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Summary

This paper is concerned with the question when and why the rate of
energy propagation in a system of waves equals the group velocity. It
is shown by the method of stationary phase that this equality holds, for
travelling waves without dissipation, whenever this method applies. The
reason why this result can be obtained by this kinematical method is
investigated by a discussion of simple harmonic waves. It is shown that
the choice of an expression for the energy density to be used in connection
with a given wave equation is restricted by the conservation of energy in
such a way that the average rate of work done divided by the average energy
density always equals the group velocity. Finally some examples of wave
motion are discussed to illustrate the derived formulae.

§ 1. Introduction. — It is generally known that the energy of
a system of progressive linear conservative waves is, as a rule,
propagated with the group velocity of these waves. A consider-
ation of a wave packet, which moves with the group velocity without
appreciable deformation at least for a short time, will be sufficient
evidence that this statement must be fairly exact. The total energy
of the waves is confined to the region occupied by the wave packet
and must therefore move with the same average velocity.

On the other hand the literature on wave motion is singularly
reticent about the deeper reasons for the identity of the energy and
group velocities. We have not been able to find a general proof of
this property of wave packets. It is even not made clear at all what
both velocities can have to do with each other. The group velocity
is a kinematical property of the wave equation alone, quite inde-
pendent of its physical interpretation. The energy velocity, how-
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ever, which is a dynamic quantity, can be determined only when
this interpretation is known.

In this paper we will first prove this kinematical property of
waves with the aid of the method of stationary phase. We will
find that everywhere in the wave system the energy is propagated
with the group velocity corresponding to the local wave number,
This result is valid to the same approximation as the application
of the stationary phase method. In the second place we will show
that conservation of energy restricts the possible expressions
for the energy density admitted by a given wave equation in such
a way, that the energy velocity in a harmonic wave always equals
the group velocity. Finally, we will apply our methods to some
examples of wave motion.

§ 2. Linear conservative waves and the method of stationary phase.
We consider a homogeneous one-dimensional medium which
admits a state of stable equilibrium. The waves with which we
are concerned consist of travelling disturbances of this equilibrium.
The deviation from equilibrium is measured by some quantity
2(x, £).- When the principle of superposition is valid, we speak of
linear waves. In this case it is sufficient to discuss only harmonic
waves: : '

‘ z = exp j{kx — of). (1)
More extended information about the wave motion is then obtained
by Fourier methods. In order to apply these we need the relation
between frequency and wave number of a harmonic wave:

Wk, @) = 0. (2)
This characteristic equation is sufficient to determine the wave
motion. When W is a polynomial in %2 and e it can be replaced by
a differential equation, the wave egquation, which can be written as

W(l‘ﬁ,,.ii%:o. @)

Of course, when (3) is given, (2) can be obtained by substituting
(1) into (3).
The characteristic equation (2) can be solved with respect to w:
w = H(k). (4)
H(k) is known as the Hamilton function. c(k) = H(k)/k is the phase
velocity.
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We will restrict ourselves now to those cases in which o is real
whenever % is real. The corresponding harmonic waves then have
constant amplitudes and there is no dissipation of energy. This
kind of waves is called conservative. Furthermore we will at first
consider equations having only one Hamilton function. As the
differential equations describing reversible phenomena in a ho-
mogeneous medium are invariant with respect to inversion of both
tand x, the characteristic equation can then be written in the form

S a, B

2:_14:0 o 5
RIS S 2T )

m=1

where a,, b, are real constants and the 4, are not all zero. The right
hand side must be a positive function of 42 when % is real.
By the principle of superposition a solution of the wave problem

is now

z(x, ) = fmF(k) exp | {(kx — H(R)t} dk

[P/ exp i fhe + H®BA d. (©)

Equation (6) describes two systems of waves going out from the
disturbed region to the right and to the left. We can treat these
systems separately. We write the integrals in the form

olx, 8) — [ F(R) exp jihx — H(k)t) dk

:fooG(k) exp 10 (, x, 1) d&, (7)

where F(k) = G(k) exp jp(R), (G, ¢, both real for real %) and
6 = (k) + kx — H(E)t. The function G(k) = | F(k) | represents the
spectrum of the wave system, @(k) = arg F(k) the eikonal. Integrals
of the type (7) can be evaluated approximately under certain
conditions by the method of stationary phase (these conditions
for G and 6 and the conditions they involve for ¢ and F will not be
discussed here). We will treat this method only very briefly and
refer for a more thorough discussion to Eckart?).

When the exponential factor in (7) fluctuates very rapidly,
the principal contributions to the integral arise from the regions
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where the phase 0 is stationary. These are given by

% R Rt =0
= x—xll) —o(B = O, ®
where v(k) = dH/dk and x, = — dp/ok. The first quantity is

known as the group velocity. The solution of (8) with respect to %
is denoted by x» («, f). We now replace G(k) by G(x) in the integral
(7) and expand the phase 0 in powers of (¢ — #x). The result is

z@»ﬁ:ﬂ@j;pd}@y+%@glwﬂﬂyjﬂ.

—00

When we neglect higher terms, the integration can be carried
out at once and yields

i 27[?.

2d) = G() i
)

In accordance with Eck art we write
S(x, t) = 0 [x(x, ?); %, ¢],

exp 10(x; %, t).

*0(k; x,t))
R(x, 1) = — .
9 < ok /,
The approximate solution is then
2
205, 8) = G(x) | 22 exp 4S. (9)
IR

From (8) it is seen that a certain constant value of x, the wave num-
ber of stationary phase, is propagated with a constant velocity
v(x%). In a given point we find at each time from (8) a value for .
This » is approximately the wave number of the local disturbance
at that time and is therefore called the local wave number. The truth
of this statement is seen when we differentiate

S(x, £) = glw(x, 8)] + % - x(x, §) — ¢ - Hl(x, )]

with respect to x and ¢ respectively. Using (8) we obtain:

oS )
_ = t — i — .
o (%, 1), 7 Hfix(x, 1))
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In the neighbourhood of a point with the local wave number
= therefore our solution behaves as

2(x, t) = G(x) - ? eXp 7 [% {x — c(2)t} —g] .

The amplitude of the local wave is determined by G{x), the density
of the initial wave spectrum at %, and by the factor R = — 8%0/0k>.
Tt should be noted that R™* is a measure for the width of the spec-
tral region in which the phase is approximately constant. From the
definition of R we have

o0 @ 0
| o), \ek/, ok/,
Differentiating (8) with respect to % and using (10) we derive the

alternative form

R:(g)t. (10a)

R is called the resolution of the waves. From (10) it is seen that it
is a function of » and ¢ only. From (104) we see that when R is large
(the condition turns out to be: Rx?> 1) the difference of local wave
number between succesive wave crests is small. The method of
stationary phase is a good approximation then,

§ 3. Energy propagation. The energy density in a linear harmonic
wave, averaged over a period or a wave length, is proportional to
the square of the amplitude. The factor of proportionality will in
general depend on the wave number. When a system of waves is
so far resolved that the motion in a region containing a few wave
crests differs little from a harmonic wave, this still will be nearly
exact. As under these circumstances the method of stationary phase
will be valid, we see from (9) that the average density of energy in
this region will be approximately

A(x) A(z)
R ox, v

I
ox + o

= E(x, #). (11)

For our purpose it is not necessary to specify the function A(x),
which contains G?*(x) as a factor.
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By differentiating (11) we obtain
aE_aE a%+aﬁ_aE” &« Eov
ot ox ot | ot ox o8 Roxu

2 (wE) oF L F ov oF ox Eav ox
-—(VE)) = v — — == . .
ox ox ox Ox T Ox Ox

Now from (8) we have
<6x> &x/ot
Y = —_ —_ —— .
o/, onfox’
therefore, using (10a), we obtain, by adding (12) and (12a)

6E . &  _
— 4+~ (vE) = 0. 13
ot 6x( ) (13)

An equation of this type has been derived in another way by
Rossby? for some special cases. A

Equation (13) has the form of a continuity equation. As we
know that the wave system is conservative (as could have been
guessed beforehand, our argument is after all not purely kinematic),
9E = T must be the average density of energy flow, that is the sum
of the rate of work done at a unit cross section and the convective
flow of wave energy through this cross section. The quotient
T|E = v is the velocity of energy propagation, referred to in the
introduction. _

It is seen from this deduction that the group velocity is ap-
proximately equal to the quotient of the average energy flow and
the average energy density, not necessarily to that of flow and den-
sity themselves, or the average of this quotient. This is exactly what
could have been expected from considering a wave packet. The
energy of this packet is proportional to the average energy density
E, whereas we only know that the velocity of propagation of this
energy on the average must be equal to the velocity of the centre
of the wave packet, i.e. to v(x). The fluctuations of the energy to-
wards or from the crests and troughs of the waves cannot be in-
vestigated unless the physical nature of the wave amplitude z,
which would enable us to express E in z, is known.

Next we admit the existence of more than one Hamilton function,
which means that the wave equation is of higher order than the



ON THE PROPAGATION OF ENERGY IN WAVES 335

second in 9/of *). To each % then correspond several frequencies.
Properties of the wave field, e.g. the energy density, as a rule cannot
be expressed in terms of % alone. Our general solution (6) is now re-
placed by a sum of similar terms:

2(%,8) = 2 fm[Fn(k) exp j {kx— I, (R)}+F (k) exp 7 {kx-+H (k)t}]dk.

We assume that each term of this expression can be treated by
the method of stationary phase. For a certain x, ¢ we will find se-
veral values of x, each of them representing an approximately
harmonic wave in the region around x. The contributions of these
waves to z will simply add, the energy densities E of course will
not. But, when dx/9x is large enough, the cross terms in £ will
cancel on the average and E will be approximately additive.
Treating the average energy density of each partial wave as above,
we obtain a number of equations of the type (13):

8E, 8 - j
rr ‘a‘;(%En)”—‘o- {13a)

Adding them, we find that the energy velocity now will be
equal to the average group velocity, weighted with respect to
E,. Therefore it depends on the distribution of energy among
the various branches F,, of the wave spectrum.

Finally we remark that the results of this section are valid for
any quantity, depending only on the local wave number and
proportional to the square of the local amplitude, provided it is
conserved during the motion. As an example we mention the charge
density in wave mechanics.

§ 4. Energy propagation in harmonic waves. We will now investi-
gate to what extend the conservation of energy restricts the pos-
sible expressions of £ and T in terms of z and its derivatives for
linear conservative waves when the wave equation or characteristic
equation is given. We shall see that this restriction is strong enough
to ensure that T/E = v for a harmonic wave, and so obtain a more
dynamical interpretation of the result of the preceding section.

*) The following treatment also applies to the case that different wave groups belonging
to the same Hamiltonian meet each other. This can occur when (5) bas more than one
solution or when the two wave systems in (6) overlap.
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We start with the characteristic equation (5). The corrésponding
wave equation, possibly of infinite order, is then

Lz) =2z + 2 (— 1)'a, 22 4 Z (—1)" b 22" = 0.  (14)
#=0 m=1

Partial differentiation with respect to ¢ and # is denoted by z and
2’ respectively. The superscript (2#) denotes the number of dashes,
We might assume that the right hand side of (5) cannot be simplified.
If this were possible, e.g. by dividing through a factor (1 4 ck? 4
dk* 1 ....), this clearly would mean that (14) could have been
obtained by applying the differential operator
& ot
l—c¢ P +d P IRRE

to an equation of lower order. One then can divide (5) by this factor
and consider this last equation as the wave equation. Although
in practice this simplification will be made whenever possible,
this is not necessary for the following reasoning.

E and T are quadratic expressions in z and its derivatives. For
the reasons of symmetry mentioned above, E will be even, T odd
with respect both to the dots and the dashes. E must be positive,
except when z = 0, as this state is supposed to be stable. In this
state T can be taken zero too, which means that E and T refer to
the wave energy proper.

We will now suppose that (14) admits solutions which vanish
sufficiently strongly outside of an arbitrarily extended region
for some finite time, e.g. some superposition of wave packets.
The total energy contained in this region then must be constant
on account of the conservative character of the waves. Hence the
condition.

d
5 Edx =0 (15)
must be a consequence of (14) whenever the wave system is con-
fined to a certain region. This boundary condition enables us
to discard the integrated terms after an integration by parts
of (15). In this way we can shift over the dashes from one factor
to the other at liberty in each term of the homogeneous quadratic
integrand E.
We now consider a certain energy density E(z). If it is possible,
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after performing the differentiation under the integral, to recast
(15) by integration by parts into the form

d oF (2)
a/E(z) dx =

4

(where F(z) will be a linear expression in z and its derivatives, even
in the dashes and the dots), the energy will be constant for the
solution of L(z) = 0.

We now distinguish three cases:

a. F(z) = const. z. It will turn out that this case already yields
all essential information. We have to look for homogeneous qua-
dratic expressions FE(z) which permit the transformation

d J /aE (2) f
— = = t. .
% j E()dx = | =7 dv = const. | iL(s)dx

It is easily verified that a special solution of this problem is fur-
nished by

L(z)dx, - (16)

B . .
Eod) =5 [+ T a2 + £ b, (") (17)
n=0 m=1
The general solution is then
E@) = Eoe) + 2
2) = -
o) T B

where J is any homogeneous quadratic expression in z, odd in
the dahes, even in the dots. Its contribution to the total energy
vanishes.

We now must derive the corresponding density of energy flow
T(z). On account of the conservation of energy T has to satisfy
the equation

oE(z) oT(z)
ot ox

—0, (18)

when z is a solution of the wave equation. We need that solution
of (18) which vanishes when z = 0. This solution is

o
T=B[X oznTn—[—meUm]»«—[ , (19)
n=0 m=1 ot
where
T,=— [z(”) 20N et D g2 (—1)”“1 221
U,, = — [ om0 __5nth) gom2) ()t gl 5,

Appl. sci. Res. A 2 22
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To verify this we compute

oE ) : . 2]
O BN a s LS g _
Y 22+ Za,z + 26,2 1+ s
= B[Za, (z™ 3" — (—1)" 2% 2) + b, (3™ Z0m
- &aJ
_ __1 m {2m)
iz oL

using the wave equation to eliminate z. But

38Tn [ (1)) g 5,

%

66Um — [F ()t Fem g,
X

Therefore (19) satisfies (18) when z is a solution of the wave equa-
tion.

We proceed by calculating the energy velocity T/E for a har-
monic wave from (16) and (19). The most convenient way to do this
is to use the exponential form (1) for this wave and to apply the
formula

Re(a) Re(b) = LRe ab*, (20)

valid when a and & have the same period. We find in this way,
observing that the averages of 8] /éx and 8] /of over a wavelength or
period must vanish,

E—Bl:‘”2 % L g 22%k]—
ol TR TR T
B
= —Xa, k",
2

by using the characteristic equation to eliminate w? Furthermore,
by repeated application of (20),

2n—1
T,=%nok
U, =— imo® "1,

therefore: -

B
T = o % (a, — b, 0?)n B,
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In this way we obtain
0% (a,—b,0)nk 1 I (a,—b,n) nk>!

— w — [ 21
S a, B o(l + 3 bk @)

n

STRST

by using (5).
On the other hand we find on differentiating (5) with respect to %

do  T2na, B Saf-S2nb, K

20— = — =
YAk T 1z B (1 25, i)
—b 2 k2n—1
_ X 2n(a, 207 22)
1 4 Xb, k%"
Comparing this with (21) we see that
T do
— = = y(k 23
=== —olb), 3)

which is the required result.

b. . F(z) is a linear expression in z and its even derivatives with
respect to x (it must be even because L and E are so0). In this case
we can proceed with the process of partial integration until we
obtain

ditj”de =/-3% F(2) - L(z)dx :/Z - FL(z)dx. (24)

FL(z) signifies the result of applying the operator F to L(z). Since
the coefficients in L and F are constants on account of the homo-
geneous character of the medium, L and F are commutable.

The solutions of (24) can be constructed from the coefficients of
the equation LF(s) = 0 in exactly the same way as E(z) was
obtained from L(z) = 0. The erergy velocity in a harmonic wave
therefore now is found to be the group velecity associated with the
former equation. But both equations have the same group velccity,
since the effect of the differential operator I on the characteristic
equation cancels in (5).

¢. F(z) could contain also even derivatives with respect to the
time. We will not enter upon cetails but orly mention that, when
L is restricted to the second order with respect to ¢, no suitable
expressions for the erergy cersity are fcund in this wey.

Finally we consider briefly the case of a multiple Hamilton
function. We restrict ourselves to two branches and suppose that
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both of them correspond to conservative waves. The characteristic
equation then factorises into two equations of the type (5)

Wk, w) =W, (k, o)W, (k, ®) = 0.
The wave equation is of the fourth order in ¢ and can be written
L(z) = L,L,(2) = 0. (25)
- A possible energy density now is
E = E\(Lp) + EyLy2),

where E(z), E,(z) are arbitrarily chosen energy densities corres-
ponding to the wave equations L,(z) = 0, L,(z) = 0. In fact, using
the foregoing results, we obtain for a wave system confined to a
certain region.

d . .
g T B =/ {Lo(z) - LiLo(a) +Ly(2) - LoLa(e)y dw= [ (Ly+- L) L{z)dx,
which vanishes on account of (24).
The corresponding flow density then is
T =T,(Ly) + T,(L2)
and the energy velocity for a harmonic wave will be

z_ T,+ T, oE + vk,
E E,+E, E +E,

y

which is again the weighted average of the group velocities.

The agreement of the results of this section and the preceding one
is therefore complete, in accordance with the fact that the statio-
nary phase method is a good approximation when the local wave
spectrum is narrow. The wave system in the considered region then
closely resembles a progressive harmonic wave.

§ 5. Examples. A very simple application of the formulae of
§ 4 can be made to flexural waves of a thin elastic rod. (The methods
of the foregoing section in fact were found by a straight-forward
generalisation of the following considerations).

Denoting the lateral displacement by z we will have for the ben-

ding moment
M = Bz",
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where B is the rigidity. Since for a stationary load ¢
Ml/ - q’
the differential equation for small displacements will be

— 2 = 222,
¢

Z =

The characteristic equation now will be
0= PR

which vields for the phase and group velocities respectively

AN TY
“=7

dw
v =2 _ o
T

The energy density is the sum of the kinetic energy and the
elastic deformation energy per unit length: :

E — Joi + 3B = oli? + #2.

From (19) we obtain therefore, as a, = 42, all other a,, b, being zero

n? n

T =—02[22" — 22" = M'z — Mz'.

This is indeed the correct result for the rate of work done at a cross
section (M’ is the resultant force at this cross section, zd¢ the dis-
placement; M the bending moment, — 2’d¢ the increment of the
deflection angle in the direction of positive M ; cf. any treatlse on
the theory of elasticity).

If we now take for z a travelling wave

= A sin (kx — k%) = A sin 6,
we get
E — 10A%[2%F* cos? 0 + A%k sin? 0] = LoAd%A %K,
T = — oXA%[— 2 k° sin® § — AR° cos? ) = o AA%k°.

Therefore T/E = 2Ak = v.

In this case T and E are constant and T/E = v. In general this
will not be the case. For instance, for the dispersionless waves on a
string

' zo=cig".
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T and E will vary like cos?#6. In this case we still have T/E = v.

An example where this is not true either, is furnished by the wave-

guide equation
: z = %" — ok

The energy then fluctuates in such a way that it is propagated

at the rate v only on the average.

A more complicated affair is the classical theory of surface waves
on a non-viscous liquid under influence of gravity. The difficulty
in applying the considerations of § 4 to these waves is that, although
the propagation of these waves is in the horizontal direction only,
“vertical” derivatives of the velocity potential do occur in the
usual, most simple, treatment. We will therefore have to show at
first how this vertical coordinate can be eliminated.

We consider an infinitely extended canal of uniform rectangular
cross section, depth A. The axis of the canal is chosen as the x-di-
rection, the vertical as the y-direction. The origin is located in the
surface of the undisturbed liquid.

The motion is then described in terms of the velocity potential
o(x,y,t), satisfying the equation

P+ Py = 0. (26)
The velocities are # = ¢,, v = ¢,. At the bottom we have the
boundary condition
(@)1= 0, (27)
since the flow must be horizontal there. The condition at the
surface can be found from the Bernouilli equation
p + dolg? + ¢2) + ogy + 09 = 0. (28)
When we apply this to the surface and discard the non-linear terms,
we get . ,
g+ (#), =0, - (29
where 7 is the elevation of the surface above the plane y = 0.
~ Now in a linear approximation we can put = v, and take the boun-
dary condition at the undisturbed surface instead of at the real sur-
face. (Details are given in any textbook on hydrodynamics, e.g. in
Lamb?), or Coulson?). In this way the boundary condition
finally reduces to
8@ + (#)o = 0. (294)

Instead of discussing the usual solution of (26) with the boundary

conditions (28) and (29a), we try to describe the wave motion in
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terms of a variable z(x, #), for which we take the surface value of
the potential, ¢, and to find the characteristic equation.
We start by expanding ¢ in a power series in y:

=00+ @)y + 3Hppy* +. ... (30)
{It can be verified that this series is convergent). The coefficients
of the even terms can be expressed in z at once by means of (26),
which yields

7!

(Pyylo = — 2 = — 27,
(@400 = 2@, etc.
In the same way the coefficients of the odd terms become:
@) — (@,)q - - - . etc.
The only problem is now to express (¢,), in terms of 2. This can
be done step by step when we substitute (30) into the condition (27)

and then differentiate with respect to . When we want (g,), e.g.
up till terms of the sixth order, we write (27) in the form

0=(p,)o+ 2" h—1% ()0 *— £ 291+ 5y (@, ) B+ 1552005, ... (31)

We then differentiate the expression for (¢,), given by (31) two and
four times with respect to x, obtaining

(p,)s = — 2% + L) r> 4- L2Om ... (31a)
and
(@) =—2%h ... (318)
Now we substitute (318) in (31a), which yields
(@)= —29h— 290 .., (31¢)
and finally we use (31%) and (31¢) to obtain from (31)
(@)o = —2"h— 321 — 5201, (32)

Once the existence of an expansion of this type is established, we
can find the general term in the following way: For a harmonic
wave at a certain instant we will have

z = exp jkx, (@,), = a exp jkz,
2 = (— 1R, ()R = (— 1)F(p,)e
Substituting into (31) we obtain therefore
0 = a cosh kh — k sinh %A.
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By comparing the coefficients of 4 we obtain the expression (32)
in the form

(@)o = T, » (— 1), (32a)
where the coefficients ¢, are defined by
¢, kB = ktgh kh. (33)

The wave equation for z is supplied by (294), vhich now becomes
on account of (324)

7 4+ g, (— 1)z =0,

Observing (33) we obtain the characteristic equation in the
well-known form
w? = gk tgh kh.

The energy of the wave system in a section x, — #, of the canal

is, per unit width,
0

E = Yog [vPdx + Yo [ (2 + ¢P)dxdy.

%, %, —h
Integrating the second term by parts by means of Greens’
theorem and observing (27) and (29) we get

X,
”

0 ,
E=13% /zzdx-%%@fZ'(%)oderVdexl--
—h

£

2

1#1

o

When z vanishes outside of the region considered the last term will
vanish. Substituting (32a) in the second term and integrating by
parts we obtain
=12 /dx (5% + g X, £
g

The surface waves therefore really do belong to the class of wave
motions discussed in this paper.

Received 15th June, 1950.
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