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Summary 

This  p a p e r  is c o n c e r n e d  w i t h  t h e  q u e s t i o n  w h e n  a n d  w h y  t h e  r a t e  of 
e n e r g y  p r o p a g a t i o n  in a s y s t e m  of w a v e s  equa l s  t h e  g r o u p  ve loc i ty .  I t  
is s h o w n  b y  t h e  m e t h o d  of s t a t i o n a r y  p h a s e  t h a t  t h i s  e q u a l i t y  holds ,  for  
t r a v e l l i n g  waves  w i t h o u t  d i s s ipa t ion ,  w h e n e v e r  t h i s  m e t h o d  appl ies .  T h e  
r e a s o n  w h y  th i s  r e s u l t  c a n  be  o b t a i n e d  b y  t h i s  k i n e m a t i c a l  m e t h o d  is 
i n v e s t i g a t e d  b y  a d i scuss ion  of s imp le  h a r m o n i c  waves .  I t  is s h o w n  t h a t  
t h e  cho ice  of a n  e x p r e s s i o n  for  t h e  e n e r g y  d e n s i t y  to  be  u s e d  in  c o n n e c t i o n  
w i t h  a g i v e n  w a v e  e q u a t i o n  is r e s t r i c t e d  b y  t h e  c o n s e r v a t i o n  of e n e r g y  in  
such  a w a y  t h a t  t h e  a v e r a g e  r a t e  o f w o r k  d o n e  d i v i d e d  b y  t h e  a v e r a g e  e n e r g y  
d e n s i t y  a l w a y s  equa l s  t h e  g r o u p  ve loc i ty .  F i n a l l y  some  e x a m p l e s  of w a v e  
m o t i o n  a re  d i scussed  to  i l l u s t r a t e  t h e  d e r i v e d  fo rmulae .  

§ 1. I n t r o d u c t i o n .  - -  It  is generally known that  the energy of 
a system of progressive linear conservative waves is, as a rule, 
propagated with the group velocity of these waves. A consider- 
ation of a wave packet, which moves with the group velocity without 
appreciable deformation at least for a short time, will be sufficient 
evidence that  this statement must be fairly exact. The total energy 
of the waves is confined to the region occupied by the wave packet 
and must therefore move with the same average velocity. 

On the other hand the literature on wave motion is singularly 
reticent about the deeper reasons for the identity of the energy and 
group velocities. We have not been able to find a general proof of 
this property of wave packets. I t  is even not made clear at all what 
both velocities can have to do with each other. The group velocity 
is a kinematical property of the wave equation alone, quite inde- 
pendent of its physical interpretation. The energy velocity, how- 

- -  3 2 9  - -  

Appl. sei. Res. A 2 2 I* 



330 L . J .F .  BROER 

ever, which is a dynamic quantity, can be determined only when 
this interpretation is known. 

In this paper we will first prove this kinematical property of 
waves with the aid of the method of stationary phase. We will 
find that  everywhere in the wave system the energy is propagated 
with the group velocity corresponding to the local wave number. 
This result is valid to the same approximation as the application 
of the stationary phase method. In the second place we will show 
that  conservation of energy restricts the possible expressions 
for the energy density admitted by a given wave equation in such 
a way, that  the energy velocity in a harmonic wave always equals 
the group velocity. Finally, we will apply our methods to some 
examples of wave motion. 

§ 2. Linear conservative waves and the method o] stationary phase. 
We consider a homogeneous one-dimensional medium which 
admits a state of stable equilibrium. The waves with which we 
are concerned consist of travelling disturbances of this equilibrium. 
The deviation from equilibrium is measured b y  some quanti ty 
z(x, t ) .  When the principle of superposition is valid, we speak of 
linear waves. In this case it is sufficient to discuss only harmonic 
w a v e s  

z ----- exp i(kx - -  c~t). (1) 

More extended information about the wave motion is then obtained 
by Fourier methods. In order to apply these we need the relation 
between frequency and wave number of a harmonic wave: 

W(k, ~) = 0. (2) 

This characteristic equation is sufficient to determine the wave 
motion. When W is a polynomial in k and co it can be replaced by 
a differential equation, the wave equation, which can be written as 

w iox '  i z = o .  (3) 

Of course, when (3) is given, (2) can be obtained by, substituting 
(1) into (3). 

The characteristic equation (2) can be solved with respect to o~: 

= H(k). (4) 

H(k) is known as the Hamilton ]unction. c(k) ~ H(k)/k is the phase 
velocity. 
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We will restrict ourselves now to those cases in which co is real 
whenever k is real. The corresponding harmonic waves then have 
constant  ampli tudes and there is no dissipation of energy. This 
kind of waves is called conservative. Fur thermore  we will at  first 
consider equations having only one Hamil ton  function. As the 
differential equations describing reversible phenomena in a ho- 
mogeneous medium are invar iant  wi th  respect to inversion of both  
t and x, the characteristic equation can then be writ ten in the form 

Y~ a n k 2~ 
0) 2 __ n=O 

1 + E  b~k 2"' (5) 
m ~ l  

where G, b~ are real constants and the a n are not  all zero. The r ight  
hand  side must  be a positive function of k 2 when k is real. 

By  t h e  principle of superposition a solution of the wave problem 
i s  n o w  

oo 

z(x, t) : f f ( k )  exp J {kx - -  H(k)t} dk 
- - c o  

c o  

+ f F ' ( k )  exp I" {kx + H(k)t} dk. (6) 
- - o o  

Equat ion  (6) describes two systems of waves going out from the 
disturbed region to the right and to the left. We can t reat  these 
systems separately. We write the integrals in the form 

oo 

z(x, t) = f F(k) exp i{kx - -  H(k)t} dk 
- - o o  

c o  

= f G(k) exp jO (k, x, t) dk, (7) 
--co 

where F ( k ) =  G(k)expj~(k) ,  (G,  9, both  real for real k) and 
0 = q)(k) + kx - -  H(k)t. The function G(k) ---- I F(k) ] represents the 
spectrum of the wave system, ~(k) = arg F(k) the eikonal. Integrals 
of the type  (7) can be evaluated approximate ly  under  certain 
conditions b y  the method of stationary phase (thes e conditions 
for G and 0 and the conditions t hey  involve for 9 and F will not be 
discussed here). We will t reat  this method only very briefly and 
refer for a more thorough discussion to E c k a r t 1). 

When the exponential  factor in (7) f luctuates very rapidly,  
the principal contributions to the integral arise from the regions 
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where the phase 0 i s  s tat ionary.  These are given b y  

aO 
a T  = x - -  Xo(k)  - -  v ( k ) t  = o ,  (8 )  

where v ( k ) :  dH/dk  and x 0 : - - a @ a k .  The first quan t i ty  is 
known as the group velocity. The solution of (8) with respect  to k 
is denoted b y  z (x, t). We now replace G(k) b y  G(z) in the integral 
i7) and expand  the phase 0 in powers of ( k -  u). The result is 

c o  

; [ z(x, t) = G(z)j exp i 0(z) + } \~k2/~ 

- - - o o  

When we neglect higher terms, the integration can be carried 
out  at  once and yields 

]/' 2~i 
z(x,t) = G(~) | / 7 ~ 2 0  \ exp ~'0(~; x, t). 

t /  { - |  
r \ak2/~ 

In accordance with E c k a r t we write 

S(x, t) = 0 [~(x, t); x, t], 

- -  \ ak 2 / "  

The approximate  solution is then 

z(x, t) = G(~) exp iS. (9) 

F rom (8) it is seen tha t  a certain constant  value of ~, the wave num- 
ber  of s ta t ionary  phase, is propagated  with a constant  veloci ty 
v(~). In a given point  we find at each t ime from (8) a value for x. 
This ~ is approximate ly  the wave  number  of tile local dis turbance 
at tha t  t ime and is therefore called the local wave number. The t ru th  
of this s ta tement  is seen when we differentiate 

S(x, t) = ~o[~(x, t)~ + x . ~(x, t) - -  t . H[~(x, t)~ 

with respect  to x and t respectively.  Using (8) we obtain" 

as as 
- ~ ( x ,  t ) ,  - -  H i e ( x ,  t ) ] .  

ax at 
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In the neighbourh0od of a ' p o i n t  with the local wave number  
z therefore  our  solution behaves  as 

E ~  {x  - -  c(~)t}  z(x,t) = G(z) • ~ ~-exp j --4]" 

The amplitude of the local wave is determined by G(g), the density 
of the initial wave spec t rum at  z, and by  the factor  R ----- -- ~20/~k 2. 
I t  should be noted  tha t  R-'~ is a measure for the width  of the spec- 
t ra l  region i n  which the phase is approx imate ly  constant .  F rom the 
definit ion of R we have 

R = - -  \ a k V ~  = \ ~ - &  + ,,a~-/,~ (lO) 

Different ia t ing (8) with respect to k and using (10) we derive the 
a l ternat ive  form 

R = . (IO~) 
t 

R is called the resolution of the waves. F rom (10) it is seen tha t  it 
is a funct ion of z and t only. F rom (10a) we see tha t  when R is large 
(the condit ion turns  out  to be: Ry. 2 >~ 1) the difference of local wave 
number  between succesive wave crests is small. The  me thod  of 
s t a t ionary  phase is a good approximat ion  then. 

§ 3. Energy propagation. Th 9 energy densi ty  in a linear harmonic  
wave, averaged over  a period or a wave length, is propor t ional  to 
the square of the ampli tude.  The factor  of p ropor t iona l i ty  will in 
general  depend on the wave number.  When  a sys tem of waves is 
so far resolved tha t  the mot ion  in a region containing a few wave 
crests differs little f rom a harmonic  wave, this still will be near ly  
exact .  As under  these circumstances the me thod  of s t a t ionary  phase 
will be valid, we see from (9) t ha t  the average densi ty  of energy in 
this region will be approx imate ly  

~(., t) - A ( ~ )  _ A ( ~ )  - -  f ( ~ ,  t). (11) 
R Ox° ~- t a v 

For  our purpose it is not  necessary to specify the funct ion A (a), 
which contains G2(~) as a factor.  
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By differentiating (11) we obtain 

aE" a~ a~ a~ a~ a~ ~av 
a ~ = a ~  at ~ - a  ~ at ~ a s  (12) 

a aft7 - a v  a~7 as ~av ~ 
. . . . .  v - - ' - -  + E - - ' - - .  (12a) ax (~y~)) = v ~ + E ax as ax as ax 

Now from (8) we have 

(Ox) _ as~at. 
v = ~ ~ / a x '  

therefore, using (10a), we obtain, by adding (12) and (12a) 

a ~  a 
at-- -b ~xx (vE) = 0. (13) 

An equation of this type has been derived in another way by 
R o s s b y 3) for some special cases. 

Equation (13) has the form of a continuity equation. As we 
know that  the wave system is conservative (as could have been 
guessed beforehand, our argument is after all not purely kinematic), 
vE = T must be the average density of energy flow, that  is the sum 
of the rate of work done at a unit cross section and the convective 
flow of wave energy through this cross section. The quotient 
T/E = v is the velocity of energy propagation, referred to in the 
introduction. 

I t  is seen from this deduction that  the group velocity is ap- 
proximately equal to the quotient of the average energy flow and 
the average energy density, not necessarily to that  of flow and den- 
sity themselves, or the average of this quotient. This is exactly what 
could have been expected from considering a wave packet. The 
energy of this  packet is proportional to the average energy density 
fT, whereas we only know that  the velocity of propagation of this 
energy on the average must be equal to the velocity of the centre 
of the wave packet, i.e. to v(~). The fluctuations of the energy to- 
wards or from the crests and troughs of the waves cannot be in- 
vestigated unless the physical nature of the wave amplitude z, 
which would enable us to express E in z, is known. 

Next we admit the existence of more than one Hamilton function, 
which means that  the wave equation is of higher order than the 
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second in s/at *). To each k then correspond several frequencies. 
Properties of the wave field, e.g. the energy density, as a rule cannot 
be expressed in terms of k alone. Our general solution (6) is now re- 
placed by a sum of similar terms : 

o o  

z(x, t) = Y, f [F~(k) exp j {kx--H,,(k)t}-i-F'~(k) exp 7" {kx+H(k)t}]dk. 
- - o o  

We assume that  each term of this expression can be treated by 
the method of stationary phase. For a certain x, t we will find se- 
veral values of ~, each of them representing an approximately 
harmonic wave in the region around x. The contributions of these 
waves to z will simply add, the energy densities E of course will 
not. But, when Ox/Oz. is large enough, the cross terms in E will 
cancel on the average and f7 will be approximately additive. 
Treating the average energy density of each partial wave as above, 
we obtain a number of equations of the type (13): 

~-7 + ~ (v~ ~:~) = 0. (laa) 

Adding them, we find that  the energy velocity now will be 
equal to the average group velocity, weighted with respect to 
/7~. Therefore it depends on the distribution of energy among 
the various branches F~ of the wave spectrum. 

Finally we remark that  the results of this section are valid for 
any quantity, depending only on the local wave number and 
proportional to the square of the local amplitude, provided it is 
conserved during the motion. As an example we mention the charge 
density in wave mechanics. 

§ 4. Energy propagation in harmonic waves. We will now investi- 
gate to what extend the conservation of energy restricts the pos- 
sible expressions of E and T in terms of z and its derivatives for 
linear conservative waves when the wave equation or characteristic 
equation is given. We shall see that  this restriction is strong enough 
to ensure that  T/E = v for a harmonic wave, and so obtain a more 
dynamical interpretation of the result of the preceding section. 

*) The  following t r e a t m e n t  also applies to the case t h a t  d i f ferent  w a v e  groups  be longing  

to  the  s a m e  H a m i l t o n i a n  m e e t  each  other .  This  can  occur  when  (.5) has more  t han  one 

solut ion or w h e n  the two w a v e  sys tems  in (6) over lap.  
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We start with the characteristic equation (5). The corresponding 
wave equation, possibly of infinite order, is then 

L(z) =z-f-E(--1)~a~Z(2nl+ E(--1)'~b~z(2~l----O. (14) 
n=0 m ~ l  

Partial differentiation with respect to t and x is denoted by } and 
z' respectively. The superscript (2n) denotes the number of dashes. 
We might assume that  the right hand side of (5) cannot be simplified. 
I f  this were possible, e.g. by dividing through a factor (1 + ck 2 + 
d k 4 +  . . .), this clearly would mean that  (14) could have been 
obtained by applying the differential operator 

~2 ~4 

1 --C~xx~ + dKxx~ . . . .  

to an equation of lower order. One then can divide (5) by this factor 
and consider this last equation as the wave equation. Although 
in practice this simplification will be made whenever possible, 
this is not necessary for the following reasoning. 

E and T are quadratic expressions in z and its derivatives. For 
the reasons of symmetry mentioned above, E will be even, T odd 
with respect both to the dots and the dashes. E must be positive, 
except when z --: 0, as this state is supposed to be Stable. In this 
state T can be taken zero too, which means that  E and T refer to 
the wave energy proper. 

We will now suppose that  (14) admits solutions which vanish 
sufficiently strongly outside of an arbitrarily extended region 
for some finite time, e.g. some superposition of wave packets. 
The total energy contained in this region then must be constant 
on account of the conservative character of the waves. Hence the 
condition. 

A jEdx = o (15) 
dt J 

must be  a consequence of (14) whenever the wave system is con- 
fined to a certain region. This boundary condition enables us 
to discard the !ntegrated terms after an integration by parts 
of (15). In this way we can shift over the dashes from one factor 
to the other at liberty in each term of the homogeneous quadratic 
integrand E. 

We now consider a certain energy density E(z). If it is possible, 
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after performing the differentiation under the integral, to recast 
(15) by  integration by  parts into the form 

d / E ( z )  dx = f OF(z) . L(z)dx, (16) 
dt , J  at 

(where F(z) will be a linear expression in z and its derivatives, even 
in the dashes and the dots), the energy will be constant for the 
solution of L(z) = O. 

We now distinguish three cases: 
a. F(z) = const, z. It will turn out that  this case already yields 

a l l  essential information. We have to look for homogeneous qua- 
dratic expressions E(z) which permit the transformation 

 oEtz) dx = const.f  L(z)dx. ~t f E(z)dx=./ a, 
It is easily verified that  a special solution of this problem is fur- 

nished by 
B 

E°(z) = T [}2 + N an{z("}} 2 + X b,. {,+(~)}2]. (17) 
n = 0  m = l  

The general solution is then 
a j  

E(z) = Eo(z ) + a~' 

where J is any homogeneous quadratic expression in z, odd in 
the dahes, even in the dots. Its contribution to the total energy 
vanishes. 

We now must derive the corresponding density of energy flow 
T(z). On account of the conservation of energy T has to satisfy 
the equation 

aE(z) aT(z) 
. . . .  + - o, (18) 

at ax 

when z is a solution of the wave equation. We need that solution 
of (18) which vanishes when z --= 0. This solution is 

a j  
T =  B [Z a , T , - /  X b,~U,~]---- , (19) 

n=O m =  1 a t  

where 

T .  = - -  Ez (") ~ t . - 1 )  _ _  zC, ,+1/k/ .  -2) . . . .  + ( - - 1 )  ~ - 1  z ~2"-~1 z ] ,  

Um = - -  F~ ( ~ / k i d - l )  _ _  ~ /~+~)  k f ~ - ~ /  . . . .  ( _ _ 1 ) ~ - ~  ? 1 2 ~ - ~ / k ] .  

Appl .  sci. Res.  A 2 22 
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To ver i fy  this we compute  

~E ~2j 
- -  B [ ~  + E a~zl~)~ I~) + X b,~} ('~) ~I~)] + 

St etOx 

= B IN a m (z (') ~!') - -  (--1)" z (2") z) + b~(z (~) z(~)--  

8 2J - - ( - - 1 ) ~  ~(2~)D + - - ,  

Ot~x 

using the wave equat ion to eliminate ~. But  

~x 

~Um __ [~'(m) ~¢m) 2V (__1)/--1 ~(2m)~. 
~x 

Therefore  (19) satisfies (18) when z is a solution of the wave equa- 
tion. 

We proceed b y  calculating the energy veloci ty  TIE for a har-  
monic wave f rom (16) and (19). The most  convenient  way  to do this 
is to use the exponent ia l  form (1) for this wave and to  apply  the 
formula  

Re(a) Re(b) = {Re ab*, (20} 

valid when a and b have the same period. We find in this way,  
observing tha t  the averages of oJ/Ox and ~J/Ot over  a wavelength or  
period must  vanish, 

B Vc°2 a n k 2 ~ + c o 2 Z  b m k 2 m l :  
E =  2 L2 + E ~ -  .~- 

B 
--  ~ a n k 2n, 

2 

b y  using the characterist ic  equat ion to eliminate 0) 2 . Fur the rmore ,  
b y  repeated application of (20), 

T ,  = ½n o~ k 2n-l, 

U~ = - -  ½m o~ 3 k2~-1 ; 

therefore:  • 

B 
T = - -  oo E (a .  - -  b~ o~2)n k 2"-1. 

2 
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In this way  we obtain 

(0 E (a n - -  b, (02) n k 2~-1 E (a~ - -  b, (02) n k 2"-1 

E a, k 2" (0(1 + E b,k 2") 

b y  using (5). 

(21) 

On the  other  hand  we find on different iat ing (5) wi th  respect  to k 

do) "~ 2 n  a n k 2~¢-1 E a~k 2'~ • X 2n b, k 2"-1 
2 ( 0 - - - -  - -  

dk 1 +  Eb,~k 2~ (1 + X b~ k2") 2 

X 2n(a,  - -  b,(02)k 2~-I 
--  1 + Eb.k  2~' (22) 

Comparing this with (21) we see tha t  

do) 
- - v ( k ) ,  ( 2 3 )  

dk 

which is the required result. 
b., F(z) is a linear expression in z and its even der ivat ives  wi th  

respect  to x (it must  be even because L and E are so). In this case 
we can proceed with the process of par t ia l  in tegrat ion unti l  we 
obtain 

FL(z)  signifies the result  of applying the opera tor  F to L(z). Since 
the coefficients in L and F are constants  on account  of the homo- 
geneous charac ter  of the medium, L and F are commutable .  

The solutions of (24) can be cov, struc*ed from the coefficients of 
the equat ion L F ( z ) =  0 in exac t ly  the same way  as E(z) was 
obta ined from L(z) = 0. The ev, ergy veloci*y in a harmonic  wave 
therefore  now is found to be the group veloci+y associated wieh the  
former  equation.  But  bo+h equa*ioPs have the same group veleei+y, 
since the effect of the differential  opera tor  F on the character is t ic  
equat ion cancels in (5). 

c. F(z) could contain also even derivat ives with respect to the  
time. We will not  enter  upon de+ails bu t  ovly ment ion tha t ,  when 
L is res t r ic ted to the second order  wi~h respect to t, no suitable 
expressions for the e r e rgy  de-si÷y are found in this way.  

Final ly  we co~sider brief ly the case of a multiple Hami l ton  
function.  We restr ict  ourselves to two branches and suppose t h a t  
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both of them correspond to conservative waves. The characteristic 
equation then factorises into two equations of the type (5) 

W(k, ~) -- W, (k, ~)W~ (k, ~) = 0. 

The wave equation is of the fourth order in t and can be written 

L(z) = L1L2(z) = 0. (25) 

• A possible energy density now is 

E = EI(L2z ) + E2(LlZ), 

where El(z), E2(z ) are arbitrarily chosen energy densities corres- 
ponding to the wave equations Ll(z ) = 0, L2(z ) = 0. In fact, using 
the foregoing results, we obtain for a wave system confined to a 
certain region. 

d 
dt f Edx -= f {L2(z) • L 1L2(z) + g  I (4). L2L ~ (z)} d x =  f (L~-¢- L2) L(z)dx, 

which vanishes on account of (24). 
The corresponding flow density then is 

T = TI(L2z ) + T2(LIZ ) 

and the energy velocity for a harmonic wave will be 

" F'I -Jr- E2 E1 @ E2 ' 

which is again the weighted average of the group velocities. 
The agreement of the results of this section and the preceding one 

is therefore complete, in accordance with the fact that  the statio- 
nary phase method is a good approximation when the local wave 
spectrum is narrow. The wave system in the considered region then 
closely resembles a progressive harmonic wave. 

§ 5. Examples. A very simple application of the formulae of 
§ 4 can be made to flexural waves of a thin elastic rod. (The methods 
of the foregoing section in fact were found by a straight4orward 
generalisation of the following considerations). 

Denoting the lateral displacement by z we will have for the ben= 
ding moment 

M = Bz", 



ON T H E  P R O P A G A T I O N  OF E N E R G Y  IN W A V E S  341 

where  B is the  r ig id i ty .  Since for  a s t a t i o n a r y  load q 

M "  = - -  q, 

t he  d i f ferent ia l  e q u a t i o n  for  smal l  d i sp l acemen t s  will be 

=_ __ B z(4) =_ __ ~2 z(4). 

0 

The  cha rac te r i s t i c  e q u a t i o n  n o w  will be 

0 2 =  X2k 4, 

wh ich  yields for  the  phase  a nd  g r o u p  veloci t ies  r e spec t ive ly  

~o 
c - -  - -  ~k. 

k 
d~o 

v - -  - -  22k. 
dk 

The  e n e r g y  dens i ty  is t he  sum  of the  k ine t ic  e n e r g y  and  t he  

elast ic d e f o r m a t i o n  e n e r g y  per  u n i t  l eng th :  

E = lzz2 + ½Bz ''~ = 10[~ + ~2z"21. 

F r o m  (19) we ob t a in  therefore ,  as a 2 = 22, all o the r  a , ,  b, be ing  zero  

T = - -  042 [ ) ' z"  - -  )z'"~ = M ' i  - -  M i ' .  

This  is indeed  the  cor rec t  resul t  for  the  ra te  of w o r k  done  a t  a cross 

sec t ion (M'  is t he  r e su l t an t  force at  this  cross sect ion,  ~dt  t he  dis- 
p l a c e m e n t ;  M the  b e n d i n g  m o m e n t ,  - - k ' d t  t he  i n c r e m e n t  of the  

def lec t ion angle  in the  d i rec t ion  of pos i t ive  M ;  cf. a n y  t rea t i se  on 
the  t h e o r y  of elast ici ty) .  

I f  we n o w  t a k e  for  z a t rave l l ing  w a v e  

z = A sin ( k x  - -  ;tk2t) = A sin 0, 
we get  

E ~- ½~A 2 [12k 4 cos 2 0 @ ~ 2k4 sin 2 0] = ~ A 2 2  2k4, 

T : - -  e~2A 2 [ - -  ~ k s sin 2 0 - -  ~k s cos 2 0! = e A 2 ~ a k  s. 

There fo re  T / E  = 2ak = v. 

I n  this  case T a n d  E are  c o n s t a n t  a nd  T I E  = v.  I n  genera l  this  
will no t  be t he  case. F o r  ins tance ,  for  the  dispersionless waves  on a 
s t r ing  

2 t~ 
Co Z . 
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T and E will v a r y  like cos 2 0. In this case vce still have  T / E  = v.  

An example  where this is not  t rue  either, is furnished By the wave- 
guide equat ion 

= 4 z "  - -   0=z. 
The  energy then  f luctuates  in such a way  tha t  it is p ropagated  
at the  rate  v only on the average. 

A more  complicated affair is the classical theory  of surface waves 
on a non-viscous liquid under  influence of gravi ty .  The diff iculty 
in applying the considerations of § 4 to these waves is tha t ,  a l though 
the  propagat ion  of these waves is in the horizontal  direction only, 
"ve r t i ca l "  der ivat ives  of the veloci ty  potent ia l  do occur in the 
usual, most  simple, t r ea tment .  We will therefore have to show at 
first how this vert ical  coordinate  can be eliminated. 

We consider an infinitely ex tended  canal of uniform rectangular  
cross section, dep th  h. The axis of the canal is chosen as the x-di- 
rection,  the ver t ical  as the y-direction. The origin is located in the 
surface of the  undis turbed  liquid. 

The  mot ion is then  described in terms of the veloci ty  potent ia l  
~0(x, y, t), satisfying the equat ion 

9x, + ~oy~, = O. (26) 

The velocities are u = 9~, v = 9v. At the b o t t o m  we have  the 
bounda ry  condit ion 

(%)-h = 0, (27) 

since the flow must  be horizontal  there.  The condit ion at the 
surface can be found from the Bernouilli  equat ion 

+ + egy + = o. (28) ~+~ 2 

When we apply  this to the surface and discard the non-linear terms, 

we g e t  
+ ( is = o, (29) 

where ~ is the elevation of the surface above the plane y = 0. 
Now in a linear approximat ion  we can put  ~ = v, and  take the boun- 
da ry  condit ion at  the undis turbed  surface instead of at the real sur- 
face. (Details are given in any  t ex tbook  on hydrodynamics ,  e.g, in 
L a m b a), or C o u 1 s o n ~)): In  this way  the  bounda ry  condit ion 

finally reduces to 

g(%)o + (~)o = O. (29a) 
Ins tead of discussing the usual solution of (26) with the bounda ry  

conditions (28) and (29a), we t r y  to describe the wave mot ion  in 
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terms of a variable z(x,  t), for which we take the surface value of 
the  potential ,  %, and to find the characteristic equation. 

We star t  by  expanding 9 in a power series in y: 

= 90 q- (q)y)o Y if- ½(gyy)oY 2 q- . . . . .  (30) 

(It can be verified tha t  this series is convergent). The coefficients 
of the even terms can be expressed in z at once by  means of (26), 
which yields 

(%,)0 = - -  zx~, = - -  z" ,  

(~my)o = z(4;, ,etc. 

In the same way the coefficients of the odd terms become: 

( 9 , ) 0 , -  ( 9 , ) ;  . . . .  e t c .  

The only problem is now to express (~@o in terms of z. This can 
be done step b y  step when we subst i tute  (30) into the condition (27) 
and then  differentiate wi th  respect to x. When we want  (gy)0 e.g. 
up till terms of the sixth order, we write (27) in the form 

. 1 1 z(6)hS, (31 )  o = ( ~ , ) o + ~  . h - - ½  ( ~ , ) ;  h 2 - - ~ 4 ~ h a +  ~ (~,)~04~ h ~ +  , ~  . . . .  

We then differentiate the expression for (~0y) 0 given b y  (31) two and 
four t imes wi th  respect to x, obtaining 

,, 1 h 2 I z(6~ h a (31 a) (9,)0 = - - z ( %  + ~ (%)~o ~ + ~ . . . . .  

and 

Now we subst i tute  (31b) in (313), which yields 

~t 1 Z(6) ha (31 c) ( % )  0 = - -  z(4/h - -  ~ . . . . .  

and finally we use (31 b) and (3 lc) to obtain from (31) 

(~,)o = - -  z"h  - -  i z(41 ha __  ~ z(61 h 5. (32) 

Once the existence oi an expansion of this type  is established, we 
can find the general term in the following way:  For  a harmonic 
wave at  a certain instant  we will have 

z = exp j kx ,  (q)y)o = a exp ikz ,  

z(2"l = ( - -  1)'k2~z, (9y)~o2") = ( - -  1)'k2"(~,.)0 

Subst i tut ing into (31) we obtain therefore 

0 ---- a cosh k h  ~ k sinh kh. 
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By comparing the coefficients of h we obtain the expression (32) 
in the form 

(gy)0 = Ec~" (--1)~z 2~, (32a) 

where the coefficients c, are defined by  

cn k 2n = k tgh kh. (33) 

The wave equation for z is supplied by  (29a), vhich now becomes 
on account of (32a) 

Observing (33) we obtain the characteristic equation in the 
well-known form 

a~ 2 = gk tgh kh. 

The energy of the wave system in a section x 1 - - x  2 of the canal 
is, per unit width, 

X 2 X 2 0 

E, = ½eg f ~ 2dx + {e f f (92. + q0~)dxdy. 
Xj X l - - h  

Integrating the second term by  parts by  means of G r e e n s' 
t h e o r e m and observing (27) and (29) we get 

x~ x~ 0 

E = ½ g ~  -~ ]42dx-~-½0  z . ( ~ , ) 0 d x +  q0~dx~li 

X 1 X 1 - - h  

When z vanishes outside of the region considered the last term wilI 
vanish. Substituting (32a) in the second term and integrating b y  
parts we obtain 

° t - -  "dx [4 2 + g Y, c.  {z(')}2]. 

The surface waves therefore really do belong to the class of wave 
motions discussed in this paper. 

Received 15th J~lne, 1950. 
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