
Appl. sci. Res. Section A, Vol. 8 

A P P R O X I M A T E  S U B S O N I C  GAS F L O W S  U N D E R  
A S S I G N E D  B O U N D A R Y  C O N D I T I O N S  

by G. POWER and P. SMITH 

Nottingham University, England 

Summary 

The solution to compressible flow problems under fully assigned boundary 
conditions is discussed. It is shown that Schwarz's results on minimal 
surfaces can be immediately applied for two-dimensional flow, and several 
special cases and examples are given. Extensions of these results provide 
certain particular types of three-dimensional flow. 

§ 1. Introduct ion.  C h a p l y g i n  1) first suggested the use of a 
tangent to the adiabatic curve, pv~ = constant, where p and 
p(=  v -1) are respectively the pressure and density, as an approxi- 
mate representation of the equation of state for the subsonic 
flow of a compressible fluid. Many flow problems have been solved 
by employing the hodograph equations, which, with this approxi- 
mate equation of state, reduce to the Cauchy-Riemann differential 
equations. Similar incompressible flows can then be used as a 
basis for solution. Unfortunately, a characteristic of the hodograph 
method, even in the simplified case, is that  i t  often proves difficult 
to satisfy given boundary conditions; thus other methods are 
sought for problems involving boundary values. 

Now it is well-known that  the equation of continuity for two- 
dimensional irrotational motion, using a straight line approximation 
to the equation of state, is related to the characteristic equation 
of a minimal surface in three-dimensional space (or a minimal region 
in four-dimensional space for a three-dimensional flow). This is 
discussed, for example, by B a t e m a n  2) and B r a u n 3 ) .  Ger- 
m a i n  ~) has discussed E n n e p e r ' s  representation of a minimal 
surface and its connection with the method given by T s i e n  a). 

In this paper, the solution to flow problems under fully assigned 
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boundary conditions is discussed. That is to say, boundaries are 
involved upon which, in two-dimensional flow, both components of 
fluid speed are given. I t  is shown that  S c h w a r z ' s  results on 
minimal surfaces can be immediately applied and several special 
cases and examples are included. Extensions of these results provide 
certain particular types of three-dimensional flow. 

§ 2. Relation between gas /lows and minimal sur/aces. Let the 
approximate equation of state be written in the form 

# = ,~  _ ~2/p, (1) 

and fl being constants, and let c 2 = co 2 + q2, where q is the fluid 
speed, c the sonic speed with value co at the stagnation point, 
given by co 2 = f12/po2. B y  B e r n o u l l i ' s  theorem 

po 2 q2 
= ~  + 1 ,  p2 co 2 

and the equation of continuity for the velocity potential $ is given by 

(co 2 + ¢y2)¢~.  _ 2¢~¢y¢xy + (co 2 + ¢~2 )¢w = o. (2) 

This differential equation is elliptic if Co 2 > 0; thus the flow 
will be wholly subsonic. Setting ¢ ~ coz, equation (2) becomes 

(1 + z v 2 ) z . ~  - 2z~zvz~v + (1 + x~2)zvv = O, (3) 

and this is the characteristic equation of a minimal surface, where 
x, y, z are rectangular coordinates of a point in space. 

I t  is interesting to note that  this is also analogous to the equili- 
brium problem of a thin film of constant tension with equal 
pressures on the two sides of the film. 

§ 3. Min imal  sur/aces under assigned boundary conditions. Suppose 
x, y, zx, zv can be expressed as real functions of a parameter t, then, 
apart from an arbitrary constant, z can be determined as a function 
of t from the relation 

dz = Z x dp¢ -~ Zy dy. 

Geometrically, assigning Zx and Zy is equivalent to assigning the 
direction cosines X ,  Y,  Z of a tangent plane to a surface passing 
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th rough  the curve defined b y  x = x(t), y = y(t), z = z(t) and so 

(X,  Y ,  Z) ~ (Zx, Zy, - -  1)/(zm 2 + Zy 2 @ 1)~. 

The  only  cases in which external  conditions cannot  be given are 
those for which dx 2 @ dy  2 @ dz 2 = 0, bu t  since we are only 
concerned with real values for x, y, z, the  only excluded b o u n d a ry  
is a point.  

S c h w a r z ' s  me thod  ( F o r s y t h 6 ) )  can be applied and  the  
coordinates of any  point  (x, y, z) on the surface are found to be 

2x = x(~) + x(~) - -  i f  ( Y d z  - -  Zdy ) ,  

2y  = y(¢) + y(~) - -  i f  (Zdx  - -  X d z ) ,  (4) 

2z = z(¢) + z(~) - -  i f  ( X d y  - -  Y d x ) ,  

where ~ and ~ replace t on the boundary ,  and ~ = $ - / i  v, 
= ~ --  i v. Rewri t ing (4) as 

x = e(¢) + ~(~), y = / ( ¢ )  + r e ) ,  z = g(~) + ~(~), 

it  is easy to show tha t  the curves given b y  g + ~ = const, and 
g - - ~  = const, are orthogonal.  Fur ther ,  b y  considering the uni t  
normal  at  any  point  on the surface, it  follows tha t  

Zx = ( t '~'  - ? g ' ) / ( e ' t '  - e'f'), (5) 

Zy = (g'~' - ~ '~ ' ) / (~ ' t '  - e T ) ,  (6) 

where e' = de~de, ~' = d~/d~, etc. 

§ 4. Gas / low analogy. From the preceding section we see im- 
media te ly  tha t  the curves g -  ~ = const, are streamlines, and 
thus  for two-dimensional  compressible flow under  fully assigned 
bounda r y  conditions we have  

x = e(¢) + ~(~), y = 1(¢) + r e ) ,  

¢ + i~ = 2c0g(¢), 

where ~o is the s t ream function,  and 

¢ x  ~-  COZz, Cy  = COZy • 

(7) 

(8) 

(9) 
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Certain special cases, which simplify (7), (8) and (9), will now be 
considered. 

(i) B o u n d a r y  g i v e n  b y  ¢ --~ c o n s t a n t .  Here the velocity is 
normal to the boundary, and we define x = x(t), y = y(t) and the 
normal component of fluid speed Cn = Cn(t), or equivalently 
zn = zn(t), since ¢ = coz. Equations (7) and (8) become, 

2x = x(~) + x(~) - -  i f yt(Zn 2 + 1)-~ dt, 

2y = y(¢) -k Y(~) Jr i f xt(zn 2 q- 1)-½ dr, (10) 
f 

2¢ = const. -- i c o f z n ( z n  2 + 1)-}(xt 2 + yt2) ~ dt. 

The equations are further simplified in the case of constant normal 
velocity, (I0) becoming 

2x = x(~) + x(~) - -  iL[y(~) - -  y(~)J, 

2y = y(~) + y(~) + iL[x(~) - -  x(~)J, (11) 

2¢ = const. -- i L k  f ~v/(xt2 + yt 2) dr, 

where ¢~ = k and L = co(k 2 @ c02) -½. 

(ii) B o u n d a r y  g i v e n  b y  ~ = c o n s t a n t .  In this case the 
fluid velocity will be in a direction tangential to the curve 
x = x(t), y = y(t). Let this tangential velocity be Cs = Cs(t)= 
= cozs(t), so that  on the boundary 

Z x -~- ZsXt(Xt 2 -~ yt2) -½, Zy -~ Zsyt(Xt 2 -~ yt2) -½, 

and ¢ and ~ at any point are given by 

2x = x(~) + x(~) - -  i f yt(zs 2 + 1)~ dr, 

2y =- y(g) + y(~) + i f xt(z~2 + 1)~ dr, (12) 

¢ + i~o = coz(~). 

It  is hoped that, in practice, by suitable choice of variables, 
a close approximation to any given boundary may  be achieved. 
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(iii) S t r a i g h t  b o u n d a r y  g i v e n  b y  F -=  c o n s t a n t .  Geo- 
metrically, if a straight line lies in a minimal surface, then this line 
is an axis of symmetry of the surface. If now the x-axis is the 
straight boundary, by  analogy the fluid motion must be symmetrical 
about y = 0. Equations (12) become 

x = ~, 2y ~ i f ~ / ( z s  2 + 1) at, 
(13) 

¢ + iF = coz(¢). 

The function z(~) may be interpreted as the complex potential of 
a certain incompressible flow in the ~-plane, which must be 
symmetrical about the ~-axis. If we let z(~) = W(~), zs(~) = dW/d~,  
then 

X ~ ,  

dW 2 1] d~, 
2 y = i f ~ [ ( ~ ) 2 +  1]d~--"f[/E(--~) -}- 

¢ + iF = coW(Z), 

where W(~) is any function of ¢, real when ~ = O. 

§ 5. Application o/ the method. I t  is evident that  the method is 
particularly suitable for various types of source flows or circulatory 
motions, that  is, when the boundary is respectively an equipotential 
line or a streamline. 

E x a m p l e .  Consider a parabolic cylinder over which the fluid 
velocity is constant and normal to the cylinder. The parabola 
must be an equipotential curve and let it be represented by  
x = btZ, y = 2bt, ¢ = O; hence ¢ and F are given by  

2x = b[( "z + ~2 _ 2iL(~ - -  ~)], 

2y ----- b[2~ -[- 2~ + i L ( ~  2 - -  ~2)~, (14) 

¢ + iF = ibLk{¢V(  1 + ~2) -t- in [~ + V(1 + ~2)]}. 

Further, with the notation of § 2, 

e'(~) = b(~ --  iL),  1'(~) = b(1 -[- iL~), cog'(~) = i L k b V ( 1  @ ~2), 
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and 

e x  ---- i L k  I .(1 + iLC)~¢/(1 + ~2) + (1 -- iL~)~/(1 + C2) ~ ,  (15) 
(~ - -  i L ) ( 1  - -  iL$) --  (~ + i L ) ( 1  + iL$) 

¢~ = - i l k  F (~ + iL)~/(l  + ~2) + (~ _ iL)v'(~ + ~ ) ~ .  (16) 
(~ - -  i L ) ( 1  - -  iL~) - -  (~ + i L ) ( 1  q -  iL~) 

Equations (14), (15) and (16) provide a solution to the problem. 
In particular, let us consider the variation of ¢z along the x-axis, 
which is given by ~ ---- 0. Along this axis, 

x =: b~(2L - -  ~), y = O, 

¢ + i~ = i L k b { i ~ V ( 1  - -  ~2) + In [i~ - /  V(1 -- ~)]}, 

e x  = Lk (~  - -  L)-lV/(1 -- ~2), ¢y ~_ 0. 

There are two stagnation points at ~] ---- :k 1 and one singularity 
at V----L, which lies inside the parabola. The stagnation points 
lie one inside and one outside the curve provided 2L > 1; that  is 
to say, provided k 2 < 3c0 2, and this condition is satisfied for 
subsonic flow. It  is to be noted that  the flow does not include the 
whole xy-plane, since, along the x-axis, ¢x is complex for V2 > 1. 

§ 6. Three-d imens ional  g a s / l o w s .  The equation of continuity for 
irrotationa] motion in three-dimensions represents the characteristic 
equation of a minimal region in four-dimensional space, the equa- 
tion being 7) 

(1 + W y  2 + W z 2 ) W x x  - /  (1 -{- W z  2 -~ W z 2 ) W y y  -k 

+ (1 + W x  2 Jr W y 2 ) W z z  - -  2 W v W z W y z  - -  

- -  2 W z W x W z x  - -  2 W x W y W x y  - O, (17) 

where ¢ ~ coW. In four dimensions, it is possible to have either 
minimal two-dimensional 'spreads' or minimal regions. The former 
lead to surfaces in three dimensions and the latter obviously 
include the whole three-dimensional _space. Surface solutions have 
been given by K o m m e r e l l  s) in the form, z q- i W  -~ tV(x q- iy) ,  
where F is an arbitrary function of x q- iy.  Interpreted as a gas 
flow, this yields 

¢ = - ~c0i EF(x + iy) - F ( x  - -  i y ) l ,  

z = ½EF(x + iy) + F ( x  - -  iy)], 

~ o =  Z. 
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The projection of the streamlines on the plane z = 0 gives the 
flow pattern of a plane incompressible flow. 

An extension of S c h w a r z ' s  results has been derived by  
E i s e n h a r t  9) and x, y , z ,  ¢ can be determined for assigned 
boundary conditions on a given curve. However, in fluid flow, 
the minimal region is of more practical interest, but  it appears that  
only particular solutions can be obtained in this case. Two simple 
cases are mentioned briefly below. 

(i) S i m p l e  sou rce .  I t  is easily shown that equation (17) has a 
solution of the form 

x~ + y2 + z2 = E(¢) (18) 

where E(¢) is the Weierstrass elliptic function 7). The equipotential 
surfaces are concentric spheres and the streamlines are radial, 

a n d  thus this solution can be interpreted as a simple source in 
three dimensions. 

(ii) One  v e l o c i t y  c o m p o n e n t  c o n s t a n t .  Let us suppose 
that  the velocity potential may be written in the form co[Uz 
+ w(x, Y)I where U is a constant, so that (17) becomes 

(1 - /  U 2 @ Wv2)Wxx + (1 -k U 2 q- wx2)Wyy --  2WxWyWxv ~- O. (19) 

Let w = ~/(1 @ U2)Z, then (19) yields 

(1 @ Zy2)Zxx - -  2ZxZyZxy @ (1 + Zx2)Zyy = O, (20) 

and thus Z is a solution of the two-dimensional problem. To any 
two-dimensional solution there corresponds a three-dimensional 
solution obtained by  adding a constant velocity normal to the 
xy-plane. This is similar to the result obtained by  P o r i t s k y  10) 
for the more general case of compressible flow. However, (20) 
can be solved for many more problems than the exact equation 
used by  P o r i t s k y .  

§ 6. Conclusion. In the preceding work no account has been taken 
of the value to be adopted for the slope of the tangent to the 
(p, v) curve. Unlike the method of v o n  K £ r m ~ n  and T s i e n  a) 
there is no simple condition at infinity for which a corresponding 
tangent can be obtained. The value of /32 is important since it 
affects the streamline pattern and the velocity distribution. 
However, the choice of straight line approximation which corre- 
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sponds most closely to the corresponding adiabatic flow problem 
with 7 =  1.4 seems difficult to ascertain. J a c o b  11) suggests one 
method and another is discussed by P o w e r  and S m i t h  12). The 
latter consists of simply taking a mean straight line to the curve 
ibv~ = const, over a suitable range of values. Although no entirely 
satisfactory way of assessing the error seems at present available, 
it appears that this method yields good results at least for certain 
types of boundary. 
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