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ABSTRACT. It is argued that the symmetry and anti-symmetry of the wave functions 
of systems consisting of 'identical particles' have nothing to do with the observational 
indistinguishability of these particles. Rather,  a much stronger 'conceptual indistinguish- 
ability' is at the bot tom of the symmetry requirements. This can be used to argue further, 
in analogy to old arguments of De Broglie and Schr6dinger, that the reality described 
by quantum mechanics has a wave-like rather than particle-like structure. The question 
of whether quantum statistics alone can give rise to empirically observable correlations 
between results of distant measurements is also discussed. 

1. A S U B J E C T  WITH A H I S T O R Y  

The years 1924-1926 saw a rapid succession of events which culminated 
in the formulation of wave mechanics by Erwin Schr6dinger. Quantum 
statistics played an important role in this development. In June 1924 
Albert Einstein received a manuscript from the Indian physicist S. N. 
Bose, in which a new derivation of Planck's radiation law was pre- 
sented. The essential new point in Bose's derivation was its treatment, 
by means of statistical mechanics, of cavity radiation as an assembly of 
light-quanta. This had been tried before, but the usual statistical 
methods, applied to a gas of 'light particles', inevitably lead to Wien's 
radiation law, which is in conflict with experiment. In fact, this had 
been an important argument against Einstein's light-quanta hypothesis 
[1]. Bose himself seemed to be unaware of this previous history of the 
subject. His use of statistics in the paper was rather opaque, and he 
appeared to think that he was just applying standard techniques. But 
Einstein perceived that a radically new hypothesis concerning the equi- 
probable states of a light-quanta gas constituted the core of Bose's 
work. He translated Bose's paper from English into German and sent 
it right away to the Zeitschrift far Physik [2]. Even before it had 
been published there, Einstein presented his own extension of the new 
statistical method to the case of ordinary matter particles [3]. In a 
subsequent article on the same subject [4] (the application of what we 
now call 'Bose-Einstein statistics' to the quantum theory of the ideal 
gas) he suggested that there might be a connection between the new 
statistics and De Broglie's recent hypothesis of matter waves. 
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That it was not easy to grasp what was at the basis of these develop- 
ments appears from the fact that Schr6dinger - himself an expert in 
statistical mechanics - at first did not see that a fundamentally new 
statistical hypothesis was being proposed. In correspondence Einstein, 
however, pointed out to him the distinctive features of the new statistics 
- in particular the tendency of particles to group together in the same 
cells in phase space [5]. This tendency seemed to indicate an "influence 
of the molecules on each other whose nature is for the present com- 
pletely mysterious", as Einstein put it. Once he had recognized this 
point, it did not take long before Schr6dinger formed his own opinion 
on Bose-Einstein statistics. In an article entitled 'On Einstein's Gas 
Theory '  [6], sent to the Physikalische Zeitschrift on December 15, 1925, 
he showed that it was possible to arrive at Einstein's results without 
abandoning traditional statistical methods. In the opening paragraphs 
of the article he diagnosed the situation as follows. 

The following is generally regarded as the essential point in the new theory of the gas 
worked out by Einstein: a wholly new kind of statistics, the so-called Bose statistics, has 
to be applied to the motions of the gas molecules. Natural intuition rightly resists 
considering this new statistics as something primary, incapable of further explanation. 
On the contrary, it seems to conceal the hypothesis of a certain interdependence or 
interaction of the gas molecules which is, however, hard to analyse in this form. One is 
entitled to expect a deeper insight into the real essence of the new theory if one succeeds 
in preserving the old statistical methods, which have been tested by experience and are 
logically well-justified, and manages to undertake the change in the foundations at a 
point where it is possible to do so without 'sacrificium intellectus'. 

He then observed that it is possible to derive the correct statistical 
distribution for radiation, Planck's radiation law, without the new sta- 
tistics. This can be done by applying 'natural' statistics (i.e., the tra- 
ditional statistics, according to which all states of a given energy are 
equiprobable) directly to the degrees of freedom of the electromagnetic 
radiation field. The 'light-quanta' then appear only as energy levels of 
the 'field resonators'.  This derivation had first been presented in a 
famous paper by Debye in 1910 [7] and was well-known to the physics 
community. It was generally considered as the only consistent appli- 
cation of the quantum hypothesis to the electromagnetic wave field - 
Planck's original derivation had contained essential elements of classical 
continuum physics combined with quantum conceptions, and its validity 
was therefore not beyond doubt. An immediate consequence of 
Debye's  approach is that the quanta lose their individual significance: 
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only the energy (i.e., the number of quanta) in the various degrees of 
freedom plays a role in individuating the states of the wave system. 

If Debye's  derivation of Planck's law is compared with the one given 
by Bose, the transition from natural statistics to Bose statistics can be 
seen as the direct result of the change from considering the manifold 
of energy states to considering the manifold of light-quanta states, when 
the light-quanta are treated as individual particles. Generalizing this 
point to the case of the ideal gas, Schr6dinger diagnosed the appearance 
of the new statistics as a consequence of not considering the energy 
states of the gas as a whole. Natural statistics will therefore lead to the 
results of Einstein's gas theory if the states of the gas as a whole are 
treated as excited states of a wave field, instead of as states of a 
collection of particles. Schr6dinger ended his introduction with the 
following far-reaching conclusion: 

This means  nothing else than taking seriously the de Broglie-Einstein wave theory of 
moving particles, according to which the particles are nothing more  than a kind of 'wave 
crests' on waves constituting the subst ra tum of the world. 1 

Schr6dinger's work on quantum statistics, which led him to think that 
reality is fundamentally wave-like, was a decisive stimulus for him to 
develop a wave theory [10]. Only six weeks after he submitted 'On 
Einstein's Gas Theory '  for publication, he finished his first article in 
the series on 'Quantization as a Proper  Value Problem' [11]. In it, he 
proposed what has become known as the Schr6dinger equation. Al- 
though Schr6dinger's introduction of the equation there is highly ab- 
stract and mathematical, without direct reference to the wave picture 
that motivated his discovery, he does remark that he could have pre- 
sented his results as a generalization of his work on Einstein's gas 
theory. Further,  in connection with his treatment of the hydrogen atom, 
he states that it is natural to interpret ~0 as the description of a wave 
phenomenon in the atom that has more claim to reality than the concept 
of an electron orbit. In the subsequent articles of the series Schr6dinger 
at tempted to elaborate his interpretation of wave mechanics as a de- 
scription of a wave-like reality. But it soon turned out that there were 
serious obstacles on the way. The idea that classical material particles be 
replaced by wave packets eventually foundered in view of the inevitable 
dispersion of such packets. Furthermore,  the waves of the finished 
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Schr6dinger theory are waves in a multi-dimensional configuration- 
space, and do not, as Schr6dinger had hoped, correspond in a one-to- 
one way with a system of waves in the ordinary, 'real' space of three 
dimensions. His proposed solution that el0] 2 determines a continuous 
charge distribution in three-dimensional space before long proved un- 
tenable. Quantum theory, with its superposition principle, fundament- 
ally operates in configuration space and all attempts at translation 
in terms of processes in ordinary space unavoidably lose part of the 
information contained in the original description. 

As it became clear that his wave interpretation of quantum mechanics 
failed, Schr6dinger withdrew from contributing further to the physical 
content of the theory. His later papers on the subject were mostly 
directed at pointing out alleged difficulties in the Copenhagen interpre- 
tation. The great majority of physicists, however, accepted that inter- 
pretation, although it seems fair to say that not many have studied its 
subtle points. 

The situation has of course changed in many ways since the days of 
Schr6dinger. Bose-Einstein (B-E) and Fermi-Dirac (F-E) statistics are 
now related to the symmetry properties of the wave functions. It is 
generally believed that these symmetry properties are connected with 
the 'observational indistinguishability' of the particles that are described 
by the wave function and that in this way a justification of the quantum 
statistics can be given on the basis of a particle picture. The character- 
istic differences between quantum statistics and Boltzmann statistics 
are then regarded as a consequence of the existence of correlations 
between 'identical' quantum particles. 

However, in the following I shall argue that much of Schr6dinger's 
(and De Broglie's) original argumentation still has force. It can still be 
said that quantum statistics shows the 'unnaturalness' of a particle 
picture and the 'naturalness' of a field-theoretical interpretation. As 
will be demonstrated, it is not possible to derive the symmetry (or 
asymmetry) of wave functions on the basis of a demand of observational 
indistinguishability of particles. Although arguments with similar con- 
clusions occur in the literature, their validity and implications seem 
not to have been widely appreciated. The symmetry properties of the 
quantum mechanical wave functions correspond to something much 
stronger than observational indistinguishability: they show that even a 
conceptual distinction between different 'particles' is dubious. We are 
thus led back to a 'wave picture' instead of a 'particle picture', although 
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a much more abstract one than originally envisaged by SchrOdinger. 
The abstract states of quantum field theory now assume the role that 
Schr6dinger intended for his waves in three-dimensional space. Quan- 
tum statistics is the immediate result of the 'natural ' ,  uniform, distribu- 
tion over these states of quantum field theory. There are no correlations 
between the states according to this statistical distribution. The im- 
pression of a correlation between states is only created if individual 
particle states are artificially added to the theoretical framework of 
quantum field theory. At the end of the paper I shall finally consider 
the question to what extent quantum statistics can be said to entail 
empirically observable correlations, not between states, but between 
measurement outcomes. I shall argue that quantum statistics by itself 
cannot be expected to give rise to correlations between the results 
of measurements performed at a distance from each other. If such 
correlations are found the existence of a 'common background' to the 
outcomes has to be supposed. 

2. S T A T I S T I C S  I N  T H E  W A V E  A N D  P A R T I C L E  P I C T U R E S  

In the second section of his article on Einstein's gas theory  Schr6dinger 
compared and contrasted two representations of an ideal gas. According 
to the usual representation the gas consists of n molecules, each of 
which has a value for its energy from the energy spectrum 
E l ,  E 2 ,  • . . , E s ,  . . . .  

In the alternative approach, the one preferred by Schr6dinger, each 
one of the above energy values corresponds to a degree of freedom of 
the total system. These degrees of freedom have the characteristics of 
the one-dimensional harmonic oscillator. That means that the sth de- 
gree of freedom is capable of having the energies 0, e~, 2 e s , . . . ,  n,e, . . . .  
(corresponding to 0, 1, 2 . . . . .  n , , . . ,  molecules in the state character- 
ized by E,, according to the usual point of view). In this approach the 
total system is treated as an assembly of linear oscillators (analogous 
to the case of electromagnetic radiation in a cavity). 

Standard methods of statistical mechanics can be applied to such a 
system of oscillators. The partition sum is given by 

E e-  1/kT(nlel + n 2 e 2 +  "'" +Uses+'" ). 

The sum must be taken over nonnegative integral values for the {n,}. 
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In the case of cavity radiation there would be no further restriction on 
the values of the {ns}. The characteristic feature of the gas system is 
that the {n,} must also satisfy the condition that E~ns = n; according to 
the usual, corpuscular, point of view this expresses the fact that the 
number  of particles in the gas is fixed. With this condition the standard 
techniques of statistical mechanics lead to the same results that were 
found by Einstein via the application of B - E  statistics to the system of 
gas molecules. 

It is not difficult to see the basic point in Schr6dinger's approach. 
According to the particle picture a state of the total gas in which there 
are ns molecules with energy e, can be realized in n!/IIsn~! ways. This 
multiplicity of the state is a consequence of the individuality of the 
particles: it makes a difference whether  molecule i or molecule j is in 
the one-particle state with energy Es. By contrast, there is only one 
state of the system of oscillators with a specific set of 'occupation 
numbers '  {ns}. B - E  statistics thus attributes to a particle system the 
multiplicity of states appropriate  to a system of oscillators. 

The above can readily be generalized to the case of F - D  statistics. 
If we add to the restrictions on the set of occupation numbers {n,} that 
each one of them take only the values 0 or 1, the states that are 
considered as equiprobable in the Fermi-Dirac  distribution result. 

Of  course modern  quantum mechanics does not give us a picture of 
a gas as a collection of three-dimensional mat ter  waves, with 'wave 
crests' representing particles. Schr6dinger's original interpretation has 
convincingly been shown to be untenable. But the formal structure of 
the quantum mechanics of many-particles systems is almost identical to 
the one inherent in Schr6dinger's t reatment  of a gas. This is most 
clearly seen in the formalism of quantum field theory. The basic states 
there are characterized by the occupation numbers of the various 'field 
modes ' ;  they have the form 

[nl, n2, . • • , n~, . . . ), 

where ns indicates the number  of quanta in the sth mode.  These states, 
which span the Fock space, can be obtained by repeated application of 
creation operators on the vacuum state. The characteristic difference 
between bosons and fermions is in the commutat ion relations between 
creation and annihilation operators;  for the states of the Fock space 
the resulting difference is that in the case of fermions the occupation 
numbers can only be 0 or 1 - for bosons there is no such restriction. 
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It is clear that there is a one-to-one relation between the Fock states 
of an 'n-particle system' consisting of bosons on the one hand and the 
Schr6dinger gas states on the other hand. Also the typical wave pro- 
perty of superposition is preserved: the Fock states, in their abstract 
multi-dimensional space, obey a superposition principle just as the 
three-dimensional Schr6dinger waves did. But from the point of view 
of statistics the most significant fact is that there are exactly as many 
basic states in the treatment of the 'n-particle system' according to 
quantum field theory as in the Schr6dinger wave treatment. 

The formalism of quantum field theory, with its Fock space, is equiva- 
lent to what we get from elementary quantum theory if we follow the 
prescription of symmetrizing (bosons) or anti-symmetrizing (fermions) 
the wave functions for many-particles systems. Consider, for simplicity, 
a two-particle system of identical bosons. The states of this system are 
contained in the space that is the tensor product of two one-particle 
Hilbert spaces; ~C1 and ~2. Suppose that {1~01/)} and {1~}} are orthonor- 
mal bases of ~1 and ~2, respectively. According to the symmetrization 
postulate the space of two-particle states is not the full space spanned 
by the state vectors [01) @ [~}, but rather the subspace spanned by the 
vectors 

I@ + i 4:j, and [0}} @ l@2). 

There is consequently exactly o n e  total state in which the one-particle 
states]@} and]@ are occupied. In the general case there is analogously 
exactly o n e  symmetrical total state corresponding to a given set {n,} of 
occupation numbers, instead of the n!/IIsns!  states if the full tensor 
product of one-particle Hilbert spaces were used. Completely analogous 
results hold for the case of fermions. 

The formalism of quantum mechanics therefore accommodates B-E 
and F-D statistics in a very natural way. These two kinds of statistics 
directly follow from applying standard, classical, statistical methods to 
the available quantum states of the system. B-E and F-D statistics 
consequently emerge as the 'natural' statistics, given the quantum mech- 
anical description. However, if not the quantum mechanical descrip- 
tion, but instead a classical particle description is taken as basic, the 
quantum statistics seem to appear as the consequence of some 'mysteri- 
ous correlation' between the particles, as Einstein already observed. 
Suppose that we consider a two-boson system such that the basic states 
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in the individual Hilbert spaces can be labelled H ('heads') and T 
('tails'). According to quantum theory there are three possible states 
in the combined space: 12, 0), 10, 2) and [1, 1), where the first number 
inside the ket represents the occupation number of the 'H-mode' and 
the second one the occupation number of the 'T-mode'. With the usual 
statistical hypotheses, each state gets a probability 1/3. But the natural 
statistics for a classical particle system would of course assign probabili- 
ties 1/4 to the states {H, H} and {T, T} and 1/2 to the case in which one 
particle is in state H and the other in state T, because the latter case 
can be realized in two different ways (i.e., by two different two-particle 
states). Therefore, quantum statistics seems to be a consequence of a 
tendency of the particles to 'flock together' which makes the probabili- 
ties of the states {H, H} and {T, T} greater than what had to be expected. 

Reversing the argument, the fact that we find B-E and F-D statistics 
realized in nature, together with the fact that there is in those cases no 
indication of a dynamic origin of any correlation between particles, 
could be taken as evidence that the concept of individual particles is 
not appropriate and that the quantum mechanical states should literally 
be construed as descriptions of the different states the world can be in. 
This would lead to a view similar to that of SchrOdinger in his article 
on Einstein's gas theory, but with the difference that the "waves consti- 
tuting the substratum of the world" would now be the highly abstract 
states of quantum field theory. 

Before discussing this argument in more detail, it is useful to look at 
the relations between the symmetry properties of the wave functions 
and the "indistinguishability of identical particles". There are conflict- 
ing and sometimes confused statements on this point in the literature. 
An analysis of the situation will help to make it clearer what exactly is 
the status of 'identical particles' in quantum theory. 

3. I D E N T I C A L  P A R T I C L E S  A N D  I N D I S T I N G U I S H A B I L I T Y  

There are two main positions concerning the status of the symmetriz- 
ation prescriptions represented in the literature. According to the first 
of them, the symmetry properties of the wave functions have to be 
taken as a brute fact of experience [12]. Admittedly there is the connec- 
tion, in quantum field theory, between spin and symmetry or anti- 
symmetry of the states, as first pointed out by Pauli [13]. But Pauli's 
result only shows that particles with non-integer spin values cannot 
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consistently be quantized with symmetrical states, and that particles 
with integer spin cannot be quantized with anti-symmetrical states. 
From this it does not follow that symmetrical and anti-symmetrical 
states are the only possible ones. Pauli's result does show that if sym- 
metrical and anti-symmetrical states are the only possible ones, particles 
with non-integer spin should be fermions and particles with integer spin 
bosons. But the point at issue here is whether the existence of only 
symmetrical and anti-symmetrical states can be derived from some 
deeper principle. 

The second position often found is that the symmetry properties of 
the wave functions follow from the "indistinguishability of identical 
particles". In this connection, two particles are said to be identical if 
all their intrinsic properties, like mass, spin and charge, are exactly the 
same. It follows that two identical particles are indistinguishable in the 
following sense: it does not make any difference for the properties of 
a physical system if the two particles are interchanged. No experiment 
can distinguish between the situation in which particle 1 is in state A 
and particle 2 is in state B, and the situation that particle 1 is in state 
B while particle 2 is in state A. The claim now is that the demand that 
predictions for the outcomes of experiments are indeed insensitive to 
the permutation of two or more particles in the theoretical expressions, 
automatically leads to the result that the wave functions for many- 
particle systems are either symmetrical or anti-symmetrical. 

The most sophisticated defences of this claim were presented by 
Kaplan [14] and Sarry [15]. The starting point of Kaplan's argument is 
the requirement that the expectation values of all one-particle operators 
Oi should be independent of the particle index i. If I~) represents the 
state of the many-particle system, this requirement can be put in the 
form that (g, tOil0) should be independent of i for all one-particle oper- 
ators O. The requirement is satisfied for symmetrical and anti-symmetr- 
ical states 14'}, and not generally satisfied for arbitrary I~) with different 
symmetry properties. Sarry subsequently showed that there was a small 
lacuna in Kaplan's argument which made invalid the conclusion that 
only strictly symmetrical and anti-symmetrical ]~) are allowed. Sarry's 
own derivation, intended to fill this lacuna, proceeds along the same 
lines as the one by Kaplan. Suppose that Q is an arbitrary observable 
of the many-particles system. The requirement of observational indistin- 
guishability in its most general form can be formulated thus: 

{PtOIQIP+) = (OtQIO), 
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or equivalently 

< OIP-1QPI@ = <4,IQI@, 

where the unitary operator P represents a permutation of two or more 
particles. As this must hold for arbitrary states It h) in the state space of 
the many-particles system, Sarry concludes that the following equality 
between operators must hold: 

p-1Qp  = Q. 

In other words, all observables of the system must commute with all 

permutation operators. Making one specific choice for Q (namely, a 
particular non-symmetrical operator) Sarry infers that the permutation 
operators P, which all have to commute with the chosen operator, must 
form a one-dimensional representation of the permutation group. This 
in turn implies that all states 1O} must be either symmetrical or anti- 
symmetrical under permutations. 

The above argument does not, however, prove what it is meant to 
prove. It overlooks the fact that not all operators can be observables 
for a system consisting of identical particles. It follows from the defi- 
nition of identical particles, at the beginning of this section, that no 
experiment can distinguish between situations that differ only in that 
the roles of two or more particles have been interchanged. It has to be 
stressed that this is so on quite general physical grounds relating to the 
nature of the interactions which can be used for the purposes of detec- 
tion. The argument does not depend on anything peculiar to the formal- 
ism of quantum mechanics and is equally valid in classical mechanics. 
The point is that interactions with a measuring device depend only on 
the dynamic states of the particles and their intrinsic properties. Particle 
indices by themselves play no role: it doesn't make any difference 
whether particle i or particle ] in a given dynamical state enters a 
detector. All interactions remain the same, regardless of the index of 
the particle that is involved in the interaction. As a result, all measur- 
able properties of the system are independent of particle indices. For 
instance, for a two-particle system r t - r 2  is no observable, but the 
mutual distance lr~-r21 is. This fact, that all observables for a system 
of identical particles are symmetrical on account of the dynamical irre- 
levance of particle indices, is certainly not new and has been explicitly 
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pointed out in some quantum mechanics textbooks [16]. But its sig- 
nificance for the discussion about the derivability of the symmetry 
properties of quantum states seems not to have been generally noted. 2 

The basic idea in the proofs reviewed above was that the required 
symmetry in the expectation values of certain operators leads to restric- 
tions on the possible forms of the wave functions. But it should be 
clear that this idea can only work if non-symmetrical operators are 
considered, like the one-particle operators Oi used by Kaplan or the 
specific Q chosen by Sarry. If only symmetrical operators are con- 
sidered, the symmetry of the measurement outcomes is automatically 
guaranteed, and no restrictions on the possible forms of I0) can be 
derived. In particular, Sarry's requirement that Q P  = P Q  is trivially 
satisfied for all symmetrical operators Q, and nothing can be inferred 
about the representation of the permutation group to which the oper- 
ators P belong. 

As observables are always symmetric in the case of identical particles, 
no restrictions on the states of the particles can be derived from obser- 
vational indistinguishability. It has already been mentioned that this 
point is quite general, and has in itself nothing to do with quantum 
mechanics. Also in classical mechanics, identical particles (with the 
same definition as in quantum mechanics) are indistinguishable in the 
sense that an interchange of particles has no empirical consequences. 
Suppose that we have two identical classical particles. At t =  0, let 
particle 1 be in the state {rS, PS}, and particle 2 in the state {~, p~}. 
Because the charge, mass, and other intrinsic properties of the particles 
are the same, there is no observational difference with the situation in 
which particle 2 is put in the state {rS, PS}, and vice versa. This is of 
course still true at any later moment,  when the two states have evolved 
in accordance with the laws of motion. 

It is often maintained that there is still a decisive difference between 
the quantum mechanical case and the classical one in that classical 
particles follow well-defined trajectories through space - the particles 
can be identified by means of their paths. There is a good deal of truth 
in this remark, but as it stands it can nevertheless be misleading. The 
crucial difference between quantum and classical mechanics - with 
regard to our present discussion - does not reside in the fact that 
continuous, identifiable, trajectories exist in classical mechanics. Also 
in quantum mechanics it is possible to have situations with two wave 
packets that are widely separated in space and that define 'paths' by 
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their evolution in time. The existence of the paths is not the decisive 
factor in such cases, but rather the fact that if the two paths are occupied 
by identical particles, the formalism of quantum mechanics yields only 
o n e  state to describe the situation, whereas classical mechanics envis- 
ages t w o  possible states. The point is that in classical mechanics an 
individual state, associated with one of the trajectories, is assigned to 
each one of the particles, whereas there are no different individual 
states in the quantum case, as we shall shortly see (Section 4). Thus, 
in classical mechanics by themselves unobservable particle indices are 
associated with the distinct paths. Although there are no corresponding 
observable differences, a distinction is then made between the two 
cases that result from each other by an interchange of indices. There 
is no such association between indices and paths in quantum mechanics, 
not even in the situation where quantum mechanics allows a description 
by means of well-defined paths. However,  in the case of widely sepa- 
rated wave packets it can very easily happen that the state gets a double 
statistical weight in quantum mechanics also; see Section 6. In such 
situations quantum statistics yields the same probability distribution as 
Boltzmann statistics, in spite of the fact that there are no individual 
particle indices in the formalism. 

Because quantum mechanics does not operate with unobservable 
indices, its state attribution stays closer to what is empirically observable 
than classical mechanics. This point of difference would in principle 
remain the same even if classical particles would not follow continuous 
trajectories but would move by making discontinuous leaps determined 
by an irreducibly stochastic process, so as to make it impossible to 
experimentally follow an individual path. A classical mechanics modi- 
fied along these lines could still work with individual particle states (as 
in the theory of Brownian motion). Going one step further, one could 
even speculate about variations on classical mechanics in which there 
is no identity over time of individual particles - theories in which there 
is no 'genidentity'. In such theories it would no longer be possible to 
identify two particle states at two different moments as belonging to 
the history of one and the same particle. Even then the theory could 
be such that at each moment  there are n individual particle states 
(more or less like the situation in modern formulations of Newtonian 
mechanics, where there are individual space points at each moment  of 
time but where there is no connection between space points at different 
moments; so-called neo-Newtonian spacetime). There would still be a 
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big difference between such a theory and quantum mechanics in which 
there are no different individual particle states (Section 4). 

Summing up, the crucial difference between the classical and the 
quantum mechanical treatment of systems of identical particles is the 
addition, in the classical theory, of unobservable particle indices to the 
empirically distinguishable states. Although these indices are them- 
selves not empirically observable, they make their presence felt through 
the multiplicity of states which is important in statistical considerations. 

4. Q U A N T U M  M E C H A N I C S :  C O N C E P T U A L  

I N D I S T I N G U I S H A B I L I T Y  OF ; I D E N T I C A L  P A R T I C L E S '  

We have seen that the symmetry properties of the quantum mechanical 
wave functions cannot be derived from observational indistinguish- 
ability of identical particles. That only symmetrical or anti-symmetrical 
wave functions are allowed for the description of identical-particle sys- 
tems must be considered to be an independent postulate which ex- 
presses something that is stronger than mere observational indistin- 
guishability. Indeed, in a system consisting of identical 'particles' - 
described by a symmetrical or anti-symmetrical wave function - the 
individual 'particles' are all in literally the same state, to the extent that 
one can speak of well-defined one-particle states at all. In the preceding 
section we emphasized that quite generally there is no observational 
difference connected with a permutation of particle indices over differ- 
ent one-particle states; but in quantum mechanics there even are no 
different one-particle states that could serve as 'carriers' of indices and 
thus of the individuality of particles. 

Let us consider, for simplicity, a symmetrical two-particle state built 
from orthonormal states 14~} and It)): 

= W½{I#>I) ® + le -) ® 

The superscripts 1 and 2 refer to the Hilbert spaces Ygl and Y~2, respec- 
tively, whose tensor product contains the two-particle states. The spaces 
YE1 and Y(2 can be thought of as isomorphic copies of one single-particle 
space Yg, in which Iq$} and Iqs) are part of an orthonormal basis. Now, 
since I't r} is not a simple product of two one-particle states, it is not 
possible to associate pure states in YC1 and Y(2 with i~}. The best one 
can do if one wishes to extract one-particle states from I~} is to form 
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the partial traces of W---]~)(g~l: 

W1 ~ ~ (n  [q~)(~ln), W2 -= ~(m]~)(~lm) ,  

with {In)} and {[m)} orthonormal bases of Y(2 and ~ ,  respectively. This 
leads to states in Y(1 and ~2 which are not pure, but are represented 
by mixtures; and it is easy to see that these two mixtures are identical: 

1 

The same result would have been obtained if we had started from an 
anti-symmetrical state for the two-particles system. 

We can conclude that in a symmetrical or anti-symmetrical two- 
particles state generally no pure states can be assigned to individual 
particles. The only exception is the case that I~) has the symmetrical 
form ]&)®l&); then of course the one-particle states are exactly the 
same. In the general case only mixtures are defined in the one-particle 
spaces; and again these are exactly the same. So in all cases it is not 
possible to differentiate between 'particles' on the basis of the propert- 
ies of their states. 3 Consequently, there is nothing in the quantum 
mechanical description to associate particle indices with; neither intrin- 
sic properties nor dynamical states individuate particles. The indices in 
the expressions only refer, through a conventional numbering, to the 
various Hilbert spaces, as mathematical objects. At this point it is clear 
that the appropriateness of the particle-concept itself becomes doubtful. 
If the quantum mechanical description is considered cor'91ete, 'par- 
ticles' are not only observationally indistinguishable; they are conceptu- 
ally indistinguishable. 

This result can without difficulty be generalized to the n-particle case. 
Here  also we find that symmetrical and anti-symmetrical wave functions 
in the tensor product space Y(1 Q Yfa ® Y~5 • ' • ~ Y(, yield precisely the 
same reduced states in each one of the spaces ~/-. The reverse is also 
true. If we ask what states in the tensor product space give exactly the 
same reduced states in all spaces that are k-fold (k < n) tensor products 
of individual Hilbert spaces (the individual spaces themselves are special 
cases), the answer is that only the completely symmetric and the com- 
pletely anti-symmetric states will do so. For the proof of this it is 
sufficient to inspect again Sarry's above-mentioned argument. If the 
reduced states are the same in all spaces of the form 
2E~1 @ ~2 • • • ® ~ all k-particle operators must have expectation values 
that are independent of the values and order of the k particle-indices 
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(because such expectation values can be calculated in the reduced 
state). Note that this must hold for all operators, not just for sym- 
metrical observables. As a consequence, Sarry's proof now goes 
through, and all permutation operators must be represented by multipli- 
cation by either + 1 or - 1 .  In other words, the state I~/') must be either 
completely symmetric or completely anti-symmetric under permu- 
tations. 

Absence of different particle states on the one hand and symmetry 
or anti-symmetry of the wave function on the other are therefore strictly 
equivalent. But if there are no different individual particle states with 
which particle indices can be associated, the very essence of the particle 
idea seems to be lost. A way out of this dilemma would of course be 
to maintain that the quantum mechanical description is incomplete, and 
that there are underlying individual particle states in a more complete 
description. Something more will be said about this in the following 
section. But if the quantum mechanical description is accepted as com- 
plete, it turns out that the situation very nearly mirrors the one con- 
sidered by Schr6dinger in 1925. There we had a proposed formalism 
for the treatment of a gas in which occupation numbers of "modes of 
vibration" defined the total state of the gas. Here,  in the context of 
quantum mechanics, we have the symmetric or anti-symmetric states 
of the total system which are analogously individuated by occupation 
numbers. In Schr6dinger's gas theory the question as to the individual 
behaviour of quanta does not even arise; as far as it makes sense at all 
to assign dynamical states to quanta, all quanta are in exactly the same 
state. In the quantum theory of 'many-particle systems' the question of 
how the particles behave individually of course does arise naturally. 
This is, however, a consequence of the way the subject is commonly 
introduced, namely as a generalization for many degrees of freedom of 
the quantized version of a classical one-particle system. If one starts 
from the finished theory with its symmetrical or anti-symmetrical states, 
or equivalently from the formalism of quantum field theory, which is 
perfectly tailored to the situation, there is no reason to conceive of 
particles with individual states; formally the state of affairs is the same 
as in Schr6dinger's gas theory. 

5 .  ~ N A T U R A L '  S T A T I S T I C S  

Let us return to statistics. The central point in Schr6dinger's argumen- 
tation for the reality of his matter waves was the observation that B - E  
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statistics for particles could be replaced by 'natural' statistics for the 
states of a matter field, and that there is therefore reason to believe 
that these latter states represent the actual states of the world. By 
'natural' statistics in this connection is meant the statistics that gives 
equal weight to all states belonging to a particular value of the energy. 
Of course, one of the ideas behind the adjective 'natural' is that we 
have here a principle that is very familiar from classical statistical 
mechanics. Giving equal probabilities to all states of a particular energy 
is at the basis of the micro-canonical ensemble and consequently at the 
basis of the whole of classical statistical mechanics. But is there also an 
objective reason, something different from familiarity, why attributing 
equal probabilities to states would be 'more natural' than other assign- 
ments of probabilities? Why shouldn't we just accept B-E or F-D 
statistics, when these are found to be empirically adequate, as the basic 
statistics for particle states, without any further explanation [18, 19, 20, 
21]? Schr6dinger wrote that this would be against 'natural intuition', 
but surely that can be no conclusive argument. Perhaps it is just a brute 
fact of nature that some particle states occur more often than other 
o n e s .  

The just-mentioned point of view would be very plausible if there 
would be no connection between the probability distributions used in 
statistical mechanics and the physical characteristics of the systems that 
are described. We would then not be in a position to justify, on theoret- 
ical grounds, the choice of one distribution over another. But as a 
matter of fact, there are physical grounds on which it is possible to 
base a preference for 'natural' statistics. In classical statistical mechanics 
the traditional justification of the micro-canonical ensemble does not 
consist in an appeal to some dubious a priori Principle of Indifference, 
but relies on physical arguments related to ergodic theory in one form 
or another. It was especially Einstein who, at the beginning of this 
century, urged that statistical physics should not start by just postulating 
a probability distribution over states, but should always relate an assign- 
ment of probabilities to the dynamical behaviour of the system under 
consideration [22]. Einstein in particular advocated equating probabili- 
ties of states with times of sojourn in those states, a motive for much 
research in subsequent decades. Although not all problems in the foun- 
dations of statistical mechanics have been solved, there has been im- 
portant progress in ergodic theory and connected areas since those 
days. It has been established that many-particle systems as a rule exhibit 
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very irregular, pseudo-random, behaviour (chaos). This makes statist- 
ical concepts applicable. Further,  the 'mixing' property possessed by 
such systems ensures that, in the long run, subsets of the energy hyper- 
surface are visited with frequencies that are equal to their measures in 
phase space. Finally, in cases with very many degrees of freedom it 
also plays a role that the values of macroscopic quantities are very 
insensitive to the exact position on the energy hypersurface representing 
the microstate. These factors ensure that microscopic details are almost 
always unimportant for the macroscopic properties of a system. The 
fact that the micro-canonical ensemble 'works' thus is a symptom of the 
physical, dynamical, irrelevance of parameters other than the energy for 
macroscopic quantities. Jaynes' way of identifying suitable ensembles 
for all kinds of situations, by means of the so-called maximum-entropy 
principle, can be seen as a systematic method of discriminating between 
those parameters that are macroscopically relevant and those that are 
not. In this method the appropriate ensemble is determined as the one 
giving equal weights to all states that do not differ in characteristics 
that are dynamically relevant at a macroscopic scale. 

Generally then, the attribution of equal probabilities to states has a 
physical background. The equiprobable states are physically equivalent 
with respect to the things that can be calculated with the probability 
distribution. In cases where only a limited number of degrees of free- 
dom are involved, this physical equivalence usually consists in the 
occurrence of chaotic, uncontrollable, transitions between the states. 
Research during the last decades has shown that the occurrence of such 
chaotic phenomena is virtually inevitable and has to be expected in 
even the simplest systems. Given the ubiquity of chaotic behaviour, an 
empirically found adequateness for predictions of the uniform distribu- 
tion can be taken as tentative evidence that the states in question are 
the only relevant ones for the calculations in which we are interested, 
and that they are physically equivalent in the sense that chaotic trans- 
itions between these states occur. 

It turns out that the core of the above remains valid in quantum 
mechanics. If a classical system is chaotic, then its quantum counterpart  
is extremely sensitive to external perturbations, and shows the charac- 
teristics of chaos and mixing [23]. It is therefore possible to argue as 
follows in the cases of B - E  and F-D statistics. We know that a uniform 
distribution over symmetrical (or anti-symmetrical) states gives the right 
statistical results. This is an indication that those states are the only 
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ones which are relevant for the magnitudes we are interested in, and 
are equivalent in the sense that there are no physical mechanisms 
favouring one of them over the others. Conversely, seen from the 
theoretical side, this is in agreement with what quantum mechanics 
itself teaches us about available states and their dynamical evolution. 
As discussed before, the symmetrical (or anti-symmetrical) states are 
the only ones in the Hilbert space of the system; they can to some 
extent be compared with phase points in the phase space of a classical 
system and show the same type of chaotic behaviour. 

By contrast, if we assume that a symmetrical state 

 22 {101 ) ® l0 + 101) ® I02)} 

really corresponds to two particle states, one in which particle 1 is in 
state I~) and particle 2 in state 10), and one with the particles inter- 
changed, we also have to assume that these two individual states have 
a probability that is only half as great as the probability that both 
particles are in state I~b), or both in state ]qJ). In view of the omnipres- 
ence of chaotic behaviour leading to equal probabilities of states (not 
just as an empirical fact, but also as something that has to be expected 
on theoretical grounds), it is justified to ask what specific mechanisms 
are responsible for the different behaviour here. But there is no known 
physical mechanism which could account for the apparent lack of equiv- 
alence. Hence we come back to the possibility that we should stop at 
this juncture, and content ourselves with the observation that the parti- 
cle states just have different probabilities, apparently as a basic fact of 
nature [18, 19, 20, 21]. 4 

Although this position cannot be rejected on grounds of logic alone, 
the above considerations show that it is methodologically weak. Many- 
particle systems governed by known interactions, and even almost all 
systems governed by (analytical) hamiltonians existing only on paper, 
exhibit the kind of dynamical behaviour that leads to chaos. For these 
systems it has to be expected that a uniform distribution over states 
is appropriate in statistical considerations; deviations from a uniform 
distribution must have an identifiable cause in physical processes favour- 
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ing one case over another. The connection with dynamics thus makes 
it possible to understand in what situations the statistical distribution 
will be uniform and in what situations this will not be the case. By 
contrast, if the connection with dynamics is not taken into account, it 
can only be said that a uniform distribution sometimes is, and some- 
times isn't appropriate; it then seems justified to accept any empirically 
found distribution as a basic fact of nature. Consideration of the link 
with dynamics allows a deeper  analysis. In that analysis it is not justified 
to accept any given distribution. It has to made clear what special 
circumstances are responsible for non-uniform statistics. 

The principle that a physical process that is responsible must be 
supposed to exist if one physical state occurs significantly more often 
than another one, if this is not expected on dynamical grounds, thus 
naturally fits in with modern physical theory. It is therefore justified 
that this principle plays a pivotal role in scientific methodology in the 
way it actually does. Quantum mechanics interpreted as a complete 
theory whose states are basic descriptions - not corresponding to mul- 
tiples of underlying particle states - is in complete harmony with this 
principle. 

The view that not the quantum mechanical states but instead states 
of individual particles are fundamental has consequently at least two 
methodological problems to face. 5 First, in problems where statistical 
mechanics plays no role, quantum mechanics is able to do without an 
individual particle picture, and is empirically well-supported. The onus 
of proof is therefore with the supporters of a particle picture that the 
features that must be added to accommodate individual particles do not 
just constitute superfluous excess metaphysical baggage. The problem is 
actually more serious than that, because there are well-known problems 
for hidden-variables theories in even reproducing well-confirmed quan- 
tum mechanical predictions (Bell-inequalities), something they must be 
able to do before new predictions - demonstrating that the additional 
variables are not superfluous - are in order. But secondly, there is the 
problem that the particle states cannot receive equal weights in statist- 
ical calculations, even if there are no known dynamical factors that 
can discriminate between them. A 'particle interpretation'  of quantum 
mechanics should in a non-ad-hoc way make it clear why the usual 
mechanisms that cause chaotic transitions between states are not effec- 
tive in the case of the basic particle states. 



146 D E N N I S  D I E K S  

6 .  Q U A N T U M  C O R R E L A T I O N S  

It has already been emphasized that the 'naturalness' of the statistics 
in which all accessible independent states get equal probabilities is a 
consequence of the equivalent dynamical roles played by these states. 
All considerations concerning chaotic behaviour, ergodicity, etc., relate 
to the dynamics of the system, and all conclusions drawn with respect 
to equivalence of states consequently apply to the dynamical states only. 
Now, in quantum mechanics there is, unlike in classical mechanics, 
no simple one-to-one connection between measurement results and 
dynamical states. The arguments for the uniform distribution over states 
therefore do not simply carry over to the distribution over possible 
measurement outcomes. Indeed, the fact that the basic quantum mech- 
anical states are - by virtue of their symmetrical or anti-symmetrical 
form - in general not products of one-particle states, already shows 
that probability distributions for joint measurements will often be non- 
factorizable so that correlations between measurement outcomes may 
result. 

There are two possible sources of such 'quantum correlations' be- 
tween results of measurements. First, measurement results in a single 
(anti-)symmetrical state may show statistical correlations, as just indi- 
cated. That is, if an experiment is repeated with each time the same 
initial 'many-particle' quantum state, there need not be statistical inde- 
pendence between measured one-particle attributes. This can be so 
even if there is no interaction term in the Hamiltonian of the system. 
Consider, for instance, two momentum eigenstates in one dimension. 
In the position representation these states are proportional to exp( ipx /h )  
and exp ( ip ' x ' / h ) ,  respectively. A simple product state proportional to 
exp( ipx /h )  • e xp ( ip ' x ' / h )  would give rise to independent uniform prob- 
ability distributions for the positions of the two particles. However, the 
symmetrized states proportional to 

exp( ipx /h )  . e xp ( ip ' x ' / h )  +_ exp ( ip ' x /h )  • exp ( ipx ' / h )  

lead to more complicated expressions for the probability that one detec- 
tor is triggered at position xl and another one at position x2. This 
probability is proportional to 

1 +- cos{(p - p  ')(x I -- X2)}/~ } 

with the plus and minus sign for the symmetrical and anti-symmetrical 
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case, respectively. It is clear from this expression that the chance that 
'bosons' are found in each other's vicinity is greater than has to be 
expected on the basis of statistical independence, whereas the reverse 
is true for 'fermions'. 

The second possible source of correlations comes from natural, uni- 
form, statistics applied to the symmetrized quantum states. Suppose 
that there are two possible states for a simple boson system: ]H) 
('heads') and IT) ('tails'). There are then three possible states for a 
composite system ("two identical particles"), namely ]H, H) ,  IT, r), 
and ]H, T), and each one of these receives a probability of 1/3. This 
leads to the probability 1/2 for the measurement outcomes 'heads' and 
'tails', P(/-/) = P(T) = 1/2, whereas the joint probability for 'heads' and 
'tails' is 1/3, P(H&T)= 1/3. Clearly, P(H&T)>P(H)P(T), so that 
there is a positive statistical correlation between the outcomes 'heads' 
and 'tails'. 

The distribution over states also entails non-classical results in cases 
where the (anti-)symmetrical form of the wavefunctions has a conse- 
quence for the energy. This leads (via the Boltzmann factor) to statis- 
tical weights for the states that differ from the ones that would be 
applicable if the states were simply product states. In this way it can 
happen that states that exhibit a particular type of correlation get 
additional statistical weight. Such effects are important in the theory 
of magnetism, where correlations between spins can sometimes be 
accounted for on the basis of the lower Coulomb energy of the corre- 
lated spin state. For instance, if it is the symmetrical spatial wave 
functions that have the lowest Coulomb energy, electron spins will tend 
to be anti-parallel, in virtue of the anti-symmetry of the total wave 
function. 

It is therefore true that the formalism of (anti-)symmetrical states, 
and natural statistics applied to them, can lead to classically unexpected 
correlations, and that this has important physical effects as in the theory 
of the periodic system and the theory of magnetism. However,  it is not 
true, in contradistinction to what has sometimes been suggested in the 
literature [24], that the formalism naturally leads to the appearance of 
correlations between distant measurement outcomes without there 
being a common origin to the events or an interaction term in the 
Hamiltonian of the system. 

Consider again the case of a composite 'two-particle' state. A first 
remark, often made in this context, is that there will be no correlation 
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between results of measurements of a wide class of observables if the 
two one-particle states from which the composite state has been formed 
do not overlap in space. Contemplate the state 

c{14, > ® + ® 14,2>} 

with C a normalization constant. The expectation value of a symmetrical 
observable Q in this state differs from its value in the unsymmetrized 
state ]4~ 1) ® ]~02) by the ' interference term' 21c]2(~b~q~lQ14~14~2). If )b) and 
1~) can be represented by spatial wave packets that do not overlap 
(the case corresponding to the classical case of distant particles) this 
interference term vanishes for observables Q which are local functions 
of the position operators. 

But more important is that even if the wave functions do overlap, as 
in the case of the momentum eigenfunctions mentioned above, there 
is in general no reason to expect a correlation between the results of 
measurements on the two 'particles'. The correlation inherent in the 
(anti-)symmetrical quantum state only shows itself experimentally, as 
an actual correlation in a series of measurement outcomes, if there is 
a relation between the successive initial states with which the experi- 
ment is performed. In the example that we discussed above, the (ap- 
proximately) same difference between the values of p and p '  must be 
realized in each individual experiment. If p and p '  vary freely and 
independently from experiment to experiment, we have to average the 
term cos{(p-p ' ) (x l -x2) /h}  o v e r  the p and p '  values, with the result 
that no correlation remains. Now, it is a fact of experience in quantum 
mechanics no less than in classical mechanics, that in order to ensure 
that there is a relation between p and p '  in successive experiments, 
there must either be a suitable past interaction that is the same in 
repetitions of the experiment (as in the Einstein-Podolsky-Rosen case), 
or there must be a selection mechanism that picks out systems with 
momenta that have a more or less constant relation to each other. In 
the first case the systems have a common history of interaction. In the 
second case two kinds of situations can be distinguished. It may be that 
p and p '  vary from experiment to experiment and that some device is 
responsible for a constant difference between them. In that case the 
question as to the origin of the correlations is shifted to the question 
of how the mechanism is able to produce correlated values of p and p '  
again and again. In its essence this situation is not different from the 
one in the first case; experience teaches that such persistent correlations 



Q U A N T U M  S T A T I S T I C S  A N D  I D E N T I C A L  P A R T I C L E S  149 

do not occur unless eventually a region in the intersection of the past 
light cones of the two measurement events is identifiable in which there 
is a local interaction that is responsible for the correlations. There 
might for instance be an experimenter who locally prepares the two- 
particle system and sets a knob on an apparatus in a certain position. 

There remains a second kind of situation. Here  p and p' are se- 
lected independently, for instance at widely separated locations, but in 
such a way that the same values of p and p' are chosen in successive 
experiments. In this situation there are separate selection mechanisms 
for p and p ' .  They must possess a memory,  so that there is a correlation 
between the values chosen in successive experiments, but there need 
not be a relation between the distant mechanisms. To schematize the 
case, assume that Is) and I/3) are the states in which the selection devices 
are left behind after they have selected IP) and IP'), respectively. We 
then have: (o~1/3) = 0. The combined system of particles and selection 
devices is represented by a ket-vector of the following form: 

1 
- -  {l p l/3p') 

In this state description it has been made explicit that the selector states 
]a) and )3) have become correlated to [p) and [p'), respectively. The 
important point is that any observable that pertains only to the states 
[p) and [p') will have an expectation value in the above states that is 
equal to the expectation value it has in a simple product state of [p) 
and ]p'). This is so because the interference terms contain (o~113) or 
(/31c~) as a factor, which makes them vanish. But the typical quantum 
correlations occur as a consequence of just these interference terms, so 
that they will not be detectable under the described conditions. It may 
be added that the constant relation between p and p' which is detectable 
(the same values of p and p' will be found in succesive experiments) is 
not what normally would be called a correlation between p and p'. For 
a correlation we would require that there is a constant relation between 
p and p' in spite of variations in these quantities. 

We can conclude that in the discussed case an empirically detectable 
correlation between measurement results will appear only if there is a 
non-empty intersection of the past lightcones of the two measurement 
events, with a physical state that can appropriately be called the com- 
mon origin of the correlation between the measurement outcomes. 

The same kind of reasoning applies to more complicated cases. An 
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important example is furnished by two-fermion systems with spin. There 
are anti-symmetrical wave functions that can give rise to typical quan- 
tum correlations between spin measurements, e.g., those wave func- 
tions that can be factorized in a spatial part and a spin part of the 
following form: 

14} ® I@ - 14} ® H}. 

As before, correlations only materialize in actual experiments if the 
same relations between jsc,) and jsb) are reproduced over and over again. 
If Isa} and Is~} vary independently no correlation will survive. A constant 
relation can result if there is some interaction that is responsible for a 
repetition of the same total spin state, as in the Einstein-Podol- 
sky-Rosen case (Bohm's spin version). An additional possibility in a 
fermion system is that the spin correlations are directly (i.e., without 
the intervention of any interaction) attributable to the symmetry prop- 
erties of the total wave function. This occurs if the spatial parts of the 
one-particle wave functions coincide exactly; the spins must then be 
anti-parallel. Finally, it can be that a spatial wave function of a parti- 
cular symmetry type is advantageous energetically, if an inter-particle 
interaction influencing the energy of the system is effective. This can 
in turn lead to spin correlations (as in the case of magnetism). In these 
cases either an interaction or a coincidence of spatial parts of wave 
functions is a necessary condition for the occurrence of empirically 
observable correlations. 

Quite generally, statistics in and over quantum states only leads to 
the appearance of empirical correlations at a distance if there is, or has 
been in the past, an overlap of spatial wave functions or an interaction. 

Let us discuss in somewhat more detail an important mechanism that 
is operative here. The applicability of probabilistic considerations to 
states has a physical, dynamical, background (Section 5) and the appro- 
priateness of one or another statistical distribution therefore depends 
on the physical characteristics of the situation. To see the relevance of 
this remark consider the following situation, which is analogous to the 
'heads and tails example' discussed in the beginning of this section. 
Suppose that there are two one-particle boson states represented by 
wave packets that do not overlap and that have also always been widely 
separated in the past; let IL) (left) and IR} (right) denote these two 
states. Now it is important to note that the two-particle states ]L, L}, 
JR, R) IL, R} are not as a matter of course dynamically equivalent under 
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the stated conditions. There will not automatically be ergodic or chaotic 
behaviour connecting the three states, which are far apart from each 
other in Hilbert space. The appropriate statistical distribution therefore 
entirely depends on how exactly the three states are actually produced. 
In particular, it is not justified to posit an a priori probability 1/3 for 
each one of the states. Now assume, to add the lacking information in 
a realistic way, that the three states are randomly prepared by a locally 
operating device. It is of course possible that the device operates in 
such a way that a probability 1/3 for each one of the three two-particle 
states results. For this, we should have three equivalent states of the 
device, which are chosen with equal probabilities by an experimentator,  
or between which uncontrollable transitions occur. This latter situation 
could be found if the selection process is located in one spatially limited 
region (and the result subsequently transmitted to the regions occupied 
by the wave packets). However,  if it is independently decided by ran- 
dom processes in the two distant regions whether or not a particle will 
be prepared in the state IL) or IR), different values of the probabilities 
should be used. In this case it is not difficult to see that the two one- 
particle states acquire individual characteristics. For instance, they will 
be produced shortly after one another, so that we get the following 
possible states: 

IL~,L2), [Rx,R2),I L~,R2), IL2,R~), 
where the subscripts 1 and 2 refer to the times at which the states have 
been created. Natural statistics applied to these states, i.e., a uniform 
distribution over them, yields the classically expected probabilities for 
'left' and 'right' without correlation between them. Furthermore,  if 
a preparation mechanism works this way, by associating individual 
characteristics with one-particle states, all effects of interference be- 
tween these states are destroyed, as we discussed before for the two 
momentum eigenstates; the particle states will become correlated with 
orthogonal states of the preparation device. This mechanism will oblit- 
erate the difference between classical and quantum statistics in all cases 
where independently operating selection mechanisms are involved. In 
such situations the classical particle concept becomes applicable. 

The general point is that in situations where there has not been an 
overlap, interaction or common origin of wave functions, there is no 
reason to expect the appearance of correlations between distant 
measurement results on the basis of quantum statistics alone. 

In summary, there are in quantum mechanics sometimes correlations 
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when we do not expect their presence on the basis of classical theory. 
The following principle, although not representing an a priori truth, 
remains however empirically well supported as a central point of 
methodology, also in quantum mechanics. If correlations are found 
between physical magnitudes measured at distant points in space, it 
is justified to seek an 'explanation' for these correlations. Such an 
'explanation' can consist in the identification of a common origin, an 
interaction between the regions in the past lightcones of the measure- 
ments, or in the demonstration that there have been coinciding spatial 
wave functions such that the correlation is a direct consequence of the 
symmetry requirements. Distant correlations cannot be accounted for 
solely on the basis of the symmetry properties of the wave functions, 
or merely on the basis of the applicability of B-E or F-D statistics. 

7. CONCLUSION 

I have attempted to show that taking the states of quantum field theory 
seriously, as corresponding to the different states the world can be in, 
results in a satisfactory and consistent scheme. The introduction of 
individual particle states is empirically superfluous and moreover leads 
to conceptual, methodological and technical difficulties. 

As an additional example of this, consider the following question 
which has sometimes been asked: if an electron is created in a distant 
galaxy, how does it know that it has to anti-symmetrize its state with 
respect to the electrons in our neighbourhood, and how is it able to do 
so? Such questions clearly have as their background a picture of individ- 
ual particles, in which the quantum mechanical states only serve to 
describe (statistical) regularities in their behaviour. By contrast, if the 
states of the quantum field theory are accepted as giving the complete 
spectrum of physical states of the world, such questions do not arise. 
Every creation process is automatically described as the transition from 
one (anti-)symmetrized state to another one. Something similar can be 
said with regard to the issue of "how particles can be individuated" in 
quantum theory. We have seen that all 'one-particle states' are ident- 
ically the same in the formalism of completely symmetrical or anti- 
symmetrical states. It has therefore often been queried how reference 
to individual particles is possible in the theory; how the relation of 
reference between particle-index i and the corresponding denoted parti- 
cle can be established. Again, the question does not arise if the quantum 
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field states are taken as basic. These states are individuated in an 
unproblematic fashion by their sets of occupation numbers. Individual 
particle indices play no role in the finished formalism. They only occur 
in the construction of the states from the states in 'single-particle Hilbert 
spaces'. In that context, the indices can be taken to refer to the individ- 
ual Hilbert spaces, as mathematical objects, and n o t  to individual par- 
ticles. There is no problem with reference in this case either. 

The concept of individual particles is fraught with difficulties in quan- 
tum mechanics. In a realistic interpretation of quantum mechanics (in 
the philosophical sense) the abstract states of quantum field theory 
must therefore be considered to be the prime candidates for providing 
descriptions of the world. In this sense, one could say that the abundant 
empirical evidence that supports the validity of the general character- 
istics of the quantum formalism also supports the thesis that individual 
particles do not exist in nature. Of course, there are well-known prob- 
lems in giving a realistic interpretation to quantum mechanics. The 
focus of these difficulties is in the relation between the formalism and 
measurement results; this is connected with the notorious measurement 
problem of quantum mechanics. Further,  there is the question of how 
the states of quantum field theory, defined as they are in an abstract 
mathematical space, can be descriptive at all of anything in the real 
world. The discussion of these issues would take us too far afield here. 
Let  it suffice here to say that I think they can be satisfactorily dealt 
with; they are the subject of other papers [25]. 

N O T E S  

1 De Broglie had in fact given a similar argument in the statistical chapter of his thesis 
[8]. Commenting on the correlations between particles carried by the same "accompany- 
ing wave",  he stated "we can no longer take the single atoms as 'objects' of the general 
theory, it is the elementary stationary phase waves which must play this rote". For more 
on de Broglie's reasoning and its historical background, see [9]. 
2 It should be noticed that the preceding argument for the symmetry of observables 
only depends on the equality of particle properties relevant for physical interactions. 
Observational indistinguishability can then be derived. On this point our argument differs 
from similar ones in the literature [12, 18] in which a principle of observational indistin- 
guishability is taken as the starting point. If the latter line is followed it remains unclear 
whether indistinguishability should be interpreted as entailing a restriction on states or 
on observables. 
3 This point has been noted in the literature; see [17, 20]. 
4 As Redhead remarks [18, 19], it is then sufficient to postulate as an initial condition 
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that only symmetrical or anti-symmetrical states occur. In view of the symmetry of the 
Hamiltonian the symmetry character of the states is conserved in time. 
5 That an interpretation of quantum field theory in terms of individual particles can 
logically speaking always be upheld is stressed by Redhead in [18]. In a sequel to this 
article [19] he however favours a field interpretation, on grounds independent from the 
ones adduced here. He mentions in particular the difficulties that arise if it is attempted 
to give the vacuum state of quantum field theory an interpretation in terms of particles 
and if "virtual particles" are treated as really existing entities. 
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