta. 36 (1963) 827-837. 
Jordan, P., 'On the Axiomatic Foundation for Quantum Mechanics', Z. Phys. 133 

(1952) 21. 
Jordan, P., 'Quantenlogik und das kommutative Gesetz', in The Axiomatic Method 

(ed. by L, Henkin, P. Suppes, and A. Tarski), North-Holland Publ. Co., Amsterdam, 
1959, pp. 365-375. 

Kakutani, S. and G. Mackey, 'Ring and Lattice Characterizations of Complex Hilbert 
Space', Bull. Amer. Math. Soc. 52 (1946) 727-733. 

Kochen, S. and E. P. Specker, 'Logical Structures Arising in Quantum Theory', in 
The Theory o f  Models (ed. by J. W. Addison et al.), North-Holland, Publ. Co., Am- 
sterdam, 1965, pp. 177-189. 

KtmsemiiUer, H., 'Zur Axiomatik der Quantenlogik', Philos. Nat. 8 (1964) 363-376. 
Ludwig, G., Die Grundlagen der Quantenmechanik, Springer-Verlag, Berlin, 1954. 
Ludwig, G., 'Axiomatic Quantum Statistics of Macroscopic Systems', in Teorie 

ergodiche (ed. by P. Caldirola), Academic Press, New York, 1961, pp. 57-132. 
Ludwig, G., 'Versuch einer axiomatischen Grundlegung der Quantenmechanik und 

allgemeinerer physikalischer Theorien', Zeit. Phys. 181 (1964) 233-260. 
Ludwig, G., 'An Axiomatic Foundation of Quantum Mechanics on a Non-Subjective 

Basis', in Quantum Theory and Reality (ed. by M. Bunge), Springer-Vedag, Berlin, 
1967, pp. 98-104. 

Mackey, G., 'Quantum Mechanics and Hilbert Space', Amer. Math. Monthly 64 
(1957) 45-57. 

Mackey, G., The Mathematieal Foundations of  Quantum Mechanics, Benjamin, Inc., 
New York, 1963. 

McKinsey, J. C. C. and P. Suppes, 'Review of P. Destouches-F6vrier's "La Structure 
des th6ories physiques" ', Jour. Sym. Logic. 19 (1954) 52-55. 

Margenau, H., 'Application of Many-Valued Systems of Logic to Physics', Phil. Sci. 1 
(1933) 118. 

Margenau, H., 'Probability, Many-Valued Logics, and Physics', Phil. ScL 6 (1939) 65. 
Miller, M., 'The Logic of Indeterminacy in Quantum Mechanics', Ph.D. Thesis, 

Brown University (1961). 
Mittelstaedt. P., 'Untersuchungen zur Quantenlogik', Sitzungsber. Bayr. Akad. Wiss. 

Math.-Nat. KI. (1959), 321-386. 
Mittelstaedt, P., 'Ober die Giiltigkeit der Logik in der Natur', Naturwiss. 47 (1960) 

385-391. 
Mittelstaedt, P., 'Quantenlogik', Forthschr. Phys. 9 (1961) 106-147. 
Mittelstaedt, P., Philosophische Probleme der modernen Physik, 2nd ed., Bibliographi- 

sches Institut, Mannheim, 1966. 
Mfiller, H., 'Merkwertige Logik und Quantenphysik', Phys. BI. 10 (1954) 151-157. 



QUANTUM AND CLASSICAL LOGIC 31 

Von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton 
University Press, 1955. 

Von Neumann, J., 'On the Algebraic Generalization of the Quantum Mechanical 
Formalism', Part I, in Collected Works of  J. yon Neumann (ed. by A. H. Taub), 
vol. III, Oxford 1961, pp. 492-561. 

Von Neumarm, J., 'Continuous Geometries with a Transition Probability', Collected 
Works of J. yon Neuman, (ed. by A. H. Taub), vol. IV, Oxford 1961, pp. 191-194. 

Von Neumarm, J., 'Quantum Logics (strict- and probability-logics)' in Collected 
Works of J. yon Neumann, (ed. by A. H. Taub), vol. IV, Oxford 1961, pp. 195-197. 

Piron, C., 'Axiomatic Quantum Scheme', Helv. Phys. Acta. 37 (1964) 439. 
Popper, K., 'Birkhoff and yon Neumann's Interpretation of Quantum Mechanics', 

Nature 219 (1968) 682-685. 
Prugovecki, E., 'An Axiomatic Approach to the Formalism of Quantum Mechanics, I, 

and II', J. Math. Phys., 7 (1966) 1054, 1070. 
Putnam, H., 'Three-Valued Logic', Philos. Studies 8 (1957) 73-80. 
Putnam, H., 'Is Logic Empirical?', in Boston Studies in the Philosophy of Science, vol. 

V (ed. by R. S. Cohen and M. Wartofsky), Humanities Press, New York and D. Reidel, 
Dordrecht, 1969. 

Quine, W. V., From a LogicalPoint of  View, Harper and Row, New York, 1963. 
Reichenbach, H., Philosophic Foundations of  Quantum Mechanics. Berkeley, Calif. 

1944. 
Reichenbach, H., 't3ber die erkenntnistheoretische Problemlage und den Gebrauch 

einer dreiwertigen Logik in der Quanteumechanik', Z. Naturforsch. 6a (1951) 569. 
Reichenbach, H., 'The Logical Foundations of Quantum Mechanics', Ann. lnst. Poin- 

card 13 (1953) 109. 
Richter, E., 'Bemerkungen zur Quantenlogik', Philos. Nat. $ (1964) 225-231. 
Scheibe, S., Die kontingenten Aussagen in der Physik, Athen~ium Verlag, Frankfurt, 

1964. 
Segal, I. E., Mathematical Problems of  Relativistic Physics, Amer. Math. Soc. Provi- 

dence, Rhode Is., 1963. 
Sherman, S., 'On Segal's Postulates for General Quantum Mechanics', Ann. Math. 64 

(1956) 593-601. 
Strauss, M., 'Mathematics as a Logical Syntax - a Method to Formalize the Language 

of a Physical Theory', Erkenntnis 7 (1937-8), 147-153. 
Suppes, P., 'Probability Concepts in Quantum Mechanics', Philos. Sci. 28 (1961) 

378-389. 
Suppes, P., 'The Role of Probability in Quantum Mechanics', in Philosophy of Science: 

The Delaware Seminar, vol. II (ed. by B. Baumrin), Wiley, New York, (1962-3), 
pp. 319-337. 

Suppes, P., 'Logics Appropriate to Empirical Theories', in Theory of  Models (ed. by 
J. W. Addison, L. Henkin and A. Tarski), North-Holland Publ. Co., Amsterdam, 
1965, pp. 364-375. 

Suppes, P., 'The Probabilistic Argument for a Non-classical Logic in Quantum 
Mechanics', Philos. Sci. 33 (1966) 14-21. 

Toll, J., 'Causality and the Dispersion Relation: Logical Foundations', Phys. Rev. 104 
(1956) 1760. 

Varadarajan, V. S., 'Probability in Physics and a Theorem on Simultaneous Obser- 
vability', Comm. Pure Appl. Math. 15 (1962) 189-217. 

Watanabe, M. S., 'A Model of Mind-Body Relations in Terms of Modular Logic', 



32 PATRICK HEELAN 

Synthese 13 (1961) 261-302, and Boston Studies in the Philosoply of Science, vol. I 
(ed. by M. Wartofsky), D. Reidel, Dordrecht. 

Watanabe, M. S., 'Conditional Probability in Physics', Progress of Theor. Phys., Suppl. 
(1965), 135-160. 

Watanabe, M. S., 'Algebra of Observation', Progress of Theor. Phys., Suppl., Nos. 
37-8 (1966), 305-367. 

Watanabe, M. S., Knowing and Guessing, John Wiley, New York, 1969. 
Von Weizs~icker, C. F., 'Komplementarit/it und Logik', Naturw. 42 (1955) 521-529; 

545-555. 
Von Weizs/icker, C. F., E. Scheibe, and G. Siissmann, 'Komplementarit/it und Logik: 

III. Mehrfache Quantelung', Zeitschr. fiir Naturforsch. 13a (1958) 705-721. 

R E F E R E N C E S  

* The original version of this paper was read at a meeting of the Boston CoUoquim for 
the Philosophy of Science, 21 January 1969 under the title 'Quantum Logic Does Not 
Have to Be Non-classical'. The author wishes to thank Professor R. S. Cohen and the 
President of Boston University for the hospitality he enjoyed at Boston University as 
Visiting Associate Professor of Physics during which time he wrote this paper. The 
present version has been much improved due to conversations with Professors R. S. 
Cohen and A. Shimony of Boston University and especially with my commentator for 
that occasion, Professor David Finkelstein of Yeshiva University. 
1 G. Birkhoff and J. yon Neumann, 'The Logic of Quantum Mechanics', Annals of 
Math. 37 (1936) 823-843. 

See references in the bibliography and also note 4. M. S. Watanabe who shares in his 
own way the belief that the logic of quantum mechanics is a non-distributive lattice, 
has based his theory on a different and subtler analysis of the use of ordinary and 
scientific language than the authors I am explicitly criticizing in this paper. I do not 
wish to include his views among those I am attacking, although it is possible that some 
of the positions I take in the latter part of this paper conflict with those of Watanabe. 
a j. M. Jauch, The Foundations of Quantum Mechanics, New York 1968, p. 73. 
4 For an exposition of the properties of lattices, see G. Birkhoff, Lattice Theory, 2nd 
ed. 170, Amer. Math. Soc., 1948, and for the application of lattices to quantum 
mechanics, see J. M. Jauch, The Foundations of Quantum Mechanics. In the appendix to 
this paper will be found a convenient summary of the differences between a Boolean 
algebra (like PM-logic) and a non-Boolean lattice (like quantum logic). 
5 The sign ' ~ '  denotes material implication; ' v '  denotes alternation. 
6 H. Putnam, 'Is Logic Empirical?' in Boston Studies in the Philosophy of Science, vol. V 
(ed. by R. S. Cohen and M. Wartofsky), Humanities Press, New York, and D. Reidel, 
Dordrecht, 1969. 
7 At the biennial meeting of the Philosophy of Science Association at Pittsburgh, 
October 1968, Putnam challenged his audience, among whom the author found him- 
self on that occasion, to show that he had violated in his argument the principles of 
quantum logic. 
a The example given in the first draft of this paper was incorrect as D. Finkelstein 
pointed out to me. This example is due to him. 
9 Putnam claims that this part of his paper has the value of an inductive argument. 
The author sees it as being merely of expository value. 



QUANTUM AND CLASSICAL LOGIC 33 

10 See above, Section I. 
11 j. M. Jauch, Foundations of  Quantum Mechanics, p. 131. 
le Jauch, op. cit., p. 73. 
13 W. Sellars in chap. 3 of Science and Metaphysics (London 1968) develops a notion of 
picturing close to what the author would be willing to subscribe to. 
14 The author has treated the interrelationship of language, inquiring behaviour (as a 
form of life) intentionality, horizon and objectivity in 'Horizon, Objectivity and Reality 
in the Physical Sciences', in Intern. Philos. Quart. 7 (1967) 375--412. The analysis given 
there, although expressed in the language of continental philosophy, is nevertheless 
very applicable here, 
15 p, A. Heelan, 'Complementarity, Context-Dependence and Quantum Logic' (to be 
published). 
1~ p. A. Heelan, 'The Role of Subjectivity in Natural Science', Proc. Amer. Cath. 
Philos. Assoc., Washington, D.C., 1969. 
17 The author has tried to do this in his Quantum Mechanics and Objectivity, The 
Hague 1965, but using a method of intentionality-analysis rather than the analysis of 
picturing. 
18 For example, N. Goodman, Fact, Fiction and Forecast, 2nd ed. (Bobbs-Merrill, New 
York 1965), chap. I; R. Chisholm, 'The Contrary-to-Fact-Conditional', Mind 55 (1946) 
289-307; S. Hampshire, 'Subjunctive Conditionals', Analysis 9 (1948) 9-13; D. Pears, 
'Hypotheticals', ibid., 10 (1950) 49-62; W. Kneale, 'Natural Law and the Contrary-to- 
Fact Conditional', ibid. 10 (1950) 121-125; J. C. D'Alessio, 'On Subjunctive Con- 
ditonals', dourn. Philos. 64 (1967) 306-310. 
19 R. Hart6, Introduction to the Philosophy of Science, London 1960, pp. 17-24. 
20 j. M. Jauch, op. cit. p. 75. 


