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H E A T  E F F E C T S  IN  C A P I L L A R Y  F L O W  I 

by H. C. BRINKMAN *) 

Koninklij ke/Shell- Laboratorium, Amsterdam 

Summary 
The  t e m p e r a t u r e  d i s t r i b u t i o n  in a cap i l l a ry  due  to  t h e  e n e r g y  d i ss ipa t io l I  

of v iscous  f low is ca l cu l a t ed  whi le  t he  h e a t  c o n d u c t i v i t y  of t h e  f luid a n d  
t h e  t r a n s p o r t  of h e a t  b y  c o n v e c t i o n  are  t a k e n  i n to  accoun t .  

It is well known 1) 2) that the viscosity of pure liquids, as measured 
by flow experiments in a capillary, may show a dependence on the 
rates of shear occurring in the liquid. A simple explanation of this 
effect proposed e.g. by H e r s e y 1) is that  high rates of shear cause 
a high energy dissipation and therefore a temperature rise in the 
capillary. 

In order to judge whether this explanation is justified it is useful 
to have a detailed knowledge of the temperature distribution in a 
capillary. The local variations in viscosity due to this temperature 
rise may then be estimated and their influerfce on the flow pattern 
may be ascertained. Heat effects in capillary flow have been treated 
by several authors. However, H e r s e y !) does not take into 
account the effect of heat transport by convection. P h i l i  p- 
p o f f 2), who has given a more extensive treatment of the problem, 
bases his calculations on a differential equation which appears to be 
incorrect. Therefore it seemed worthwhile to give a new treatment 
of the problem. 

According to Poiseuille's law the velocity of flow v in a capillary 
is given by 

R 2 - -  r 2 dp 
- - -  ( 1 )  

@ dz 

where R is the radius of the capillary, 
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r and z are cylindrical coordinates, the z-axis coinciding with the 
axis of the capillary, 

is the viscosity, 
p is the pressure, which is assumed to vary linearly with z. 
The heat of friction generated for such a type of flow per unit of 

volume and time is 

Q = \ az / (2t 

This equation is easily derived by calculating the work done on an 
element of volume by the normal and shearing stresses. For a general 
treatment cf. L a m b, Hydrodynamics, section 329. 

Now for the stationary state the temperature distribution in the 
capillary is found by considering the heat balance for an element of 
volume" 

- - -  "~" r ~rr \ ~r ,, + Oz 2 I + vc ~z - 47 \ dz  / (3) 

where i is the heat conductivity and c is the specific heat per unit of 
volume. 
The first term of (3) is related to the heat transport by conduction, 
the second term to that  by convection. 

A complete treatment of (3) would involve the dependence of the 
viscosity ~] on the temperature. However, only small temperature 
variations will be considered. Therefore the dependence of ~ on T 
will only have a small effect on the temperature distribution and 
may be neglected in a first approximation. It might be introduced as 
a correction after the solution for constant ~ has been obtained. A 
further simplification is introduced by neglecting the heat conduc- 
tion in the axial direction ( i~2T/Oz 2) which is very small compared to 
the convection. With these simplifications a solution of (3) is given 
for two cases" 

a. the walls of the capillary are kept at constant temperature" 
T = 0 f o r r  = R. 

b. the walls of the capillary have zero heat conductivity: aT~Dr = 

---- 0 f o r r  = R. 
In both cases it is assumed that  the fluid is introduced into the 
capillary at zero temperature" T --- 0 for z = 0. 

The solution of (3) may be expressed in the dimensionless quan- 
tities 
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e -- r/R, 
42~z 

cR ~ (@/&) '  

16~2 
T - -  T .  R 4 (dp/dz) 2 

"It may  be wri t ten in the form 
for case a: 

= .E 9, (e) e ~  -k } (1 ---e4). 
i 

f o r  CASe b" 

(4) 

e 4 
= z 9; (e) e"; + e 2 - - - -  + 4~. (s) 

i 2 

The last terms in (4) and (5) are a solution of (3) satisfying the 
boundary  condition at r = R;  the series is a solution of the homo- 
geneous equat ion to be chosen in such a way  that  (4) and (5) satisfy 
the boundary  condition for z --  0 as well. The x i are pure numbers  to 
be determined from the boundary  condition at r = R. The functions 
~i (e) are solutions of the following differential equation, found b y  
subst i tu t ion of (4) or (5) in (3): 

l d (  dq~,~ 
e de e d e / - - x ~ ( l - - e  2) 9~,~- 0. 

This is a cylindrical analogon of Weber ' s  equat ion (of. Whi t t ake r  
and Watson,  Modern Analysis, page 347). I t  may  be t ransformed 
into an equat ion of the confluent hypergeometr ic  type.  I ts  solutions 
form a complete  orthogonal set with real eigenvalues. Taking into 
account  their regulari ty at e ---- 0, t hey  m a y  be found b y  expanding 
~o in a power series 

o o  

~i (e) = E hi, k o2~. (6) 
~=0 

Subst i tu t ion in the differential equat ion yields the recursion formula 
for the coefficients 

xi 
b,,~ = ~ (b,,k_l - -  b, ,~_9.  (7) 

B y  means of (7) all b~, k may  be found as functions of x i and hi,0: 

xi 
bi,1 = ~-bi,0, 
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bi2== xi xi b~0, 
' 6 4  ' 

etc. 
The  bi, 0 will be de te rmined  f rom the b o u n d a r y  condit ion at  g - -  0. 

The  values  of xe are found b y  in t roduct ion  of the b o u n d a r y  condit ion 

for ~ =  1. I t  amoun t s  to 
o o  

for case a: Z bi, ~ = O, (Sa) 
/~=0 

c o  

for case b: Z kbi,~= O. (Sb) 
k=0 0.10 
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Fig .  1. T e m p e r a t u r e  d i s t r i b u t i o n  in  a c a p i l l a r y .  W a l l s  a t  ze ro  t e m p e r a t u r e .  

The  lower eigenvalues x~ were found b y  subs t i tu t ion  of 7 in (8a) 
and  (Sb). The values of x i were then  de te rmined  b y  tr ial  and error. 
T h e y  are equal  to 

for case a: x~ = - -  7.314; - -44.61 ; - -113 .92 ;  - -213 .9 ;  . 

for case b: x~ ---- 0; - -25 .68 ;  - -83 .86 ;  - -174 .55 ;  . 

The  Values of hi, 0 remain  to be  de te rmined  f rom the condit ion T ---- 0 
for ~ ---- 0. 

As the  funct ions % (0) form a comple te  o r thogona l  set, it follows 
f rom (4) and  (5), subs t i tu t ing  ~ -= 0, 

1 1 

for case a : f ~ (~) ~d o = - - - f  {-(t - -  ~4) ~0, (e) ~d o, 
o o 
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1 1 

for case b' re? 2 ( 0 ) ~ d 0 =  - - f  (~2 _ . ~ ) i q  (O)od ~o. 
0 0 

From these equations Oi, o can be determined by integration. The 
b~, k than follow from (7). 

In fig. 1 and 2, T is given as a function of o for various values of ~. 
From these graphs the temperature distribution in a capillary can be 
determined in any special case. As was to be expected, the tempera- 
ture is highest near the walls of the capillary where the rate of shear 
is highest. This maximum is reduced by the heat conductivity of the 
liquid. 
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T e m p e r a t u r e  d i s t r i b u t i o n  in cap i ! l a ry .  I n s u l a t i n g  wal ls .  Fig .  2. 

The author is indebted to Dr. H. A. L a u w e r i e r  for his 
assistance in the discussion of the eigenvalue problem. 
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