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A model  of  a casting 
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Abstract. A model of a casting is presented which describes the freezing of a mushy zone, growing 
with a dynamically calculated undercooling at the dendrite tips. Equiaxed grains are introduced 
ahead of a columnar front. The model resembles a combination of the Stefan and mushy  zone 
problems. 
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composit ion 
heat  capacity per unit  volume 
parameters 
solutal diffusion coefficient 
weight fraction 
temperature gradient 
heat transfer coefficient 
heat  content or enthalpy per unit volume 
nucleation rate per unit  volume 
distribution coefficient 
thermal conductivity (i = s or l) 
thermal conductivity of a single phase (i = s or l) 
latent heat per unit  volume evolved at the front 
fiquidus slope 
number  of grain per unit  volume 
number  of substrate particles per unit  volume 
extended radius of a grain 
time 
temperature at time t 
velocity 
distance 
width of control volume immediately ahead of the columnar front 
width of control volume immediately behind the columnar front 
boundary layer thickness 
time discretisation interval 
spatial discretisation interval 
latent heat per unit  volume 
undercooling 
pseudo heat transfer coefficient 
extended volume fraction of grains 
volume fraction of grains 
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Subscript Meaning 

e east face of the control volume 

E centre of the control volume to the east 
e x  of the mould 

L liquidus 

l l iquid 

0 Centre of the control volume 
s solid 

w west face of the control volume 

W centre of the control volume to the west 

Superscript Meaning 

B bulk 

I columnar front 

m modified 

p pure 

* equiaxed 

' at time t + ~t 

- average 

1. Introduction 

Solidification involves heat and fluid flow and, for an alloy, the transport of 
solute as well. The modelling of castings has concentrated on heat flow and 
has tended to introduce solute and fluid flow by simple, empirical treatments, 
if at all. 

Two classes of heat flow models can be identified: 

1. Stefan-type models, in which the latent heat is liberated discontinuously at 
a sharp phase front and where, therefore, a Stefan ' jump' boundary 
condition (see equation (5)) must be applied [1,2]; and 

2. Mushy zone models, in which the latent heat is evolved continuously over a 
temperature range [3,4] and a Stefan ' jump'  condition is not involved 
because there is not a discontinuity in solid fraction across the casting. 

The former are good representations of the solidification of a pure metal, 
while the latter are used to describe alloy solidification. 

Macroscopic solidification models have tended to neglect the undercooling 
at the phase front. Recently, however, Flood and Hunt  [5,6] have produced a 
model which combines the characteristics of the Stefan and mushy zone 
models and which is capable of calculating a variation in undercooling of a 
semi-solid front. A Stefan ' jump' boundary condition is applied in the vicinity 
of the dendrite tips and the semi-solid is treated as in a mushy zone model. 
The undercooling at the columnar front varies as a result of the heat flow and 
generation in the casting and equiaxed grains can exist in the bulk. Clyne has 
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previously introduced a constant undercooling at a semi-solid front [7] and 
also has modelled a planar front with a varying undercooling [8] but the work 
described here is the first to include a varying undercooling at a semi-solid 
front and equiaxed grains ahead of it. 

2. The model 

The authors wanted to investigate, through the application of a mathematical 
model, whether the columnar-equiaxed transition can be explained in terms of 
the growth of equiaxed grains in the bulk and their thermal interaction with 
the columnar front. This required a model which included a dynamically 
calculated undercooling at the columnar dendrite tips because this undercool- 
ing is crucial in determining the velocity of the columnar dendrites and the 
growth rate of the equiaxed grains. 

The key to the model is the relationship linking the velocity of a dendrite 
tip to its undercooling (this is applied to both the columnar and equiaxed 
dendrites): 

v = C (AT)  (1) 
Co 

where C 1 is a function of material constants [9]. The relationship is supported 
by both experimental measurements and an approximate analytical treatment 
of solute diffusion at the dendrite tip [9,10]. Modifications can be introduced 
with high temperature gradients, and other, more suitable growth velocity 
undercooling expressions can be used similarly to achieve closure under rapid 
solidification conditions [8]. 

The Scheil equation is used to describe the shape of the dendrites in the 
columnar semi-solid (this is a common technique, see references [11,7,12,5]) 
and the liquid volume fraction within an equiaxed grain. It is a function of 
temperature alone if a linear liquidus is assumed: 

( T -  TL p 1/(k-l) 
~ - ~ )  (2) gz 

\ 

The assumptions behind the Scheil equation are discussed elsewhere [12]. The 
equation can be modified to account for solid state diffusion of solute (this is 
often important for interstitial solute, e.g. carbon in iron) and forward 
diffusion of solute down the interdendrite composition gradient [13,14]. 

The columnar dendrites are truncated Scheil shapes (see Fig. 1). The 
temperature at which the truncation occurs is calculated by iterating on the 
Stefan ' jump' condition (see later). The truncated Scheil and true dendrite 
shapes will deviate near the tips but will match within a short distance behind 
them. The discrepancy between the real and truncated Scheil shapes is not 
important because it occurs over only a small distance compared to the scale 
of the casting and because the correct quantity of latent heat is liberated after 
a very small distance behind the dendrite tips. 
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Fig. t. The relationship between the complete Scheil, truncated Scheil and actual dendrite shapes. 

The thermal fields of neighbouring grains are assumed to overlap because 
of the high thermal diffusivity of metals, and so the grains are isothermal and 
grow at the local bulk undercooling. A treatment has been developed to allow 
for a temperature difference between the grains and the bulk, but this is found 
to be negligible [6]. 

Impingement of the grains is accounted for by an Avrarni-type treatment 
[15]: the concept of 'extended' volume, o~, as opposed to the actual volume, f~, 
enables the kinetics of the growth of the equiaxed grains to be divorced from 
the geometrical complication of impingement. The increase in the actual 
volume fraction of grains, df~, is related to the change in the 'extended' 
volume fraction, dw, by 

df~ = (1 - f~) d~0 

Fluid flow is assumed not to affect heat flow in the semi-solid because of 
the high thermal diffusivity of metals and the small interdendritic spacings. In 
the bulk, convection is modelled by a temperature plateau ahead of a conduct- 
ing boundary layer and quantities are described by bulk values. A small 
boundary layer corresponds to much convection in the bulk. In a recent 
version of the model, the size of the boundary layer is a function of the volume 
fraction equiaxed in the bulk. 

In the first instance, nucleation of the grains was ignored. The influence of 
just the growth of the grains on the columnar-equiaxed transition was consid- 
ered; grains were assumed always to be present in the bulk and they started to 
grow as soon as the local temperature fell below the liquidus. Later, calcula- 
tions were performed with a temperature dependent nucleation rate [!6,6]. 
Assuming heterogeneous nucleation in which substrate particles are consumed 
by the growing equiaxed grains, and that each substrate only nucleates one 
grain, the nucleation rate is given by: 

I = N O (NO - N)  (1 - f~)C2 exp( - C3/(AT* )2) 
N o 

and typical values for C 2 and C 3 are 10 29 s -1 m -3 and 46K 2 respectively. 
On the basis of an argument which considers the probability of a columnar 

dendrite being obstructed by an equiaxed grain in the bulk, the columnar- 
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equiaxed transition is assumed to occur when f~ = 0.49 immediately ahead of 
the front [6,17]. 

3 .  M a t h e m a t i c a l  f o r m u l a t i o n  

The model can be applied to one, two or three dimensions. As an example, 
consider the one dimensional case (see Fig. 2). Solidification is modelled by 
modifying the Fourier heat conduction equation: 

cm ( ~ )  = -3-X- x gl)-g[AH (3a) 

where C m is the modified heat capacity: 

. dgl 
C ~ = C + a a , - d -  f (4) 

with g/ defined by the Scheil equation (2). f~ = 1 in the columnar semi-solid 
and is the local volume fraction of equiaxed crystals in the bulk. 3f~/3t = 0 in 
the columnar zone. AH is the total latent heat per unit volume of liquid. 

In a simple treatment of convection in the bulk, the diffusive term in (3a) is 
replaced by one involving a pseudo-heat transfer coefficient, X, which is a 
function of the boundary layer width, 3: 

3f~ AH (3b) cm(-~)  :X(TzB- T ± ) +  ( 1 - g z ) 3 t  

COLUMNAR L I O U I D COLUMNAR 
SEMI-SOLID SEMI-SOLID 

I 

CO DLICTION 

. . . . . . .  , -  

I 
xT 

X - 

Fig. 2. The model system with and without convection in the bulk. 



32 S.C. Flood and J.D. Hunt 

where T • is the temperature of the columnar front and 

kl 
X = " ~  ~ 

The value to be used for 8 is uncertain. The authors have used values ranging 
from 200 microns to the width of the casting; the true value must lie 
somewhere in this range. In more thorough treatments of convection, the heat 
transport is modelled within the boundary layer as well [6]. 

The boundary conditions are: 

~ = h ( T -  Tex ) at the edge 

where h is the heat transfer coefficient representing the resistance between the 
casting and the mould wall and Tex is the mould temperature; 

aT 
ki--~x = 0 at the centre of the casting 

and the Stefan ' jump' condition: 

oZ = I I k~G~ - k[G[ with conduction in the bulk 

u L =  • • t (5) ksG ~ - x ( TI B - T /  ) with convection in the bulk 

is applied at the columnar front, with v given by (1) and L by 

L = ( 1 - g / ) A H .  (6) 

In the bulk: 

3.__~ = (1 - ~)N4~r?zv * = (1 - f~)N4~r?zC](AT*)  2 
3t c o 

where N is the number of grains per unit volume, ? is the local average 
extended grain radius and AT* is the local undercooling. 

The thermal conductivity varies as: 

k i = K, + (1 - gt)(K~ - 1(l). 

See reference [6] for further details. 

4. Computational procedure 

A fully conservative (or strong) discretisation of the governing differential 
equation (3) is adopted; the conservative property of the scheme proved very 
useful when debugging the computer code. 

In the one-dimensional case, a representative cross-section of the casting is 
split into a row of control volumes. The change of temperature over time at 
the centre of a box is calculated by an explicit finite difference scheme. 
Discretisation equations are used to step through time in small intervals St; 
the box temperature at time t + 8t are obtained explicitly from those at time t. 
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6x 

Fig. 3. A typical control volume. 

The temperature dependency of the thermal conductivity is easily handled by 
employing the values for conductivity at the box faces. As examples of the 
form of the discretisation equations, consider respectively those for heat 
transport in the columnar semi-solid(see Fig. 3): 

6t 
r 0 ' =  T O + C 2 ( 8 x ) 2  (kwTw- (kw.+ ke)To + keTE) 

and the bulk liquid, with conduction: 

at (kwTw- (kw + ke)To + kerE ) 1 
To'= T O + ~ (Sx)  2 + (1 - gz)AHSa o 

d 
where C~ is given by equation (4) and: 

* a 0  = ( 1  - ao)N4,~dv¢St. 
The columnar front is tracked directly. It begins to move inwards once the 

temperature at the edge falls below some predetermined Value at which 
nucleation occurs. From then on, at the start of each time interval, the ' j ump '  
condition at the columnar front is invoked iteratively to determine the 
temperature and velocity of the front. The distance moved by the front in an 
interval 8t is v. 8t. The colunmar front constitutes the common face of the 
last semi-solid and the first liquid boxes (see Fig. 4). In the early numerical 
schemes, the dimensions of these two boxes change as the front advances. To 
ensure numerical stability (for a given 8t there is a minimum permitted control 
volume dimension [18]) and accuracy, it is necessary to amalgamate and divide 
respectively the boxes immediately ahead and behind the front. Smoother 
solutions are obtained in the later schemes by repeatedly shrinking and joining 
liquid boxes at the centre of the casting instead of immediately ahead of the 
front [6]. 
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Fig. 4. The control volumes either side of the columnar front. 

An explicit method is employed because the position of the front and its 
temperature are not known a priori  at any stage in the calculation. An implicit 
scheme requires iterations at each time step to determine a consistent front 
position, temperature and velocity. It was thought that this would be very 
time-consuming but experience with the explicit iterative procedure used to 
satisfy the 'jump' condition suggests that convergence would be rapid. Conse- 
quently an implicit predictor-corrector implementation of the model is being 
developed, in which, additionally, a mapping is also used to immobilise the 
columnar front in computational space, hence avoiding the need for amalga- 
mation and division of boxes. 

Calculations have been performed in two dimensions with cylindrical 
control volumes and, in principle, can be extended to the third dimension. 

5. Implementing the 'jump' condition 

The truncation of the columnar dendrites at an undercooling causes a discon- 
tinuity in the latent heat liberation and requires the application of the Stefan 
'jump' condition there. This boundary condition cannot be absorbed into the 
formulation by expressing the problem in the usual integral, control volume 
enthalpy approach [2,3] because the undercooling of the dendrite tips is not 
fixed a priori  and equiaxed solid exists ahead of the front; it is impossible to 
define the enthalpy function in advance. The front has to be tracked directly 
and the parabolic velocity relation (1) provides the necessary closure for the 
temperature. 

At the start of a time interval, the temperatures at the centres of the boxes 
either side of the columnar front, T, and Tz, are known from the calculation of 
the previous time step. But the consistent value for T 1 for the new time step 
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has yet to be determined. The gradients at the front can be approximated by 
(see Fig. 4): 

, ( r ' -  rs) 

Gz= 2 k / ( T t -  T I) 

If E; is the error in T I at the j th iteration then a value for T t consistent 
with the ' jump' condition (5) can be obtained by iterating and finding 
progressively better values for T I, according to the scheme: 

i f I  (uL-- ksa j -[- klG/) := p G 1 -  q-GT -- "~ l k /-~ --)ts k--7 = b L - X O 

I:= T / +  Ej 

= j + l  

until Ej is acceptably small. The symbols used in the expression for Ej are 
defined to be: 

dk [  dk[  dG[ dG I dv OL 

P =  d T  x q=  d T  I 71 d T  I 7~ d T  I b - -  • -  d T  I d T  I " 

Having found T I, the velocity and latent heat at the front can be calculated 
using equations (1) and (6). 

6. Results 

Calculations were performed using physical parameters relating to A1-Cu 
aUoys ( T [ = 9 3 3 K ;  m = - 2 . 6 K  wt%-l;  k=0 .18 ;  C =  3400 kJ K -1 m-a;  
A H =  1.02 × 109 J m-a;  Ks= 180 W m -1 K- I ;  K1=98 W m -1 K - l ;  
C1 = 3 × 10 -4 ms -1 K -2 wt%-l).  Values of heat transfer coefficient were 
chosen to produce freezing times comparable to sand and metal mould 
castings, and some calculations with rapid solidification conditions have also 
been undertaken and are discussed briefly later. Unlike previous mushy zone 
models, the dynamically calculated undercooling at the front enables the 
model to produce cooling curves which exhibit recalescence. Most have been 
for one-dimensional castings (slit moulds) (see Fig. 5). The cooling curves 
show a higher bulk temperature during solidification when equiaxed grains are 
present owing to the liberation of latent heat ahead of the front. Also the 
columnar curves show a slight recalescence throughout freezing because of a 
deceleration of the front due to the increasing liberation of latent heat behind 
it as the semi-solid region increases. This last observation is peculiar to 
one-dimensional slit castings; in a cylindrical casting, the area of the columnar 
front decreases as it nears the centre of the casting and this causes a decreasing 
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Fig. 5(b). Cooling curves for A1-Cu alloys with and without equiaxed grains ahead of the 
columnar front: (a) AI-1 wt% Cu (no convection); (b) A1-5 wt% Cu (no convection); and (c) A1-5 
wt% Cu (convection in the bulk; 8 = 0.2 mm) (see p. 37). All cast at 973 K into a 100 mm wide slit 

mould, h =102 Wm -2  K -1. 
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rate of latent heat production and, therefore, a drop in temperature (see 
Fig. 6). 

Compare Figs. 5(a), (b) and (c). For a given rate of heat extraction, 
increasing the composition of an alloy causes an increase in the velocity and 
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Fig. 6. Cooling curves for the columnar solidification of A1-5 wt% Cu alloy in a 100 m m  diameter 
cylindrical mould. Poured at 973 K; h =103 W m  -2  K - ] .  No  convection. 
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undercooling of the columnar front, and the temperature plateau in the 
cooling curve becomes shorter and further below the equilibrium liquidus 
temperature. This trend is a consequence of 

(i) the compositional dependency of the velocity-undercooling relation (1) 
and 

(ii) the variation in the Scheil solid fraction with composition. 

Initially, the development of the equiaxed zone was investigated by placing 
nuclei ahead of the columnar front and allowing them to grow as soon as the 
local temperature fell below the liquidus. The scale and speed of equiaxed 
growth ahead of the columnar front depended only on the extent and degree 
of the undercooled liquid in the bulk: 

(i) Increasing the composition promoted equiaxed growth by increasing the 
undercooling at the front (see Fig. 7). 

(ii) Both decreasing the superheat and 
(iii) decreasing the rate of heat extraction produced a lower temperature 

gradient in the bulk, thereby widening the undercooled layer and increas- 
ing the period in which the equiaxed grains could grow before the front 
reached them (see Figs. 7(a) and (b)). 

(iv) Convection in the bulk accelerated the loss of the superheat and the onset 
of undercooling at the centre of the casting and therefore encouraged the 
growth of the equiaxed grains (see Fig. 7(c)). 

In the calculations, when only the growth of the grains is considered, very 
small columnar ranges are produced. At moderate cooling rates, low tempera- 
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Fig. 7(c). Graphs of columnar range vs composition for A1-Cu alloys cast in a 100 mm wide slit 
mould. (a) The effect of grain density (N in m -3) and pouring temperature (Tp in K). h = 103 
Wm -2 K - l ;  109 grains m -3. No convection. (b) The effect of heat transfer coefficient (h in 
Wm -2 K -1) and grain density (N in m-3). Poured at 973 K. No convection. (c) The effect of 

convection (8 = boundary layer width). Poured at 973 K; h = 103 Wm -2 K-a;  10 grains m -3. 

t u re  g r ad i en t s  a re  qu i ck ly  a t t a i n e d  t h r o u g h o u t  the  b u l k  a n d  e q u i a x e d  g r o w t h  

s o o n  occurs  at  the  cen t re ;  even  w i t h  h i g h  c o o l i n g  ra tes  w h i c h  p r o d u c e  s teeper  

g rad ien t s ,  g r o w t h  i m m e d i a t e l y  ahead  of  t he  f ron t  is fast.  T h e  d i f f e r ence  
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between the undercooling and, therefore, the tip velocities, of the columnar 
and equiaxed dendrites is not very great and so obstruction of the front occurs 
readily. 

In practice, the equiaxed growth appears not to be so dominant. Hence, in 
reality, factors other than the growth of the equiaxed grains must also 
determine macrostructure, such as the buoyancy of the grains and their 
convective motion in the liquid. These effects would tend to reduce the 
presence of equiaxed grains ahead of the columnar front. The buoyancy of the 
grains is being investigated currently. 

As expected, the model shows that the superheat is quickly removed owing 
to the low Stefan number and high thermal conductivity of metals - the 
rate-determining process during solidification is the removal of the latent as 
opposed to the sensible heat ( L / C  = 300 K). In the calculations (see Fig. 7(a)), 
the effect of superheat on the growth of the columnar and equiaxed grains is 
significant only at high rates of heat extraction and in large castings because 
only under these circumstances can an appreciable temperature difference be 
maintained between the edge and centre of a casting. At low cooling rates and 
in-small castings, the temperature gradient is shallow and the growth of the 
grains is unaffected by the initial pouring temperature. In practice, however, 
the effect of superheat can be dramatic, especially in small castings [19,20]. 
From the model, therefore, it appears not to be possible to explain satisfac- 
torily the influence of superheat in terms of the growth of the grains: it is 
suggested that, as is usually proposed, the variation with superheat of the 
equiaxed zone and grain size is due to the delay in the bulk becoming 
undercooled affecting the survival of chill nuclei (the Big Bang mechanism 
[201). 

When a temperature dependent nucleation rate is included, the onset of 
equiaxed growth is delayed until the critical nucleation undercooling is at- 
tained locally causing larger equiaxed ranges and smaller equiaxed zones. If 
the columnar front does not exceed the critical nucleation undercooling then 
neither does the bulk, and no equiaxed grains are nucleated. Hence, under 
certain circumstances, the columnar range can be dramatically decreased by 
increasing the cooling rate: at a low cooling rate the columnar front might 
never attain the critical nucleation undercooling but on increasing the cooling 
rate, the front undercoofing will increase and may exceed the critical value and 
thus permit nucleation in the bulk. It is suggested that the model could be 
used to investigate the efficiency of a grain refiner, thus extending the work of 
Maxwell and Hellawell [21]. 

Rapid solidification was modelled: two high values for the heat transfer 
coefficient (h = 104 and 105 W m -2 K -I) and a thin width of casting (100 
microns) were used. Nucleation undercoolings of 50 and 100 K were assumed 
(see Fig. 8). Rapid recalescence and a corresponding decrease in the columnar 
front velocity were noted. Shortly after nucleation of solid at the edge, the 
liquid ahead of the front is at a lower temperature and thus latent heat is 
conducted both into the solid and also the liquid; after the liquid has 
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Fig. 8. Cooling curve for the rapid columnar solidification of A1-5 wt% Cu alloy. 100 um wide 
ribbon initially at 973 K. h =105 W m  -2 K -1. 

recalesced, though, heat is extracted through the solid only and the front 
velocity falls. 

Conclusions 

A model for the solidification of a casting has been presented in which the 
columnar mass is represented as a mushy zone truncated at an undercooling 
which is free to vary. Equiaxed grains can exist and grow ahead of the front. 
Because of the freely varying undercooling and the presence of grains in the 
bulk, it is not possible to prescribe an enthalpy function and treat the 
solidification as in the usual integral, control volume enthalpy-based method. 
The front has to be tracked directly. Because of the truncation of the Scheil 
shape at the columnar tips, there is a discontinuity in the evolution of the 
latent heat at the columnar front: this introduces the Stefan ' jump' condition 
into the problem. This condition is not present in normal mushy zone models 
because of the continuous form assumed for the variation of bulk solid 
fraction with temperature. The current model, therefore, is original in so far as 
it is a combination of the Stefan and mushy zone models. 

The model can produce realistic cooling curves and has been used to 
investigate the growth of equiaxed grains and the development of the equiaxed 
zone ahead of a columnar front. The expected trends with superheat, composi- 
tion, convection and cooling rate have been reproduced. However, the super- 
heat effect is not as pronounced in the model as that seen in practice. This is 
attributed to the failure of the model to consider the Big Bang mechanism for 
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the  p roduc t ion  of  chill nuclei.  The  mode l  predic ts  small  co lumnar  ranges and  
this is p r o b a b l y  due to its neglect  of the buoyancy  and  convect ive m o t i o n  of  
the equiaxed growth  ahead  of  the front.  

A l though  the mode l  requires fur ther  deve lopment  to inc lude  the effects of  
movemen t  of  equiaxed grains, i t  forms a useful  basis  for  the inves t igat ion of  
the evolut ion of the macros t ruc ture  of  a cast ing and  the in te rp lay  of the 
var ious  cast ing parameters .  
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