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Abstract. The complex fluid dynamics of two-phase bubbly flows in metallurgical reactors is 
modelled numerically by using a k - e  turbulence model for the liquid phase, with a driving force 
determined by considering the motion of the bubbles. The latter are affected by the buoyancy 
forces and the drag caused by their relative motion with the mean and turbulent motions of the 
liquid, the turbulent component being obtained by random sampling to give an ensemble of 
bubble trajectories. The two-way coupling between the two phases is resolved by an iterative 
procedure which converges on a stable overall solution. The results are compared with measure- 
ments carried out on an air-water model and show good overall agreement. 

Introduction 

In recent years, gas-stirring in metallurgical reactions has become increasingly 
popular due to its effectiveness and low cost. The gas can be introduced into a 
bath of molten metal either through porous plugs, or using nozzles or lances. 
For flow rates below 300 kg/m2-s and bottom injection, the resulting flow 
field is classified as a bubbling jet [1]. In this flow regime, large unstable 
bubbles break up into smaller ones shortly after detachment leading to a 
plume-like two-phase flow region with high voidage. The bubbles which rise 
due to gravity exchange momentum with their surroundings, which in turn 
induce a large toroidal vortex in the melt due to the confinement of the flow. 

The metallurgical events which then take place in the reactor are largely 
governed by the velocity and turbulence fields. This is exemplified by the 
deposition and re-entrainment of inclusions, as well as refractory wear, which 
are controlled by the fluid dynamics, while homogenization and chemical 
reaction rates depend on the structure of turbulence. In circumstances where 
the reactor is operated on a continuous basis, the performance is governed by 
the degree of stirring, agitation and residence time. Short-circuiting is there- 
fore to be avoided when dissolved species are to be removed from the melt by 
inert gas injection. When bubbles contain reactive gases, it is important to 
avoid high local void fractions otherwise chemical equilibrium is difficult to 
attain and gas is wasted. 

In spite of the important role that the fluid dynamics plays in gas-stirred 
reactors, the analysis of the two-phase flow field from first principles has so 
far been only partially successful. Previous studies on this subject have mainly 
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been directed towards obtaining the field distributions of velocity components 
and turbulence quantities in the melt without attempting to model the two- 
phase region. Szekely et al. [2] have assumed that the bubble column was 
cylindrical in shape and imposed measured values of velocities as boundary 
conditions on its periphery. Although the authors could obtain reasonable 
qualitative agreement between the calculations and the measured data, un- 
satisfactory quantitative agreement was reported. The importance of the void 
fraction distribution in the two-phase region in the prediction of the melt 
velocity distributions has been emphasized in recent studies by Guthrie and 
co-workers [3], who developed an elaborate phenomenological model of the 
bubble column, and by He Qinglin et al. [4] who used the measured void 
fraction and inter-phase force distributions in the governing equations of the 
conservation of mass and momentum in the liquid phase. 

Although semi-empirical models of the two-phase region can lead to 
reliable predictions of the flow field in the melt for a given configuration and 
operating conditions, such models conspicuously lack generality and hence 
cannot be used to analyse a new configfiration or operating point with any 
confidence. The key to the development of a general model of gas-stirring 
therefore lies in a detailed representation of the motion of the gas bubbles and 
their interaction with the liquid phase. 

The present study addresses itself to the development of such a mathemati- 
cal model, which differs from earlier contributions in attempting to model the 
motion of the bubbles, as well as that of the liquid, from first principles. The 
sets of partial differential equations so obtained are solved numerically Using a 
minicomputer, and the results of these calculations are compared with both 
axisymmetric and asymmetric bubble jet configurations which have been 
studied experimentally. 

Liquid phase equations 

The equations which describe the motion of the liquid phase are the time 
averaged balances of mass and momentum which will be given here in 
compact tensor notation for brevity. 

Continuity 
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Where, uj and uj are the mean and fluctuating parts of the velocity compo- 
nent in the direction xj, p is the pressure, Pt is the density, /S~ is the viscosity 
and a t is the liquid volume fraction. The j-component of momentum exchange 
between the gas and the liquid is contained in the term Fj. These equations are 
obtained from the Navier-Stokes equations by velocity decomposition and 
time averaging (denoted by angled brackets) assuming that the fluctuations in 
volume fraction can be neglected. They cannot be solved (numberically or 
otherwise) unless the pair correlations of the fluctuations are related to known 
or calculable quantities by a turbulence model, and the distribution of the 
inter-phase force Fj is provided in some way. 

Many models of turbulence of varying complexity have been proposed in 
the past which range from the simple mixing length model to more sophisti- 
cated second order closures and large eddy simulations. The widely used k-e 
model [5] provides a compromise between these two extremes which uses as its 
starting point a Boussinesq type of relationship between the Reynolds stresses 
and the rate of mean strain: 

lau, 1 Pl(U;U;)  = 2p lk~ i j - -  l&t~ ~ x  1 -~- Ox i ]. (3) 

Where k is the kinetic energy of the fluctuating motion, /s t is a turbulent 
viscosity which is a property of the particular flow situation rather than of the 
fluid and 8 is the kronecker delta. The spatial distribution of/st  is related to 
the kinetic energy of turbulence k and its rate of dissipation e through 

k 2 
/S , = p , C~ --£- . (4) 

Where C, is a constant. The fields of k and e are provided by the solution of 
the following transport equations: 

~ ~k ( , ,  3u~ ) 
= + -(u, uj>-aZ, - '  (5) 

and 

a a /s,a, ( d) 
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Where the constants Cu, C1 and C2 and a~ are given the values 

C,=0 .09 ,  C 1=1.44,  C = 1 . 9 2  andc r ,= l . 3 .  

The above model is probably only a crude approximation to bubbly flow 
because the turbulence is scaled on the gradients of the mean flow rather than 
on the bubble size, and is employed here in the absence of anything more 
suitable. 
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The motion of the gas bubbles 

Two different approaches are currently available for the analysis of the 
behaviour of a dispersed phase in turbulent flows. These are termed the 
continuum (Eulerian) and discrete (Lagrangian) methods. In the continuum 
approach the problem is formulated in terms of mass and momentum con- 
servation equations for each phase in an Eulerian reference frame. In the 
discrete method on the other hand, the trajectories of individual bubbles are 
tracked in time by solving ordinary differential equations and the momentum 
interchange between the phase is accounted for by recording what is gained or 
lost by the bubbles as they pass through the liquid and using this information 
in the equations of the continuous phase. 

Due to the overwhelming advantages offered by the Lagrangian method in 
terms of simplicity of formulation, ability to accommodate complicated ex- 
change processes and computational effort, it has been adopted in the present 
study.  

The rate of change of velocity of a discrete bubble with respect to time can 
be expressed as [6]. 

dV~ _ 3 I ~1 C D R e ( V  i __ Ui ) + 
dt 4 pgd 2 

p, DU~ 1 p, (dV/ DU~) 
pg Dt 2 pg dt  Dt 

+ ( 1 - 0 ~ ) g  i. (7) 

Where V i and U~ are the instantaneous components of bubble and liquid 
velocities respectively in the/-direction, t is the time, pg is the gas density, dg 
is the bubble diameter, 

Re = Pldg I V -  U I/IZl 

is the relative Reynolds number and CD is the drag coefficient which is 
empirically determined. The above equation is supplemented by the following 
kinematic relationship which defines the bubble trajectory 

d x i / d t  = V/. (8) 

The instantaneous liquid velocity is evaluated by decomposing it into a 
mean and a fluctuating part. The spatial distributions of the mean velocity and 
the r.m.s, fluctuations are obtained from the liquid phase equations. The 
values of the fluctuating velocities u' associated with the particular eddy that 
the bubble is traversing, are sampled by assuming that the fluctuations are 
isotropic and that these possess a Gaussian probability distribution: 

(9) 
where 4' is a normally distributed random variable [7]. A bubble is assumed to 
interact with an eddy for a time equal either to the eddy lifetime 

T e -~ t e /  2-~3k (10) 
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or the bubble transit time 

~'t = --~'R ln(1 -- Z e / ( ' r R l V - -  U I)) (11) 

whichever is the smaller [8]. 
Here, L e is the eddy dissipation length scale given by 

t e -~- C 2 / 4 k 3 / 2 / £  (12) 

and ~'R is the bubble relaxation time expressed as 

4pgd  1 
"rR = 3 ]I, CDR e " (13) 

The above ordinary differential equations can be solved in time by simple 
numerical integration, starting with the given initial values. At the end of each 
interaction time, a new value of u~ is sampled using Eq. (9), while u i is 
updated at every time step of the integration process. 

It is of course impractical to track stochastically every individual bubble 
released into the system, but only a statistically representative sample is 
needed. The residence times of bubbles in a network of control volumes 
superimposed on the reactor can be readily worked out from the trajectory 
calculations by summing the residence times of all the bubbles which pass 
through a given control volume AV and dividing by the sample size. The void 
fraction distribution is then obtained from 

Q 
tR,m. (14) 

ag = N A V  m=l 

Where Q is the volumetric flow rate of the gas, n is the number of bubbles 
which pass through the control volume in question, t R is the residence time 
and N is the sample size. The momentum interaction terms F~ in the liquid 
momentum balances are deduced from similar arguments based on the stipula- 
tion that the drag force experienced by the bubbles acts in equal magnitude 
but opposite direction on the liquid. 

Q f.,m3 ~, C D R e ( g i _  gi ) d t .  (15) Fi = N A V  % 4 2 m=l pgdg 

The above relations can be easily generalized to take into account a spectrum 
of bubble sizes or gas injection from several locations. 

Boundary conditions and solution procedure 

The elliptic nature of the governing equations of the liquid phase requires the 
specification of the conditions at all the boundaries. In the regions near the 
solid walls the turbulence model outlined in the preceding sections does not 
apply. To preclude fine grid calculation the outer solutions are matched by the 
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empirically based log-law of the wall [9]. The values of the turbulence kinetic 
energy and its dissipation rate at near wall points are also deduced from wall 
functions. At the free surface, which is assumed to remain fiat, all the stresses 
vanish and zero normal-gradient type conditions apply to all the dependent 
variables except the component of velocity normal to the surface which is zero. 

The gas bubbles enter the solution domain from locations dictated by the 
particular configuration and at a rate determined by the gas flow rate. These 
are assumed to be removed from the system once they reach the free surface. 

The equations to be solved are made up of 3 equations for the conservation 
of liquid phase momentum, the continuity equation which is transformed into 
an equation for pressure correction [10] and the transport equations for the 
turbulence kinetic energy and its dissipation rate. Coupled with these partial 
differential equations are the equations of motion of the bubbles which are 
solved to obtain the void fraction and the momentum interchange between the 
phases. 

The finite difference grid which is superimposed onto the solution domain 
consists of a set of orthogonal hnes in the z, r and 0 directions of a cyhndrical 
polar system of co-ordinates best suited to the geometry of the problem in 
hand. The usual staggered arrangement of the variables is employe&where the 
velocity components are calculated and stored mid-way between the pressure 
nodes which lie at the intersections of the grid lines. The finite difference 
analogues of the partial differential equations are obtained by integrating 
these over a typical control volume which encompasses the point where the 
value of a particular dependent variable is to be calculated. While central 
differencing is used for the diffusion terms, a quadratic upstream difference 
scheme is employed for the convective fluxes in order to be able to minimize 
false diffusion problems [11]. 

The set of algebraic simultaneous equations thus obtained are solved 
iteratively by using a tri-diagonal matrix algorithm. The dependent variables 
are solved sequentially within each iteration and at regular intervals of the 
outer iteration loop, a large number of bubble trajectories are tracked sto- 
chastically to obtain the field distributions of the void fraction and the 
momentum exchange terms F~. This process is continued until the equations 
for both phases converge to a solution. 

Applications 

In this section, the mathematical model is applied to the situations studied 
experimentally by Johansen et al. [12,13] in an air-water system. The physical 
ladle is shown in Fig. 1 which consists of a shghtly conical perspex reactor of 
free surface height 1.327 m and top and bottom diameters of 1.1 m and 0.93 m 
respectively. Air is supplied through a porous plugwhich was located on the 
base plate, and the flow rate is varied between 1.33 × 10 .4 Nm3/s to 7.5 × 10 .4 
Nm3/s. 
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Fig. 1. The air-water model of the metallurgical ladle. 

In the case where the porous plug is located centrally, the problem becomes 
axially symmetric and all derivatives with respect to the azimuthal direction 
can be neglected. The calculations in this case were carried out using a 16 × 16 
non-uniform grid in both the axial and radial directions. The conical vessel 
was approximated by a cylindrical vessel of equal volume. The interphase 
force field and the void fraction distributions were updated at every 10 
iterations of the liquid-phase solution procedure by ensemble averaging 100 
stochastic bubble trajectories. 

The qualitative feature of the flow field corresponding to a gas flow rate of 
6.1 x 10  - 4  Nm3/s are shown in the vector plot of Fig. 2. Here the vectors 
indicate both direction and magnitude. It can be seen that the flow has the 
appearance of an impinging submerged jet which, because of its entrainment 
appetite, gives rise to the characteristic toroidal vortex. The eye of the vortex is 
towards the top of the chamber and close to the vessel walls. The axial 
velocities are highest in the neighbourhood of the symmetry axis, while the 
radial velocities attain a comparable magnitude only in the vicinity of the free 
surface. The measured velocity vectors in the ladle are displayed in Fig. 3 
which agree both qualitatively and quantitatively with the predictions. 

The shape of a typical bubble column as calculated by the model is 
presented in Fig. 4. It can be seen that the model predicts the expected conical 
shape of the bubble column. The average cone angle for the range of bubble 
diameters between 6 mm and 12 mm was found to be around 15 ° which 
agrees fairly well with the experimental values quoted in the literature [3,4]. 

In addition to the above axi-symmetric calculation a simple 3-D example 
was also attempted. In this case, the geometry of the ladle remained unaltered 
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Fig. 2. Calculated velocity vectors in the ladle showing both direction and magnitude. 
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Fig. 3. Measured velocity vectors in the ladle corresponding to a gas flow rate of 6.11 >(10 -4  
m3/s. 
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Fig. 4. Typical stochastic trajectories of 6-mm-diameter bubbles. 
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Fig. 5. Predicted velocity vectors in the case of asymmetric gas injection. 
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Fig. 6. Measured velocity vectors in the case of asymmetric gas injection for a gas flow rate of 
5.5 X! 0-4 m3/s. 
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Fig. 7. Calculated trajectories of 6 mm diameter bubbles. 
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except that the porous plug is now moved from the axis to a position 2R from 
it. This renders the problem three dimensional. The calculations were per- 
formed on a 12 x 12 x 12 grid in the z, r and (9 directions of the cylindrical 
polar system of coordinates. Because of the symmetry around the plane which 
passes through the centerline and the plug location only a 180 ° sector was 
considered in the asymmetric case. The gas flow rate was 5.5 x 10 -4 Nm3/s. 

Figures 5 and 6 show the predicted and measured velocity vectors on the 
plane passing through the porous plug. It can be noted that in this case there is 
a single recirculation region the eye of which lies in the upper half of the vessel 
close to the free surface. The magnitude of the maximum axial velocity in this 
case was calculated to be 0.5 m / s  which compared reasonably well with the 
measured value of 0.4 m/s.  

The predicted shape of the bubble column is displayed in Fig. 7 which 
shows that it leans towards the adjacent wall and is in full agreement with 
experimentally observed behaviour displayed in Fig. 1. 

Conclusions 

A new, more fundamental approach to the mathematical modelling of gas- 
stirred metallurgical reactors has been described in which the complexities of 
the two phase bubbling jet flow have been fully addressed. By completing the 
mathematical picture in this way, a good degree of agreement with experimen- 
tal results has been obtained, while the fundamental basis of the technique 
allows us a degree of confidence in applying the results to cases lying outside 
the compass of the experimental validations. 

Work is currently underway to improve the model still further and to 
provide additional experimental verification under different conditions of 
operation. 
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