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Abstract. A development of the Brody-Flemings model for the prediction of dendritic microsegre- 
gation in alloys is proposed. The original model considered one-dimensional back diffusion into 
thickening platelike dendrite arms of fixed spacing. The present modification allows for the 
dendrite arm coarsening which is observed to occur during solidification and considers micro- 
segregation in both binary and multi-component alloy systems. It is shown that numerical 
calculations of microsegregation using finite difference techniques based on this model give good 
agreement with experiment. 

Nomenclature 

B = (1 - f ) / (1  - (1 - k)f) ,  correction factor for fast diffusing species 
c concentration in solid, wt.% 
c o average concentration, wt.% 
c z concentration in liquid, wt.% 
D diffusion coefficient in solid 
f fraction solid ( = X / L )  
k equilibrium partition coefficient 
L half dendrite arm spacing 
t time 
W cooling rate 
x direction coordinate normal to dendrite plate 
X distance solidified 
/3 liquidus gradient 
subscript i refers to the ith solute element 

Introduction 

T h e  first  a t t e m p t s  to p red ic t  m i c r o s e g r e g a t i o n  q u a n t i t a t i v e l y  [1,2] a s s u m e d  

tha t  w i t h i n  a cha rac t e r i s t i c  v o l u m e  e l emen t ,  r e l a t ed  to a d e n d r i t e  spac ing  o r  

t he  g ra in  size, t he  l iqu id  r e g i o n  d u r i n g  so l id i f i ca t ion  is c o m p l e t e l y  mixed ,  

w h e r e a s  neg l ig ib le  d i f fu s ion  occurs  in  the  sol id  a n d  loca l  t h e r m o d y n a m i c  

e q u i l i b r i u m  is m a i n t a i n e d  at  t he  m o v i n g  in t e r f ace  d e s c r i b e d  by  a c o n s t a n t  

e q u i l i b r i u m  p a r t i t i o n  coef f ic ien t .  Th i s  m o d e l  gives r ise  to the  so-ca l l ed  Schei l  

e q u a t i o n :  c = kc° (1  _ f ) k - 1 .  
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With the introduction of microprobe analysis it soon became apparent that 
the assumption of negligible solid-state diffusion was untenable and Brody 
and Flemings [3] proposed a model involving one-dimensional back diffusion 
into growing dendrites of plate-like morphology. Apart from this modification, 
the previous assumptions of interface equilibrium and complete solute mixing 
in the liquid are maintained. 

An analytical solution of the differential equation was derived from the 
model by assuming the dendrite growth rate and approximating for the 
composition gradient at the solid interface. This has been criticised however 
[4] as being an invalid approximation when diffusion is important. A general 
disadvantage of analytical treatments of microsegregation is their inability to 
deal with the complexity of real systems in which partition coefficients, 
diffusion coefficients and dendrite spacings all change with time or tempera- 
ture during solidification. These problems are readily overcome using numeri- 
cal techniques to solve the basic differential equations. 

The partial differential equation derived from the Brody-Flemings model of 
one-dimensional back diffusion into plate-like dendrites in a binary alloy 
system is: 

c'(1 - k )  d X / d t  = D ( 3 c / S x )  x + d c l / d t (  L - X )  

where L is half the appropriate dendrite arm spacing (see Fig. 1). Using an 
explicit finite difference method to calculate diffusion and the above equation 
to control the interface movement, Brody and Flemings were able to compute 
the solute distribution throughout the solidification process, and compare their 
predictions with measurements of microsegregation in A1-Cu alloys solidified 
under a range of conditions [5]. In order to obtain agreement with experiment 
it was necessary to employ dendrite arm spacings approximately one third of 
the measured value. This large discrepancy has been attributed later by 
Flemings [6] to the simple geometries assumed, to the use of inaccurate 
diffusion data or to coarsening effects. It is believed that diffusion data in the 
A1-Cu system is now well enough established not to be considered a source of 
significant error [7]. It is clear however that dendrite morphologies can be 
extremely complex and change during growth, particularly in highly alloyed 
systems [8] and under conditions of rapid growth and low temperature 
gradient. It would not be expected that the model proposed in this paper could 
be satisfactorily applied under these conditions. 

The observation that the spacing of secondary (and higher order) arms 
increases during solidification was made by Kattamis et al. [9], who proposed 
that this coarsening occurred by smaller arms melting away at the expense of 
their larger neighbours by a diffusion process driven by surface tension. It has 
also been shown that coalescence of adjacent arms to form a single larger arm 
can occur driven by the same surface tension forces [10,11]. These coarsening 
processes have a important effect on the calculation of dendritic microsegrega- 
tion as will be shown. 
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A fuller discussion of the assumptions involved in different microsegrega- 
tion models has been published recently [12]. 

Mierosegregation in binary alloys involving arm coarsening 

The present model makes the same assumptions as Brody and Flemings, 
except that the average dendrite arm spacing is allowed to increase with time 
during solidification according to some given relationship. Two adjacent 
dendrite plates are considered as in Fig. 1, in which the centre to centre 
spacing is 2L. Within this we select an element bounded by a plate centre (at 
x = 0) and the centre of the liquid region (at x = L)  for the calculation on 
solute redistribution. A schematic diagram of solute distribution within the 
element is given in Fig. 2, representing a point in time during the solidification 
process. The solute rejected by the interface movement must be absorbed 
partly by back diffusion into the solid; and partly absorbed into the liquid 
raising its uniform composition. This distribution is expressed in the first two 
terms of the right-hand side of the solute balance equation: 

c'(1 - k)  d X / d t  = D(ac /Ox)x+ dcZ/dt(L - X)  + ( c ' -  c °) d L / d t .  (1) 

The end term represents the increase in the size of the element due to arm 
coarsening, which brings in liquid of average composition that requires to be 
raised to the composition of the existing liquid. It is necessary that liquid of 
average composition be added to conserve the overall composition in the 
element: the physical meaning of this is that somewhere in the system a 
dendrite arm is melting and part of this solid together with its associated 
liquid is transferred at average composition to the element. This dilution effect 
is responsible for a reduction in microsegregation. 

If we can assume that the cooling rate and the liquidus slope of the alloy 
system are constants, then we may substitute dct/dt  = W/f i  into eqn. 1 to 
obtain: 

~D( ac/ax ) x + W( L - X)  + ~( c ' -  c °) d L / d t  
d X / d t  = (2) 

e'(1 - k )  

Back diffusion of solute into the solid dendrite plate may be calculated using a 
finite difference formulation of the diffusion equation: De~at = D ~2c/~x2, 
and employing the boundary condition Oc/ax = 0 at x = 0. The movement of 
the interface 6X in the time step 6t is obtained from the finite difference 
formulation of eqn. 2, in which (Oc/Ox)x is approximates from compositions 
in the solid near the interface at unequally spaced nodes by a method due to 
Crank [13]. The increase in 6L during the time step is obtained from the given 
functional relationship referred to above. The increase in liquid composition 
8c t is now obtained by back substitution in eqn. 1, from which the interface 
composition of the solid is in turn calculated. These calculations can be 
repeated, adjusting the diffusion and partition coefficients as appropriate for 
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the temperature at each step until complete solidification is achieved, that is 
when either the liquid disappears or it attains eutectic composition. An earlier 
paper [14] provides further details on the finite difference computation. 

In many situations the use of a constant cooling rate during solidification 
may not be appropriate and a reformulation of eqn. 2 in terms of constant 
heat extraction given by Howe [15] may be more realistic. 
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Microsegregation in ternary and higher component systems 

In a ternary system a solute balance at the moving interface may be written for 
both diffusing solute species, 1 and 2: 

c((1 - kl)  d X / d t  = Dl (Oc l /aX)x+  d c ( / d t ( L  - X )  + (c~ - c °) d L / d t  

c~(1 - k2) d X / d t  = D2( Oc2/OX ) x + dcZ2/dt( L - X )  + ( cZ2 - c ° ) d L / d t .  

We may also write for the cooling rate: W =  fll dc~/dt  + r2 dc[/dt .  Multiply- 
ing the two upper equations by the appropriate fl and adding to eliminate 
dct /d t  from each, we have: 

d X / d t  = [ fllDl( OQ/OX)x+ fl2D2( Oc2/OX)x+ R(  L -  X)  + { f l l ( c ( -  c °) 

+ fl2(cZ2-c°)) d L / d t ] [ f l l c ~ ( 1 - k l ) +  fl2cZ2(1-k2)] -1 

It is clear from the form of this equation that it may be generalised for higher 
component alloys: 

Y BiDi(aci/ x)x+ R ( L  - X)  + c °) d L / d t  
d X / d t  = Efiic[( 1 _ ki) 

The finite difference procedure is carried out exactly as in the binary case; 
having determined 6X for a given time step, 8c t may be obtained for each 
solute element by back substitution in the first equations. 

Microsegregation in an alloy containing a fast diffusing solute element 

When explicit finite difference equations are used to solve the diffusion 
equation, a condition for the mathematical stability of the solution is that we 
must choose a time step 8t such that D~t/~x 2 <~ 1 /2  [16]. This requires that 
where we have a fast diffusing species, the time step will be determined by it 
and will necessarily be small. Therefore a large number of computer calcula- 
tions are needed to complete the solidification and the time taken for the 
overall microsegregation calculation can be unacceptable. 

In many practical situations one (or more) dements may diffuse so fast as 
to establish partial equilibrium between the solid and liquid phases, for 
example interstitial elements such as carbon in steels. In such cases the 
compositional gradients of the solute in each phase is negligible, and we may 
write for the solute balance at the moving interface: 

de[ 
c~(1 - ki) d X / d t  = k i X  d - ~  / d t  + dc~/dt( L - X )  + ( c [ -  c ° ) d L / d t .  

Eliminating dc~/dt in all the solute balance equations as before, we have: 

Y, fliDi(Oci/OX)x + R ( L  - X )  + ~f l i (c~-  c°)Bi d L / d t  
d X / d t  = Zflici (1 - k i) B, 
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Table 1. Predicted effect of back diffusion on microsegregafion in Al-5wt.%Ct~ alloy solidified at a 
cooling rate of 1 K/s.  

Assumptions Cmin./Co 

Fixed dendrite arm spacing 0.25 
Dendrite coarsening 0.34 
Dendrite coarsening 
Constant D (liquidus value) 0.46 

where B i = 1 for slow diffusing solute elements (e.g. in substitutional solution), 
and B i = ( 1 - f ) / ( 1 - ( 1 - k t ) f )  for fast diffusing solute elements (e.g. in 
interstitial solution). 

This equation may also be recast in an alternative form where the assump- 
tion of a constant rate of heat extraction is more appropriate (see Howe [15]). 

Discussion 

Table 1 shows the results of numerical calculations using the present model to 
predict microsegregation in A1-5wt%Cu alloys. They are expressed as the ratio 
of the minimum concentration at the centre of the dendrite arm to the average 
concentration, which was measured by Bower et al. [5] to be - 0.30 and by 
Bennett [17] to be - 0.35 under a variety of solidification conditions. Using a 
fixed arm spacing (the final spacing measured after solidification) clearly 
results in an overestimation of the degree of microsegregafion as previously 
shown by Brody and Flemings [3]. Using the coarsening relationship: L = 8t °'31 
(whereL is in #m. and t in seconds) obtained from experimental measure- 
ments of secondary arm spacings during solidification in this alloy [11], the 
prediction of the model is in good agreement with the measured values of 
microsegregation. The third computation demonstrates the sensivity of the 
calculation to the choice of diffusion coefficient. A constant value has been 
used, calculated at the liquidus temperature of the alloy, and this clearly 
predicts too low an amount of microsegregafion. 

The use of this model for predicting microsegregation in more complex 
alloys has been made by Howe and is reported in this volume [15]. 
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