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ABSTRACT. The common cause principle states that common causes produce corre- 
lations amongst their effects, but that common effects do not produce correlations 
amongst their causes. I claim that this principle, as explicated in terms of probabilistic 
relations, is false in classical statistical mechanics. Indeterminism in the form of stationary 
Markov processes rather than quantum mechanics is found to be a possible saviour of 
the principle. In addition I argue that if causation is to be explicated in terms of probabili- 
ties, then it should be done in terms of probabilistic relations which are invariant under 
changes of initial distributions. Such relations can also give rise to an asymmetric cause- 
effect relationship which always runs forwards in time. 

1. INTRODUCTION 

One does not cure an infection by sitting in a cold bath so as to lower 
one's body temperature.  It is folk wisdom that one cures a disease by 
removing some of the causes of the disease and not by removing some 
of the effects. One of the long-standing problems of philosophy is to 
provide an account of causation that incorporates such a difference 
between cause and effect. For instance, an extremely simple-minded 
account of causation, which I attribute to nobody, is that A causes B 
precisely when there is a positive correlation between A- and B-type 
events. Such an account fails to account for folk-wisdom, since it entails 
that A causes B whenever B causes A. 

Recently many philosophers have argued that one can specify a 
precise probabilistic sense in which causes differ from effects. Their 
claim, known as the common cause principle, is that common causes 
lead to correlations among their effects, while common effects do not 
produce correlations among their causes. It has also been claimed by 
some that one can derive such an asymmetry from classical statistical 
mechanics, or at the very least that the asymmetry follows directly from 
reasoning analogous to reasoning in statistical mechanics. In this paper 
I shall analyse such claims, and find that, quite to the contrary, statistical 
mechanics implies the falsity of the common cause principle. In the 
final section I shall consider what can be salvaged from the wreckage, 
and I will find that probabilistic accounts of causality can be improved 
by looking at the properties of Markov processes. 
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2. T H E  C O M M O N  C A U S E  P R I N C I P L E  

Let us begin with an example of a common cause explanation, suggested 
by D. Papineau (Papineau 1985). Smoking causes cancer and smoking 
causes yellow fingers, in the sense that smokers are more likely to 
develop cancer than non-smokers, and are more likely to develop yel- 
low fingers than non-smokers. One would therefore expect there to be 
a correlation between cancer and yellow fingers. For if one has cancer 
one is more likely to be a smoker than if one did not have cancer, and 
hence one is more likely to have yellow fingers than if one did not 
have cancer. Thus, a good explanation of such an observed correlation 
between yellow fingers and cancer is to point at the (statistical) presence 
of a common cause of the correlata, which in this case is smoking. Such 
an explanation is a common cause explanation. 

Now consider the case of common effects. Working in asbestos factor- 
ies raises the probability of contracting cancer, and so does smoking. 
Smoking and working in asbestos factories can be said to have cancer 
as a common effect. Nevertheless, one does not at all expect there to 
be a correlation between smoking and working in asbestos factories. 
Moreover,  if there were such a correlation, one would not regard the 
presence of the common effect cancer as an explanation of the corre- 
lation between working in asbestos factories and smoking. This pur- 
ported asymmetry is known as the common cause principle. 

Let  us now express the common cause principle more clearly, without 
presupposing that one already knows how to distinguish causes from 
effects, in terms of probabilistic relations between events. This ap- 
proach was first suggested by H. Reichenbach (Reichenbach 1956), and 
further elaborated by W. Salmon and others (see, e.g., Salmon 1984). 

Let  us define a conjunctive fork by the following four probabilistic 
expressions: 

(i) 
(ii) 
(iii) 
(iv) 

Prob(A/C) >Prob(A/not-C)  
Prob(B/C) >Prob(B/not-C) 
Prob(A&B/C) = Prob(A/C).Prob(B/C) 
Prob(A&B/not-C) = Prob(A/not-C).Prob(B/not-C).  

Let  us also restrict our attention to those cases in which the A-type 
events and the B-type events occur simultaneously, and the C-type 
events occur either before or after the A-type and B-type events. The 
common cause principle then comes in two parts. 
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(1) Whenever  there are correlated simultaneous A- and B-type 
events, which are not directly causally connected, there are 
C-type events such that the three types of events form a 
conjunctive fork. 

(2) Whenever  a conjunctive fork exists, the C-type events occur 
before the A- and B-type events, and never after the A- and 
B-type events. 

In this paper I shall concentrate on the claim of temporal asymmetry 
made in the second part of the common cause principle. Hence,  I shall 
not discuss here what might be meant by a 'direct causal connection'  
between events. 

One can state the second part more pictorially, as the claim that 
conjunctive forks can point towards the future, but cannot point towards 
the past. A common cause explanation of a correlation consists of the 
finding of earlier events C which raise the probability of each of the 
correlated events, conditional upon which the correlated events are 
statistically independent.  

Let me immediately amend my formulation of the common cause 
principle, It is possible that a C-type event determines an E-type event 
to occur at an even later time if and only if C occurred at the earlier 
time. But if this is the case then E must have exactly the same proba- 
bilistic relations with A and B as C does. Thus if A and B form a 
conjunctive fork with the earlier event C then A and B must also form 
a conjunctive fork with the later event E. Hence conjunctive forks 
which point to the past can exist. The amended second clause of the 
common cause principle therefore states that conjunctive forks which 
point to the past are always accompanied by conjunctive forks which 
point to future. Two conjunctive forks connected in such a way are 
called a closed fork, as opposed to a conjunctive fork occurring solo, 
which is known as an open fork. The amended second clause of the 
common cause principle thus reads: conjunctive forks which are open 
are always open to the future. 

3. C L A S S I C A L  P H Y S I C S  A N D  C O M M O N  C A U S E S  

It would be nice if one could have more than a few plausible examples 
to support the common cause principle. T. Horwich (Horwich 1987) 
and D. Papineau (Papineau 1985) have at tempted to provide a more 
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solid foundation of the principle, by assuming background determinism 
and some randomness condition on the distribution of initial conditions. 

If one is to assume background determinism then the probabilities 
mentioned above must refer to probabilities of initial conditions and 
not to the probabilities of transitions of states, as these will be 1 or 0 
in deterministic contexts. For instance, in the example concerned with 
smoking, yellow fingers, and cancer, to assume background determin- 
ism is to assume that for any particular person, whether smoker or not, 
there is a factor c, the presence or absence of which determines 
whether or not he will later develop cancer, and that for any person 
there is a factor y, the presence or absence of which determines whether 
the person will develop yellow fingers or not. The claim that persons 
who smoke are more likely to develop cancer then translates into the 
claim that for persons who smoke factor c is more likely to be present 
than for persons who do not smoke. Similarly factor y is assumed to 
be more likely for smokers than for non-smokers. (One might wish to 
call the factor which determines whether a smoker develops cancer 
factor sc and that which determines whether a non-smoker develops 
cancer factor nc. Factor c then is (smoker and sc) or (non-smoker and 
nc). Similarly for y. 

In order to construct a common cause explanation of the correlation 
between yellow fingers and cancer, both Horwich and Papineau now 
make the assumption that the factors y and c, are statistically indepen- 
dent among smokers, and that the factors y and c, are statistically 
independent among non-smokers. Indeed it then follows immediately 
that yellow fingers and cancer will be correlated amongst all people at 
the later time. The assumption that smokers are more likely to have 
factors y and c, together with the assumption that these factors are 
statistically independent among smokers and among non-smokers, is 
enough to imply a later correlation between smoking and yellow fingers 
among all people. 

In order to derive the second clause of the common cause principle 
they now have to show that a common effect does not similarly lead 
to a correlation among its causes. To put it more clearly: they have to 
show that one cannot find conjunctive forks open to the past. 

In view of background determinism there must be a factor a which 
determines for every person whether he previously worked in an asbes- 
tos factory or not, and a factor s which determines whether he pre- 
viously smoked. If one now assumed that people with cancer were more 
likely to have factors a and s than people without cancer, and that the 
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factors were statistically independent among people with cancer and 
among people without cancer, then an earlier correlation between 
working in asbestos factories and smoking would be entailed. Exactly 
the same reasoning as in the case of yellow fingers and cancer would 
entail that cancer would form a conjunctive fork with working in asbes- 
tos factories and smoking. This would be a conjunctive fork open to 
the past. 

This argument, though, is blocked by Papineau and Horwich on the 
grounds that initial conditions can be assumed to satisfy the requirement 
of statistical independence (a premise needed in the yellow fingers- 
cancer argument), but that final conditions cannot be assumed to satisfy 
such a requirement of statistical independence (which is a premise 
needed for the asbestos-smoking argument). Horwich in fact claims 
that such a statistical independence is implied by the assumption of 
microscopic chaos in statistical mechanics, whereas Papineau only 
points out that there are certain similarities between the independence 
requirement and certain assumptions about randomness in statistical 
mechanics. 

Before using the full power of the assumption of background deter- 
minism it is instructive to see that, even in this example, Papineau and 
Horwich are not simply assuming that the initial conditions are chaotic 
where the final ones are not. The later correlation between yellow 
fingers and cancer among all people is mirrored by the earlier corre- 
lation between factors y and c among all people. This has to be the 
case since one has factor y if and only if one develops yellow fingers 
and c if and only if one develops cancer. Whatever correlation exists 
between yellow fingers and cancer at the later time must equal the 
correlation between y and c, at the earlier time. 

Papineau and Horwich have simply run into Simpson's paradox: two 
factors can be uncorrelated over each of several parts of a space, and 
yet be correlated over the whole space. But once one realizes that 
(microscopic) factors y and c are initially correlated amongst all people 
in the Horwich-Papineau-scenario, it becomes unclear why initial micro- 
scopic chaos, or anything similar, should imply the uncorrelatedness of 
y and c, among smokers and among non-smokers. Why should it not 
entail the uncorrelatedness of y and c, among all people? Generaliz- 
ing this problem, we shall see that one cannot only argue against 
Horwich's purported derivation of the common cause principle, but also 
show that the common cause principle is false in classical deterministic 
contexts. 
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At this point let me apologize for the fact that I will sometimes speak 
of events occurring at certain times, and sometimes of systems having 
certain properties at certain times. I am assuming that a system having 
a certain property p at time t corresponds to the occurrence of an event 
p at time t. I shall use these locutions as being interchangeable. In any 
case I am not, for the present, concerned whether causation is a relation 
between events or a relation between properties, or otherwise. I am 
interested to assess whether the common cause principle, explicated as 
a claim about the probabilistic relations between events, properties or 
otherwise, can be upheld in the face of a deterministic development of 
such events, properties or otherwise. 

In a deterministic theory the state of an isolated system at any time 
to determines uniquely the state of the system at any other time t. Let  
us call the set of all possible states of such a system the statespace of 
the system. Any property of such a system which is expressible in the 
deterministic theory will correspond to a subset of the statespace. The 
set of states corresponding to a property is just the set of all states in 
which the system has that property. (The set of states corresponding 
to an event is just the collection of all the states in which that event 
occurs.) 

In order to introduce the probabilities mentioned in the common 
cause principle one has to consider probability distributions over a 
statespace. For classically deterministic systems, i . e ,  Hamiltonian sys- 
tems, the development of such probability distributions in time is that 
of an incompressible fluid, a so-called Liouville flow. A Hamiltonian 
development together with two times to and tl induces a 1-1 mapping 
F(p) of properties p onto themselves such that an isolated system has 
property F(p) at time tl if and only if the system has property p at time 
to. This means that for any two times to and tl and any property A 
there is a unique property B which the system will have at time tl if 
and only if the system has property A at time to. For the development 
of probability distributions of states according to the classical laws this 
means that for any two times to and tl and for any two properties A 
and B there are unique properties C, and D which must have exactly 
the same correlation at time t~ as properties A and B have at time to, 
whatever initial probability distribution one assumes. 

The preceding can be summarized in the slogan 'Correlations are not 
born and do not die, they merely change variables'. In view of this it 
is simply false to claim that all initial properties are uncorrelated and 
some final ones are not. At any time there are exactly as many corre- 
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lated properties as at any other  time, in the sense that for any two 
times one has a 1-1 mapping between properties which preserves all 
correlations. 

As an illustration, consider again the case where one has as initial 
events smoking at time to, and factors y and c, which are statistically 
independent among smokers at time to and are statistically independent 
among non-smokers at time to. If being a smoker is correlated to having 
factors y and c, then this entails a correlation between yellow fingers 
and cancer at the later time tl. However,  assuming determinism, there 
must be factors s ' ,  y '  and c, '  which are present at an even later time 
t2, if and only if smoking, y and c, respectively were present at to. But 
then, the statistical independence of y '  and c' ,  among s' and among 
not-s' at t2 is guaranteed, and y '  and s' will be correlated at time t2, as 
will c' and s'. But these facts together imply the correlation of yellow 
fingers and cancer at the earlier time h. Just as smoking at to forms a 
conjunctive fork with yellow fingers and cancer at tl, s' at the later time 
t2 forms a conjunctive fork with yellow fingers and cancer at the earlier 
time h. 

Whenever  there is a conjunctive fork open to the future there is a 
conjunctive fork with the same endpoints open to the past, which thus 
closes the fork. Every fork is a closed fork. One constructs this fork by 
finding the event at an even later time which occurs if and only if the 
common cause occurs at the earlier time. By determinism one knows 
that such a property exists, albeit perhaps not a property which is easy 
to observe. The second clause of the common cause principle is there- 
fore false for classically deterministic systems: there is no such asym- 
metry. 

Before seeing what can be salvaged from this wreckage, let us note 
that D. Lewis's account of the asymmetry of causation is also false in 
classical deterministic contexts. In D. Lewis's paper on counterfactual 
dependence and time's arrow (Lewis 1979), he claims that the asym- 
metry of causation (and certain other asymmetries) depend on what he 
calls the asymmetry of overdetermination. Lewis claims that in our 
world, it is de facto (contingently) true that past facts (states of affairs) 
are overdetermined by future facts (states of affairs) while future facts 
are not so overdetermined by past facts. He claims that therefore a 
counterfactually different past normally would result in a different 
future, whereas a counterfactuaIly different future would not normally 
result in a different past, which in turn means that causation should 
ordinarily run in the forwards direction of time. However,  given his 
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own characterization of what it is for a fact to be overdetermined,  his 
claim is simply false in classical deterministic contexts. Lewis writes: 

Any particular fact about a deterministic world is predetermined throughout the past and 
postdetermined throughout the future. At any time, past or future, it has at least one 
determinant: a minimal set of conditions jointly sufficient, given the laws of nature, for 
the fact in question. (Members of such a set may be causes of the fact, or traces of it, 
or neither.) The fact may have only one determinant at a given time, disregarding 
essential differences in a way I shall not try to make precise. Or it may have two or more 
essentially different determinants at a given time, each sufficient by itself. If so it is 
overdetermined at that time. (Lewis 1979, pp. 473-74) 

However ,  as we have seen above, in classically deterministic contexts 
there is for any fact at any time "a unique determinant  at any other 
time. The determinant  at any time t ~for a given fact at any other t ime 
to is just the largest set in statespace (the minimal set of conditions) 
which determines the fact to occur at the later t ime (which is sufficient 
for the fact) according to the laws of nature. Further  down the page 
Lewis gives a supposed example of such overdetermination:  a spherical 
wave spreading out f rom a point source. He  claims that countless tiny 
samples of the wave each determine what happened at the space-time 
point where the wave is emitted. This is just false. Given the determinis- 
tic wave laws of nature,  such samples by themselves do not determine 
what happened at the source. 1 There  is, in any case, no need to consider 
the plausibility of certain examples.  Classical determinism allows only 
one determinant  for each fact. Thus we see that two at first glance 
plausible at tempts to find a solid foundation for the asymmetry of 
causation fail when faced with certain simple properties of classical 
systems. 

4. EVASIVE MANOEUVRES 

At  this point two tactics are open to us, if we are to save the common 
cause principle. The first option is to claim that the principle relies on 
the assumption that one does not have background classical determin- 
ism. The second option is to amend the principle. For  instance, one 
could deny that the common cause principle is true about all properties 
in physical state space. One could for instance claim that it only holds 
for a subset of all the propert ies in state space, or that it holds for 
propert ies that are outside the physical state space. 

The former  approach appears  implausible to me. The only serious 
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candidate for a fundamental theory of physics that is indeterministic is 
quantum mechanics. It seems unlikely to me that the common cause 
principle would be valid in a quantum world and invalid in a classical 
world. Thankfully, we do not have to speculate on this matter,  as there 
are compelling arguments to the effect that the common cause principle 
is in even worse trouble if the laws of physics are quantum mechanical 
rather than classical. 

In the first place (and this has been noted by several authors), 
certain quantum mechanical phenomena known as EPR-phenomena 
present us with correlations for which there cannot be a common cause 
explanation: the first clause of the common cause principle fails in 
quantum mechanics. For  details see, e.g., Suppes and Zanotti  1981, 
Fine 1981, or van Fraassen 1982. In the second place, even without 
such examples quantum mechanics runs into the same problems I have 
indicated above for classically deterministic systems: the second clause 
of the common cause principle fails in quantum mechanics. This is so 
because the Hamiltonian development of classical physics is mirrored 
by a unitary development in quantum mechanics. This unitary develop- 
ment entails that for any two times to and tl and any observable A, 
there is an observable 

A '  = e x p ( - i H (  h- to)  ) . A . e x p (  iH(  t l -o) ,  

which must have exactly the same probability distribution of values at 
time tl as A has at time to. Thus, for instance, if the probability distribu- 
tion of the values of a bivalent observable A at some time to provide a 
common cause explanation for the correlation between the values of 
bivalent commuting observables B and C, at a later time tl, then there 
will be at any other time t2 (earlier or later) an observable A ' ,  the 
values of which at time t2 will have the same probabilistic relations with 
the values of B and C, at time t~ as the values of A at time to have with 
the values of B and C, at time tl. Thus, in addition to the fact that 
certain correlations in quantum mechanics cannot be part of conjunctive 
forks, the conjunctive forks that there are, are all part of a closed fork. 
The first approach does not appear attractive. 

Perhaps then, one ought to have been more careful about which 
properties one is talking about in the common cause principle. One 
could hypothesize that macroscopic common causes produce corre- 
lations among macroscopic effects, but that macroscopic common ef- 
fects do not produce correlations among macroscopic causes. Since one 
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normally only observes macroscopic properties, this might explain the 
sense in which the common cause is observed to be valid. One observes 
yellow fingers and cancer and the macroscopic common cause smoking. 
There will be some effect at a much later time which occurs if and only 
if one smokes at the earlier time, and hence has the same probabilistic 
relations with yellow fingers and cancer as smoking does, but it is very 
unlikely to be an easily observable effect. Thus the observed conjunctive 
forks might never be open to the past. 

Before accepting such an amended second clause of the common 
cause principle I would like to see a clear distinction made between 
macroscopic observables and microscopic ones. But even assuming that 
one can make such a distinction, it is not at all obvious why one could 
not similarly claim that whenever one has a macroscopic conjunctive 
fork open to the past it is not going to be dosed  by a macroscopic 
earlier common cause. For  the backwards development of the later 
macroscopic event of the conjunctive fork which is open to the past, is 
similarly very unlikely to be an easily observable property. Perhaps, on 
the basis of the assumed complexity of the development of most Liou- 
ville flows, one can only conclude that each macroscopic conjunctive 
fork will be open in one direction of time, but not that they will all be 
open in the same (future) direction of time. Let  me illustrate such a 
suspicion with an example. 

Cleopatra is throwing a big party, and wants to sacrifice about fifty 
slaves to appease the gods. She is having a hard time convincing the 
slaves that this is a good idea, and decides that she ought to give them 
a chance at least. She has obtained a very strong poison, so strong that 
one molecule of it will kill a person. She puts one molecule of the 
poison in each of a hundred goblets of wine, which she presents to one 
hundred slaves. Having let the molecules of poison move around in 
Brownian motion for a while, she then orders the slaves to drink half 
a goblet of wine each. Let  us now assume that if one consumes the 
poison then in many cases death is preceded by an ominous reddening 
of the left hand, or by a reddening of the right hand or by both. Let  
us also assume that, given that one has swallowed the poison, the 
reddening of the left hand and that of the right hand are statistically 
independent.  This being the case, one will observe a macroscopic con- 
junctive fork open to the past. Death will form a conjunctive fork with 
the reddening of left hands and the reddening of right hands, and left 
hand reddening will be correlated with right hand reddening among all 
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slaves. Of course, the molecule of poison being in the swallowed half 
will also form a conjunctive fork with left hand reddening and right 
hand reddening. However, the position of the poisonous molecule sh- 
ould hardly count as a macroscopic property. In this case it is precisely 
the assumption of microscopic chaos (Brownian motion) which guaran- 
tees that the macroscopic conjunctive fork will be open to the past. 

Perhaps one must conclude that one prefers a common cause explan- 
ation to a common effect explanation because one is inclined in favour 
of explanation in the forwards direction of time. Perhaps whenever one 
runs into a correlation with an obvious common effect explanation one 
hypothesizes as a knee-jerk reaction some unobserved common cause, 
such as positions of molecules. One knows by determinism that such is 
a safe strategy, since there must be such a common cause explanation 
if there is a common effect explanation. In the next section I will 
indicate why I believe that there is still hope for the common cause 
principle. 

5 .  P R O B A B I L I S T I C  C A U S A L I T Y  A N D  M A R K O V  P R O C E S S E S  

Let us assume that the development of states in time in some state 
space is not deterministic, but governed by fixed probabilities of trans- 
ition pq from state s~ at time t to state sj at time t' where ( t ' - t )>0,  and 
the pq depend only on the time difference (t'-t). (For uncountable 
state spaces one has to replace the transition probabilities by a transition 
function p(x,A,t'-t). For details, which are not relevant for this paper, 
see, e.g., Doob 1953.) For probability distributions of such states de- 
veloping according to such transition probabilities, i.e., for stationary 
Markov processes, one can in certain cases prove that the entropy (a 
measure of the spread of such distributions over state space) must 
increase in time (See for instance Doob 1953, Kelly 1979). If one could 
prove that under a Hamiltonian development of the microscopic states 
certain coarse-grained states would develop according to such fixed 
transition probabilities then one would have gone a tong way towards 
a reconciliation of the time irreversibility of thermodynamics with the 
reversibility of the underlying microscopic laws of physics. (For at- 
tempts to found the irreversibility of thermodynamics on the properties 
of Markov processes see, e.g., O. Penrose 1970, and P. and T. Ehrenf- 
est 1959; for attempts to derive Markov properties from Hamiltonian 
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physics see, e.g., Misra, Prigogine, and Courbage 1979, Goldstein, 
Misra, and Courbage 1981, or Prigogine 1980.) 

Let us assume for the purposes of this section that one can indeed 
prove that the Hamiltonian development of microscopic states entails 
a development in some coarse-grained statespace according to given 
(forwards) transition probabilities (not always equalling 0 or 1), which 
are fixed by the Hamiltonian in question. What does this entail about 
the common cause principle, and what does it mean for probabilistic 
accounts of causality? 

Consider defining causation in the following manner for a set of given 
(forwards) transition probabilities in statespace. An event A which 
occurs at time to is the cause of an event B which occurs at time tl 
precisely when A is the 'largest' event (the largest set in statespace) at 
time to which fixes the probability of event B at time tl. An event A at 
to is said to 'fix' the probability of B at tl, given a set of transition 
probabilitie s pij(t'-t), if for any points i and i' in the set A one has 
Prob(B at h/i at to)= Prob(B at h/i' at to), for any initial probability 
distribution of states. (The qualification 'largest' is inserted into the 
definition so as to rule out events which are redundant regarding an 
effect as being part of the cause of that effect. If smoking is the cause 
of lung cancer then I would not wish to imply that 'smoking and having 
blue eyes' was the cause of lung cancer. This qualification is not essential 
for most of the points I make below, but it is essential if one wishes to 
have one cause rather than many causes of a particular event.) 

The above definition yields an asymmetric cause-effect relationshipf 
Given any particular set of transition probabilities and any event B at 
any time h there will be at any earlier time to a unique cause A of the 
event B at the later time tl. However, there will not be a cause of the 
event B at t I at a time ta later than h (unless there is an event C which 
occurs at time t2 if and only if B occurs at time tl, i.e., unless the 
transition probability from B to C, in time interval ta-h equals 1, and 
the transition probability from anywhere outside B to C equals zero). 

This is so because the transition probabilities of the reversed Markov 
process, given the forwards transition probabilities, depend on the 
initial distribution (unless the transition probabilities are equal to 0 or 
1). Thus causation on this definition always runs forwards in time, 
(except between pairs of events between which the transition probabili- 
ties are equal to 1). 

Let me give an example to illustrate this asymmetry. Suppose that 
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the microscopic laws of physics somehow entail that the probability of 
a transition from smoking to having lung cancer after some given time 
interval h-to is 1/2 (irrespective of the absence or presence of other 
coarse-grained factors). Let us also assume that the probability for a 
non-smoker to develop lung cancer after the time interval is 1/10 
(irrespective of other coarse-grained factors). Now consider the devel- 
opment of two distinct initial probability distributions. 

CASE 1. Initially Prob(smoker at to = 0.9). So, Prob(non-smoker at 
to) = 0.1. 

Then, according to the assumed (forwards) transition probabilities 

Prob(smoker at to and cancer at h ) =  0.45, 
Prob(smoker at to and not cancer at q ) =  0.45, 
Prob(not smoker at to and cancer at 11)= 0.01, 
Prob(not smoker at to and not cancer at h)--0.09. 

Therefore, Prob(smoker at to/cancer at tl) = 0.45/0.46. 

CASE 2. Initially Prob(smoker at to)= 0.1. Then, according to the 
assumed (forwards) transition probabilities 

Prob(smoker at to and cancer at t l )=  0.05, 
Prob(smoker at to and not cancer at tl) = 0.05, 
Prob(not smoker at to and cancer at h ) =  0.09, 
Prob(not smoker at to and not smoker at t l )= 0.81. 

Therefore, Prob(smoker at to/cancer at t l ) =  0.05/0.14. 

For the given (forwards) transition probabilities, smoking fixes the 
probability of having cancer after time interval tl-to. Prob(cancer at 
tJsmoking at to) is independent of the initial Prob(smoking at to). 
However, the reverse conditional probability Prob(smoking at to/cancer 
at tl) does depend on the initial Prob(smoking at to). Having cancer at 
time tl does not fix the probability of smoking at time to. Thus, given 
such forwards transition probabilities, and given the above definition of 
causation, smoking causes cancer, but cancer does not cause smoking. 

One might feel that I have cheated myself into an asymmetry by the 
assumption that the microscopic laws of physics fix the forwards trans- 
ition probabilities rather than the backwards transition probabilities. I 
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will admit that I believe that one will have to inject some de facto 
asymmetry into statistical mechanics if one is to derive such an asym- 
metry, and I will admit that the project of deriving the Markovian 
development for some coarse-grained state space is far from finished. 
It is interesting, however, to see that such an asymmetry in time can 
be made to imply a causal asymmetry given a very simple definition of 
causation. Moreover,  although it might be difficult to derive the asym- 
metry from fundamental physics, the result is certainly in accord with 
common sense. It certainly seems to be the case that if one smokes one 
has fixed the probability that one will develop lung cancer irrespective 
of the amount of other people that smoke or do not smoke, whereas 
the occurrence of lung cancer does not at all fix the probability that 
one smoked, irrespective of the initial numbers concerned. Before 
smoking occurred on a large scale in Europe,  the probability that one 
was a smoker given that one had lung cancer was very small, whereas 
nowadays it is a reasonable bet that a European with lung cancer has 
been a smoker. In contrast, the proportion of smokers that developed 
lung cancer has presumably remained fairly constant. If this proportion 
has not remained the same, then this presumably is due to the fact that 
other coarse-grained factors influence the probability of the develop- 
ment of lung cancer, and that the distribution of these factors among 
smokers has changed. It is presumably not the case that the forwards 
transition probabilities in coarse-grained statespace have altered. 

According to the above definition of causation in terms of Markov 
processes, whether some event is the cause of another event does not 
depend merely on the statistics of the occurrences of the respective 
events in the world. Whether  an event A is the cause of an event B 
does not just depend on the proportion of A-type events that have been 
followed or preceded by B-type events, but on the invariance of the 
probabilistic relations between A- and B-type events under changes of 
initial distributions of states. This is the analogue of the assumption in 
the deterministic case that whether an event A causes an event B does 
not merely depend on the actual occurrence of events A and B, but on 
the lawlike relations between the occurrence of A and B. If one wishes 
to define causality in probabilistic contexts, it should be sought in the 
lawlike transition probabilities, and not in quantities dependent  on 
initial distributions (initial states). 

Let  me illustrate this claim by an example. Consider the following 
transition probabilities. 
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(i) Prob(E(tl)/A(to)&B(to)) = 4/5, 
(ii) Prob(E(tl)/not-A(to)&B(to)) = 0, 
(iii) Prob(E(tl)/A(to)&not-B(to) = O, 
(iv) Prob(E(tl)/not-A(to)&not-B(to) = 0, 

for some fixed time interval t~-to>O. 
Assume the following initial amounts: 

5 A & B ,  1 A&not-B,  1 not-A&B,  1 not-A&not-B. 

Of  the 5 A & B ,  4 are likely to transit to event E, and 1 to not-E. The 
others will all transit to not-E. The observed frequencies will satisfy 
the following relations: 

(i) Freq(A(to)/E(tl)) = 1 
(ii) Freq(B(to)/E(tl)) = 1 
(iii) Freq(A(to)&B(to)/E(tl)) = 1 = 1.1 
(iv) Freq(A(to)/not-E(tl)) = 2/4 = 1/2 
(v) Freq(B(to)/not-E(t~)) = 2/4 = 1/2 
(vi) Freq(A(to)&B(to)/not-E(t~)) = 1/4 = 1/2.1/2! 

According to the observed frequencies the occurrences of the event E 
at the later time tl form a conjunctive fork with the occurrences of the 
events A and B at the earlier time to. Thus, if common causes were 
simply spelled out in terms of observed frequencies one might have to 
classify later events as the common cause of correlations between earlier 
events. One does not feel that this is right. My claim is that at least 
one of the reasons that one feels that this is not right is that the 
above conjunctive fork formed by the observed frequencies is extremely 
sensitive to changes in the initial numbers. Any change in the numbers 
of initial A's  and B's will destroy the backwards conjunctive fork, if 
the transition probabilities are kept fixed. On the other hand, if one 
has forward transition probabilities which form a conjunctive fork, then 
the observed frequencies will (be likely to) form a conjunctive fork 
open to the future no matter  what the initial distribution of states is. It 
is this lawlike regularity which manifests itself in different circumstances 
(given different initial distributions) which is the obvious candidate for 
a causal relationship, if one wishes to define causality in probabilistic 
contexts. 

Let  me illustrate this claim yet again. It has been argued by E. 
Sober (1987) that certain correlations might not need a common cause 
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explanation. For instance the fact that the price of bread in Britain has 
been correlated to the level of water in Venice appears in no immediate 
need of a common cause explanation. My claim would be that one 
believes that there is no need for a common cause (or other) explanation 
in so far as one believes that the correlation is not invariant under 
changes of initial distributions of states. One presumably feels that for 
a different distribution of coarse-grained states the bread price need 
not at all be correlated to the water level, but that the presence of any 
(not too small) amount of smokers would always be likely to lead to a 
correlation between cancer and yellow fingers. The ultimate justification 
of such a belief might be the exact properties of the Liouville flow 
which undergirds the Markovian development of the coarse-grained 
properties, but in the meantime we can guess which the events are that 
fix the probabilities of later events. On the above definition of causality 
for Markov processes we would then be making conjectures about the 
causal structure of coarse-grained statespace. 

Before considering what would happen to the common cause prin- 
ciple for Markovian developments of probability distributions, let me 
remark on the connection between the above definition of causation 
for Markov processes and certain well-known probabilistic accounts of 
causation. The condition that the cause at time to of an event at time 
tl must fix the probability of the event at time tl irrespective of the 
initial distribution assumed at time to, has as an immediate consequence 
that the cause of an event will make any other event (expressible in 
the statespace) occurring at the same time as the cause, statistically 
irrelevant. The cause of an effect 'screens off '  any other event from 
the effect. Given that the cause has occurred it is irrelevant which other 
events occurred at the same time as the cause, regarding the probability 
of the occurrence of the effect at the later time. If according to the 
Markovian development in coarse-grained statespace smoking fixes the 
probability of a later development of lung cancer, then it becomes 
irrelevant regarding the likelihood of lung cancer what other things 
were happening when a particular person was smoking. This screening- 
off relationship has, by some, been taken tg indicate a causal relation- 
ship (see, for instance, Salmon 1984, Suppes 1984). On the above 
definition the cause of an effect screens off all events simultaneous with 
the cause from the effect. 

On my account the cause of an event B at time tl for a deterministic 
theory will be the event A at time to which occurs at time to if and only 
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if B occurs at time tl. A deterministic theory is a trivial Markov process 
with all transition probabilities equalling 0 or 1. The largest event in 
statespace whose occurrence at time to fixes the probability of the 
occurrence of some other event at time tl is simply the event which 
occurs at to if and only if the other event occurs at tl for such trivial, 
deterministic, Markov processes. 

Let us call an event A which screens off all other events occurring 
simultaneous with A regarding some event B which occurs some time 
after A 'causally homogeneous'  with respect to B (following Suppes 
1984). It follows from this definition that for deterministic theories an 
event which is causally homogeneous with respect to an effect must be 
an event which determines the effect to occur, or determines it not to 
occur. A set in statespace which contains some states which will develop 
according to the deterministic laws into states for which the effect does 
occur, and some states which will develop into states for which the 
effect in question does not occur, is not causally homogeneous with 
respect to that effect. 

However,  for a Markov process with non-trivial transition probabili- 
ties, i.e., for a genuine Markov process, events which are causally 
homogeneous with respect to some later event will not in general 
determine the later event to occur with probability 1 or 0. One can 
think of causal homogeneity in the following manner. A property A 
(an event A) is causally homogeneous with respect to the occurrence 
of some other property B (event B) after a particular time interval if 
the transition probability from any state with property A to a state with 
property B after the time interval equals the probability that any other 
state with property A will transit to a state with property B. A property 
A is causally homogeneous with respect to the later occurrence of a 
property B if no subselection of states with property A affects the 
probability of the occurrence of B at the later time. 

The collection of 'largest' properties [Ai] (the largest sets in state- 
space) at time to, which are causally homogeneous with respect to the 
occurrence of B at tl form a partition of statespace, such that each of 
the cells of the partition have a fixed probability of transition to property 
B at tl. Such a partition could consist of just the one set, namely the 
entire state-space. This would occur if the conditional probability of 
the occurrence of B is uniform over the entire statespace. For  instance, 
for consecutive tosses of a coin the probability of any particular number 
is uniformly 1/6 conditional upon any previous result. Alternatively, 
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the partition could consist of two sets A and not-A. For instance, if 
indeed the probability of lung cancer were solely determined by the 
fact whether one is a smoker or not. It may very well be the case, 
however, that a property A is causally homogeneous with respect to 
the later occurrence of a property B, but that not-A is not causally 
homogeneous with respect to the later occurrence of B, so that a further 
partition is necessary to obtain causally homogeneous sets. In fact, the 
transition probabilities may be such that the only causally homogeneous 
sets are just each of the states themselves (the singleton sets in state- 
space). However for Markov processes for any property B causally 
homogeneous properties at earlier times must exist, and which ones 
they are is determined by the transition probabilities. The associated 
problem of the characterization of what it is to be a homogeneous 
reference class does not occur in this setting: the statespace properties 
together with the transition probabilities determine which are the homo- 
geneous reference classes for which properties occurring at later times. 
Hence some of the nagging problems of well-known probabilistic 
accounts of causality disappear for the suggested definition of causality 
in Markovian contexts. 

Finally, let me consider the common cause principle against such a 
backdrop. As noted above, it may be the case for a particular property 
B that there is no property A such that both A and not-A are causally 
homogeneous with respect to the occurrence of B after some specified 
time interval. Thus it is certainly not guaranteed that for a particular 
Markov process and two correlated properties A and B there will be a 
property C such that C will be causally homogeneous with respect to 
the later occurrence of each of the properties A&B, A&not-B, not- 
A&B, and of not-A&not-B. However if C is not causally homogeneous 
with respect to one of these properties then the Markov process does 
not yield a transition probability from C to that property independent 
of the initial distribution. In view of this let us rephrase the common 
cause principle for Markov processes in the following manner. 

A set of transition probabilities in some statespace, a partition of 
statespace [Ci] and an initial distribution P(Ci) at time to form a common 
cause explanation of a joint distribution PI(A, B) at time t~ of bivalent 
properties A and B if and only if: 

(i) each of the Ci at to are causally homogeneous with respect 
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to the later occurrence of A&B, A&not-B, not-A&B, not- 
A&not-B at tl, 

(ii) the distribution P(Ci) at to to develops into the distribution 
P~(A, B) at t~ according to the transition probabilities, and 

(iii) for each C/, Prob(A&B at tl/C~ at to) = Prob(A at tJCi at to). 
Prob(B at h/Ci at to), i.e., A and B must be statistically 
independent conditional upon each of the Ci. 

For distributions developing according to fixed transition probabilities, 
we have seen that for any two properties A and B with distribution 
P~(A, B) at time tl one can always find at any earlier time to a partition 
[C~] which has distribution P(Ci) at time to and which will satisfy con- 
ditions (i) and (ii). However such a partition may not satisfy condition 
(iii). Whether there is a partition satisfying condition (iii) depends on 
the transition probabilities of the Markov process in question. If such 
transition probabilities in some coarse-grained statespace have their 
grounding in the Liouville flow of the underlying fine-grained state- 
space, then the properties of the Liouville flow will ultimately determine 
whether the common cause principle holds in the coarse-grained state- 
space. 

Let me summarize. I have suggested that if one is to have a probabilis- 
tic account of causation, one ought to relate causation to the existence 
of transition probabilities which are invariant under changes of initial 
distributions. I have also suggested that the origin of the transition 
probabilities, which common sense continuously attributes to observed 
events, does not usually lie in quantum mechanics, but in the conse- 
quences of complex developments in fine-grained statespace for the 
developments of coarse-grained states. Although we have found that 
on our suggested definition of causation for processes developing ac- 
cording to such fixed transition probabilities, any event always has a 
unique earlier cause (and never a later cause), it may be the case that 
even outside quantum mechanics there are correlations for which there 
are no common cause explanations. If so, so be it. 

N O T E S  

*This paper was written while I was on an Andrew Mellon postdoctoral fellowship at the 
University of Pittsburgh, for which I am grateful. I am also grateful for comments from 
John Norton and an anonymous referee. 
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1They do, if one makes the additional assumptions that there are no source free waves, 
that there is only one source, that there are no obstacles, mirrors etc., and, more 
pedantically, that space does not have any 'funny' topological connections. But, in that 
case, one has just as much forwards "overdetermination'. A sample wavelet at some point 
x at a distance r from the source at time t is "overdetermined' at the earlier time t-dt by 
each sample at every point on a circle of radius r-dtv, where v is the speed of the wave 
(I assume a dispersion free space). 
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