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Abstract 

Numerous  invest igat ions  ([1] and [4-91) have  been made  of laminar  f low in 
a uni formly  porous circular pipe wi th  cons tan t  suct ion or inject ion applied 
a t  the  wall. The  objec t  of this paper  is to give a complete  analysis of the  
numer ica l  and theoret ica l  solutions of this problem. I t  is shown t h a t  two 
solutions exist  for all values of in ject ion as well as the  dual  solutions for 
suct ion which had been noted  by  previous invest igators .  Analy t ica l  so- 
lut ions are der ived for large suct ion and inject ion;  for large suct ion a viscous 
layer  occurs a t  the  wall  while for large inject ion one solut ion has a viscous 
layer  a t  the  centre  of the  channel  and the  o ther  has no viscous layer  any-  
where.  Approx ima te  analyt ic  solutions are also given for small  values  of 
suct ion and inject ion.  
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P a r t i c u l a r  
Section 5 
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x =  ~/s 
g(~) = 1(~)/~ 

2 
perturbation parameter, -- - -  

R 
a constant, - - K e  

Section 6 

e perturbation parameter, -- - -  

f12 a constant, - -Ke 
gOD = d(,D 
go(fl) ~ g(~) near centre of pipe 
~* point where g'(~) = 0 

R 

2 

Section 7 
2 
R 

fl~ = K s  
t = ( 1  - ~)/~ 
w(t ,  s) = [1 -- / ( t ) j l s  
o~O, a l  C O n S t a n t s  

g ( ~ )  = I ( , D  - ~ o ~  

~x = (xO/~ 

?o a constant 
~/* point where/"(~/) • 0 

§ 1. Introduction 

The  effect of porous  boundar ies  on the  flow of fluids has  been 
s tudied  in detai l  in recent  years  since they  are of in teres t  in a 
wide range  of problems,  f rom p a p e r  m ak ing  to the  cooling of rocke t  
and  je t  motors .  Fo r  a general  b o u n d a r y  shape  and  for a prescr ibed 
suct ion d is t r ibut ion  on the  bounda ry ,  i t  is necessary  to solve a 
s y s t e m  of par t i a l  differential  equat ions,  but ,  in the  case of channel  
and  pipe flow, B e r m a n  Eli has  shown tha t ,  for cons t an t  suct ion or 
inject ion a t  the  walls, the  p rob lem m a y  be reduced  to solving a 
single o rd ina ry  nonl inear  differential  equat ion.  

The  solution of the  p rob lem of l amina r  flow in a un i fo rmly  
porous  channel  has  been discussed b y  var ious  au thors ;  a r6sum6 
of the  numer ica l  and  theoret ica l  work  can be found  in Terrill  [2, 3]. 
The  solut ions of the  app rop r i a t e  differential  equa t ion  are unique 
and  appea r  to be  s table  and  well behaved .  In  contras t ,  previous  
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numerical work on the problem of flow in a porous pipe, by Berman 
[4] and White E5], showed that  the solutions exhibit a marked 
instability, with no solutions obtainable for some values of the 
wall suction, and dual solutions for all other values of the suction. 
Yuan and Finkelstein [6] 0btained analytic solutions valid for 
large injection and for small suction and injection, by using a regu- 
lar perturbation technique, but they found no indication of dual 
solutions. Berman [4], using a method of averages developed by 
Morduchow E7], had some success in predicting the duality for a 
limited range of small suction at the wall. 

The numerical results of the present investigation show that  dual 
solutions exist, not only for all values of the wall suction, but  also 
for the whole range of wall injection. An at tempt is made to ex- 
plain this duality analytically, for various ranges of suction and 
injection. 

The solution for large injection, obtained b y  E6], is surprising 
since it does not have a viscous layer at the centre, in contrast 
with the corresponding solution for parallel plates (see [3]). How- 
ever, it appears from numerical results that  the second solution 
obtained for the pipe has a viscous layer at the centre. Confir- 
mation of this result is obtained analytically by the method of 
inner and outer expansions. 

The solution for small suction and injection given by [6] agrees 
with the numerical results of this investigation but, as mentioned 
earlier, a second solution also exists. The second solution is found 
analytically by appealing to numerical results to determine the 
dominant terms in the differential equation. The resulting solution 
confirms the numerical results. 

Examination of the numerical results for the large suction so- 
lutions shows that  both solutions tend to the  same limiting profile, 
which is of the boundary layer form. An analytic solution is ob- 
tained, by the method of inner and outer expansions, which agrees 
to first order with both solutions. I t  is found numerically and con- 
firmed theoretically, that  the two solutions differ by exponentially 
small terms, but the present authors are unable to obtain two sepa- 
rate analytic solutions valid throughout the pipe. 

§ 2. The equat ions of  motion 

Consider steady, incompressible laminar flow through a pipe of 
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circular cross section with porous walls. Assuming that the flow is 
axisymmetric, we have that the equations of motion are 

8u 8u 1 8p v__[O (r 8u ) g (r 8u)~, 
u gz + v g ~ - -  p gz + r L ~r \ ~ r  + ~ z  gz ] J  (1) 

~v ~v l gp v [ ~ ( r  ~v ) ~ (r ~v) v 1 u - - + v - - -  + + - 

~z ~r p er r L er \ ~-r ~z ~-z " 
(2) 

The equation of continuity is 

g 
~z (ru) + ~ (rv) = O. (3) 

At the wall the boundary conditions require the tangential velocity 
to be zero and the radial velocity to be the prescribed velocity of 
suction V. The boundary conditions on the axis are obtained by 
taking the flow to be symmetrical, so that  

u(z, a) = o, v(z, a) = V, 

(~u) =0, v(z,o)=o" ( 4 )  

~-Y r=O 

To obtain a solution it will be assumed that v is independent of z. 
For simplification the dimensionless variable 

= r2/a 2 (5) 

is introduced. The velocity component v will be taken in the non- 
dimensional form 

v/(~) 
v - ~ , (6) 

where/(~) is some function of ~ to be determined. Integration of 
(3) yields 

2 v / ' ( ~ )  z 
u - -  - + u 0 ( ~ )  (7) 

a 

where uo(~) is an arbitrary function of ~. I t  has been assumed that 
v is independent of z and, therefore, differentiating (2) with respect 
to z gives 

g2p - - 0  or g2p - -0 .  (8) 
~r ~z ~ ~z 
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If u and v are substituted from (7) and (6) equation (2) yields 

2V211' V~12 2 ~p 4Vff" 
- -  -Jr- - -  ( 9 )  

~] @ p ~ a 

The pressure distribution is given by the integration of (9) with 
respect to ~; hence 

- -  = - -  J r -  P ( z ) ,  (10) 
P 

where P(z) is an arbitrary function of z, and where 

Va 
R -- (11) 

is the wall Reynolds number. If p is substituted from (10) into (1) 
it can be readily shown that P(z) takes the form 

V(z) = A z  2 + Bz  + C, (12) 

where A, B, and C are constants. Substitution for u, v, and p from 
(7), (6), and (10) into (1) and equating the coefficients of z and z 0 
yields 

R 
d "  + I" + - f  (! '~ - i1") = K (13) 

and 
R 

~u 0 + u~ + ~ -  (u0/' -- u~/) = d, (14) 

where the constants K and d are related to the constants A and B 
in (12) by 

4 V 2 K  4 V d  
A - -  B - -  

R a  ~ ' Ra  " 

The boundary conditions (4) become 

f (1)  = 0 ,  /(1) = 1, 1(0) = 0 ,  

and 

lira rl~/"(~l) -=- 0 (15) 
~--~0 

uo(1) = 0, lira ~=*u6(~) = 0. (16) 
r/--*0 

Thus, the problem reduces to solving the differential equations 
(13) and (14) subject to the boundary conditions (15) and (16). A 
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particular solution of (1 4) is u0(*]) ~-~/'(~). Any further solutions of 
(1 4) can be regarded as eigensolutions. 

In the region where the flow appears to be well behaved, it is of 
interest to know whether  eigensolutions exist. Numerical results 
suggest tha t  the solutions for large and small injection, denoted in 
Fig. 1 by Section I, are well behaved. Solutions for this range have 
been given by [6] and have been confirmed numerically. Although 
it is not intended to fully discuss the possibility of eigensolutions 
occurring for the complete range of wall suction and injection, it 
is a simple mat te r  to consider eigensolutions for section I injection 
solutions. This possibility will now be discussed. 

By a suitable choice of origin for z, the constant d in (14) may be 
taken to be zero. Then (14) may  be written 

d 
- -  (Fu~)  - -  G u o  = O, (17)  
d~ 

where 

and 

F = ~ T e x p ( - - f 2 ~ d , / ) > 0  for ~ > 0  

0 

R/'F 
G--  

2 

Numerical results and perturbat ion solutions for section I in- 
jection solutions show that  f07) >/0 in the interval (0, I). Thus, 
since R ~< 0 for this range, G >~ 0 in (0, 1). Then it follows from 
the Sturm-Liouville theory that  the solutions of (14) are non-oscil- 
latory. Hence there are no eigensolutions for section I injection so- 
lutions. However, it is possible that  eigensolutions occur for other 
ranges. For the present these will be ignored, and only the par- 
ticular case Uo(r/) ~ ]'07) will be taken. This is equivalent to taking 
(7) in the form [ 2Vz]/,(~) 

u =  U(O)  a 

The velocity profile U(0)/'(~7) may  be regarded as the velocity 
distribution at z -~  0. The numerical solution of (13) subject to 
boundary conditions (15) will be discussed in the following section 
and theoretical solutions will be obtained in sections 5, 6, and 7. 
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§ 3. Numerical method of solution 

To solve (13) numerically subject to the boundary conditions (15) 
appears to require a double infinity of integrations for any pre- 
scribed Reynolds number, since the equation is a boundary value 
problem with two conditions at either end of the range. However, 
by making a suitable transformation and allowing R to be de- 
termined by the integration, the equation can be solved by only one 
integration. 

Consider the transformation 

= 

=  Ib, 
where ~ and b are constants to be determined. Then substitution 
into (13) yields 

2berg " + ~beg,, + __R ~3b~(g,3 - -  gg") = K, (18) 
2 

where primes denote differentiation with respect to ~. By choosing 
~R = 2, we reduce (18) to 

~g,,, _}_ g,, _t_ g,2 _ gg,, = N1 (19) 

where K1 = K/Zb~. From (15), the boundary conditions on (19) 
become 

1 R 
- -  - -  l i m  ~ ½ g " ( ~ ) =  0 .  (20)  g(0)=g ' (5 )=0  g(5) 2 

The problem can now be solved by one integration using a step by 
step method. Arbitrary values are assigned to g'(O) and g"(O), and 
K1 is then evaluated. The integration is then allowed to proceed 
until the required zero of g'(~) is obtained. I t  is then possible to 
evaluate the interval b and the Reynolds number R, and, by making 
the inverse transformation, /(~) and the constant K can be ob- 
tained. 

Near ~ = 0, the step by step process of integration breaks down 
due to the term ~g" in (19). Because of this difficulty a Taylor 
expansion was used in the neighbourhood of ~ = 0 and the Runge- 
Kut ta  procedure thereafter. As a check for accuracy both the step 
length and the take over point from the Taylor series to the  Runge- 
Kut ta  procedure were varied. 
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§ 4. Discuss ion  of  n u m e r i c a l  r e s u l t s  

Numerical solutions were sought for all values of the wall Reynolds 
number R( - -co  < R ~ co) and the results are most clearly seen by  
reference to Fig. 1. In this figure/"(1), which is proportional to the 
skin friction at the wall, is plotted against R. It  can be seen that 
dual solutions exist everywhere except in the range 2.3 < R < 9.1, 
where no solutions were found. This range agrees with previous 
numerical work on the problem (notably with ~4, 5J). In an at tempt 
to show why no solutions existed in this range Weissberg ES] con- 
sidered the inlet profile and, using Morduchow's [7] method of 
averages, concluded that in approximately this range of Reynolds 
number, fully developed flow could not be realized. 

The results shown in Fig. 1 will now be considered in more detail. 
In order to facilitate discussion of the solutions and derivation of 
theoretical solutions, it will be convenient to subdivide Fig. 1 into 
five sections, as follows: 
(1) Section I (R ----- - -co  to R = 2.3) contains all the well behaved 
solutions for injection and the solutions for small suction up to the 
point where/"(1) vanishes. 
(2) Section II (R = 2.3 to R = 0) includes all the small suction 
solutions for which /"(1) > 0. These solutions have reverse flow 
near the wall of the tube. 
(3) Section I I I  (R = - -co  to R ----- 0) covers the solutions for small 
and large injection Reynolds numbers, the velocity profiles being 

"~0 

60 

I,o 
j l  

- f(O 

20 

I l l  j 

- 5 0  - l,o -2'0 

I 

-20 

-/.o 

- 6 0  

2'o ~o ~'o ~o 1~o 
It 

II 

Fig. 1. V a r i a t i o n  of /"(1) w i t h  R for all va lues  of suc t ion  a n d  in j ec t ion  a t  
the walls. 
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1 R:-108.58 ~~ 
0 0.2 0-/, 0"6 0.8 1"0 

Fig, 2. Axial velocity /'(~) against nondimensional radial distance ~ for 
section I wall suction and injection. 

characterized by a region of reverse flow at the centre of the pipe. 
(4) Section IV (R = 21.2 to R =- oo) contains all the solutions for 
suction Reynolds numbers greater than 21.2 on the upper branch of 
Fig. 1. These velocity profiles have two turning points and a mini- 
mum between the axis and the pipe wall. 
(5) Section V covers all the remaining solutions, the velocity profiles 
being characterized by  a single point of inflexion. Although dual 
solutions are included in section V for the  range 9.1 < R < 21.2, 
this choice is justified since the deformation of the velocity profile 
throughout this section is continuous. Section V is divided into two 
regions, V(i), which covers the solutions for the range 9.1 < R < 
< 21.2 on the upper branch, and V(ii) which includes all solutions 
in the range 9.1 < R < oo on the lower branch. 

Fig. 2 shows velocity profiles for section I. For all values of the 
injection Reynolds number and for very small suction Reynolds 
numbers the profiles are well behaved. Very little change occurs in 
the profiles, with the nondimensional centre line velocity changing 
from a little less than 1.6 for large injection to about 2.0 for zero 
suction and to approximately 3.3 when the skin friction at the wall 
vanishes (i.e. at R = 2.3). These results agree with those obtained 
by  [5, 4, 91 and with the regular perturbation solutions for large 
injection and for small suction and injection given by E6~. 
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40O 

R= 0.052 
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0 ~ ~ ~ 0-2 0,~, ~ . 0  

100 

Fig. 3. Axia l  ve loc i ty  profiles for section I I  wall  suction. 

Velocity profiles for section II are given in Fig. 3. These are 
characterized by a rapid increase in the centre line velocity as R 
decreases from the value 2.3, and the development of reverse flow 
near the wall of the pipe. The profiles represent a continuous defor- 
mation from those of section I, the limiting profiles as/"(1) --> O+ 

and 0- being identical. As R --> 0 both the centre line velocity and 
the skin friction at the wall tend to infinity. White [5] suggested 
the existence of section n solutions, and Berman [4] was able to 
obtain these solutions in the range 2.0 < R < 2.3 and verify the 
results using Morduchow's method of averages. 

Section I I I  velocity profiles are given in Fig. 4. These solutions, 
which have not been obtained in previous work, are characterized 
for both large and small injection by a region of reverse flow at 
the centre of the pipe. For large injection this region becomes in- 
creasingly small, and the limiting profile is the same as that  for 
large injection solutions in section I, but with a point discontinuity 
due to a viscous layer at the centre of the pipe. At the other end 
of the range, as the injection Reynolds number decreases to zero, 
both the nondimensional centre line velocity and the skin friction 
at the wall tend to minus infinity. Reference to Fig. 5 shows that  
the velocity profile obtained for small injection (section IU) is, to 
first order, the reflection in the T-axis of that  obtained for small 
suction (section II) and, in fact, when R ---- 0~: the limiting profiles 
are exact images of one another. This conclusion will be clarified 
in section 6. 

Typical profiles for section IV solutions are given in Fig. 6. It  can 
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Fig. 4(1). 
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Fig. 4(1). Axial velocity profiles for section I I I  wall injection, for large 
Reynolds numbers. 

Fig. 4(2). Axial velocity profiles for section I I I  wall injection, for small 
Reynolds numbers. 
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Fig. 5. Comparison of the velocity profiles for small suction and small 
injection (sections I I  and III). 

Fig. 6. Axial velocity profiles for section IV, wall suction. 
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-3J- 
Fig. 7. Axia l  ve loc i ty  profiles for section V, wall  suction. 

be seen that  they are characterized by  two points of inflexion and 
a minimum between the axis and the wall of the pipe. In the range 
21.2 < R < 23 a region of reverse flow occurs in the neighbourhood 
of this minimum velocity. As R -+ c~ the velocity profiles take on 
the familiar boundary layer shape with a maximum velocity very 
close to the mean velocity. 

Fig. 7 gives velocity profiles for section V solutions. The profiles 
R = 10.102, 13.314, 21.193 represent solutions on V(i) whereas the 
profiles R = 14.497, R = 82.499 represent solutions on V(ii). For 
large suction the profiles also assume the boundary layer form, the 
limiting profiles for sections IV and V being identical. Berman [4] 
who first noted the existence of section IV solutions as an apparent- 
ly independent set of profiles, did not show the asymptotic nature 
of the two solutions for large R. The behaviour of the two solutions 
for large suction will be discussed in section 7, where it will be 
shown that an asymptotic expansion is equally valid for both so- 
lutions and that  the difference between the solutions decreases ex- 
ponentially as R --> oo. As R decreases from infinity, the centre line 
velocity and the skin friction at the wall decrease until, when 
R = 10.1, reverse flow develops at the centre of the pipe. This be- 
comes more pronounced in section V(i) solutions as R -+ 21.2. 

The characteristics of the velocity profiles of sections IV and V{i) 
are different and, at first sight, would appear only to be linked 
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/.o'g o:B 1.o 

Fig. 8. Axia l  ve loc i ty  profiles for Reynolds  numbers  R ~ 21.2. 

through their behaviour for large suction. However, consideration 
of Fig. 8, which shows velocity profiles for R just greater than and 
just less than 21.2, suggests that  as R -+ 21.2 from above and below 
(section IV and V(i), respectively) the limiting profiles are identical 
but  for a point singularity at fl = 0. This is more clearly seen by 
reference to Fig. 9, which shows a plot of /"(0) against R. As 
R -+ 21.2+ the function /"(0) ~ oo while /"(0) remains finite and 
is well behaved for R -+ 21.2-. This singularity explains why White 
[51, using a series method and then solving numerically by  a 
computer, was unable to obtain section IV solutions, since obvi- 
ously a series method breaks down at this point. 

to 

3O 

20 -f(o] 

10 

0 T r 
~0 sr0 ~0 7~ 

R 

Fig. 9. Var ia t ion  of /"(0)  wi th  R for a range of values  of wall  suction. 
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The solutions for the complete range of Reynolds numbers 
(--oo < R < oo) show a marked degree of symmetry.  Section I 
and II I  solutions are identical for large injection but  with a point 
discontinuity at ,] = 0, section I I  and I I I  solutions are, to first 
order, reflections of one another for small Reynolds numbers, 
section IV and V(ii) solutions are asymptotically equal, and section 
IV and V(i) solutions for R = 21.2 differ by a singularity at ~ ---- 0. 

§ 5. Solution for large injection Reynolds numbers 

The solution of (13) subject to the boundary conditions (15), for 
large injection Reynolds numbers, has been obtained by  [61 using 
a regular perturbation technique. This solution agrees with the 
numerical solutions obtained for section I large injection, but  gives 
no indication of the possibility of a second solution. However, nu- 
merical results show that, for section I I I  large injection, a solution 
is obtained where the axial velocity changes rapidly near the centre 
of the pipe but  which behaves like the section I solution away from 
the axis. In this section this second solution will be obtained using 
the method of inner and outer expansions. 

Equat ion (13) may be written 

~(~1" + I") - 1 '~ + i1" = _~2, (21) 

where e = --2/R > 0, and Ke ~ --fl~. Assume a solution of the 
form 

o o  o o  

1(~) = Y, ln(~) ~n, ~ = ~ ~ .  
n = 0  n=O 

Then equating coefficients ofsP (p = 0, I, 2 . . . .  ) yields the equations 

fi)~ - - / O / o  = fl~, (22) 

~Io' + t'~ - 2t;tI + Io1~ + t110 = -2fl0fl l ,  (23) 

Equations (22), (23), ... are solved subject to the boundary con- 
ditions at the wall, namely, 

/0(1) : 1, / n ( 1 ) : 0  for n=/=0, / ; ~ ( I ) : 0 .  (24) 

In formulating this solution the highest derivative of (21) is neg- 
lected. Should there be an inner region, where the highest deriva- 
tive is significant, then this solution will break down and it will be 
valid as an outer solution only. 
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The solution of (22) subject to the boundary conditions (24) is 

= cos( o(,  - 1)). (25) 

This solution can be made to satisfy all boundary conditions pro- 
vided fl0 = ::/2 and is then valid throughout 0 ~< ~ <~ 1. 

It  is now possible to obtain a second perturbation solution which 
satisfies all boundary conditions by  solving (23). The series so- 
lution so obtained will be shown to correspond to the section I nu- 
merical solutions for large injection. 

However, it is known from numerical results that  for large in- 
jection a second solution exists which is not well behaved at ~ = 0. 
To obtain an analytical expression for this solution (22) and (23) 
will be regarded as the equations for the outer solution and the 
outer solution will be matched with an inner solution valid near the 
centre of the pipe. 

When fi0 = ::/2, equation (25) yields 

Then (23) becomes 

1o(~) s i n  n~ (26) 
2 

::~ ,, n~ rc 2 ::~ 
sin - - / 1  -- :: cos /i -- - -  sin - - / 1  = 

2 2 4 2 

=2 sin n ~ / +  ::a~ cos=~ . 
= --'/V/~I "t- T 2 8 2 

(27) 

The solution of (27), subject to boundary conditions (24), is 

+ 2 

4fi_,:: _ T K  
1 s in  

2 

::~ + 
cos 2 

4 i l l )  ~a I ~d~ ] { 2  ml ~ }  
" -- ~ -  ::~ sin - -  --  ~ cos -- 

1 sin ~ -  2 

3 4/tl sin rc~ 
2 ~ 2 ]" 

To find a solution valid throughout the range 0 ~< ~ ~< 1 the initial 
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conditions must be satisfied. The condition 

lim ~ / " ( ~ )  = 0 
~--~0 

is automatically satisfied by/1(~),  and if the condition/1(0) -~ 0 is 
imposed, a value 

f l l  = 0 .422  

is obtained. Then (26) and (28) together give a second perturbation 
solution/0(~) + e/l(~) which satisfies all boundary conditions. This 
is the regular perturbation solution obtained by [6], and corresponds 
to the solutions in section I for large injection (Fig. 1). A compari- 
son of the results obtained by  perturbation and numerically is given 
in Table I, where/"(1) is given for a range of Reynolds numbers. 

TABLE I 

numerical calculated corrected 
--.R --.if'(1) --ff'(l) --]"(I) 

24.19906 2.457 2.483 2.449 
33.72519 2.4637 2.4783 2.4610 
44,66713 2.4667 2.4756 2.4658 
55.60832 2.4680 2.4740 2.4677 
80.36234 2.46905 2.47196 2.46893 
91.64563 2.469085 2.471402 2.469069 

102.9344 2.469112 2.470963 2.469112 
151.3834 2.468985 2.469823 2.468967 
241.9763 2.468579 2.468916 2.468576 

Tile quantity /"(1) against R for large injection {section I so- 
lutions). 

The second order perturbation solution yields results which differ 
from the numerical results to some extent. To test the accuracy of 
the series further, a third order correction term was calculated. The 
corrected series was found to be 

7~ 2 
/"(1) - -  4 0.1833e + 4.9031e 2, 

and it can be seen from Table I that  the values for the corrected 
series and the numerical solution are extremely close. 

Tile solution obtained must break down near the centre of the 
pipe if a viscous layer exists. No guide as to the range of discon- 
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tinuity can be obtained from the outer expansion since it has been 
shown that a regular second order perturbation solution exists in 
addition to the possible viscous layer solution. Also, unlike the so- 
lution for laminar flow between porous parallel plates [31, an ana- 
lysis of (21) gives no indication of possible discontinuities in/(7) or 
its derivatives. The only guide, therefore, to obtaining the inner 
expansion is by appeal to numerical results. The outer expansion 
was taken to be /(~) =/0(~)  + e/l(~) + ..., where /1(~/), given by 
(28), has an arbitrary constant fil to be determined by matching 
with the proposed inner expansion. 

To obtain the inner solution a suitable stretching transformation 
must be used. 

Consider a transformation of the form ~ = erx, 1 ( ~ ) =  e~g(x). 
Substitution into (21) yields 

e(xePg" 4- ePg") --  e22~g '2 4- e2Pgg " = -- /~2s2r .  (29) 

If the inertial terms are not to dominate the viscous terms then 
p >~ 1. If p > 1 then a first approximation to (29) gives 

xg" 4- g" = 0 2r > p 4- t 

x ( '  + g" = _~2  2r = p + 1. 

These equations imply that either g"(~) = 0 or gf,,(~) = 0. Matching 
with the outer solution shows that neither can be the solution and 
so p = 1. Then (29) yields 

xg111 4- g,, _ g,2 + gg,, = _fi2e2(r-1) ' r >~ i. (30) 

Without loss of generality it may be assumed that r = 1. Then the 
equation to be solved for the inner solution is 

xgHi 4- g,1 _ g,2 4- gg" = _fi2.  (31) 

Equation (51) is nonlinear and so it is virtually impossible to ob- 
tain a general inner solution containing arbitrary constants. In- 
stead, an inner solution will be obtained that fits (31) identically, 
satisfies the boundary conditions at the centre of the pipe, and 
tends asymptotically to the outer solution. 

c o  

A perturbation of (31) of the form g(x) = ~ gn(x) e n yields 
n=0  

I i t  t !  t !  

xgo 4- go --  g~2 4- gogo = --/5o 2, (32) 
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xgl' + g'~ --  2g~gl + gog[ + glgo =- --2f10/~l, (33) 

where flo -- ~/2. 
Equation (32) can be solved by a power series solution of the 

form go(x) = E'~ anx n and, applying the boundary conditions at the 
centre of the pipe, we find as solution 

go(~) = ~ + ~ - Z -  + a~ ~ - - ~  + 

+ a~ - - ~  + . . . .  (34) 

The value al = =/2 yields go(x) = =x/2, which is an approximation 
for small ~ to the first term of the outer solution. However, it is 
possible to obtain a second solution when al = --n. Equation (34) 
then takes the form 

3n2x ~, 3nax a 9zc4x 4 
go(x) = - - n x  -+ ~ 48 + 115~2-- + .... (35) 

a result representing the first few terms of 

go(x)- 2 (36) 
\ F 

This solution is an approximation to (35), but substitution into (31) 
shows that  the solution for go(x) satisfies the equation identically. 
Now as x ~ co, go(x) ~ =x/2 and so /0(7) ~ =~1/2. Thus, the so- 
lution given by (36) tends asymptotically to the outer solution at 
the edge of the viscous layer. 

From equations (26) and (28) the first two terms of the outer ex- 
pansion are 

/(~) = sin rc~ 2 + s  2 1 [ z : ( 4 i l l )  . . . . .  r~ ( /  ~2d@ )cos zo] 
T g  -if-+ sin 

r/ 

+ 2 ; -- -i~- 1 s i n ~  / sin ~ -  -- ~ cos -- 

[ 3  4tier: s i n - ~ ] ]  , (37) 
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where 

f ~ cosec 2 ~ K=I 

~e cosec ~ d~ = - - k  
2 

2(22K-1--(2K ~- 1)IB2KI1)! ( 2 )  2K-1 ~2K+l 

oo 2(2  2K-1 - -  1 ) [ B 2 K I  
Z 

K=l (2K -V 1)! 
x 

and B2K (K = I, 2, ...) are the Bernoulli numbers. The first two 
terms of the outer expansion in inner variables are 

/ (x) - -  2 -ke 1 --~ -- 

3 o o  

- - 2 ÷  16Lr~ + K = I  £ --1 

When matched with the inner expansion this yields 

/~l = 1.9224. 

An a t tempt  was made to solve (33) to obtain the second term of the 
inner expansion, but  beyond finding one complementary function 
this proved to be impossible. 

Numerical and theoretical values for/"(1) and/"(0) are given in 
Table II. The values of f'(1), proportional to the skin friction at the 
wall, enable one to compare the outer solution with the numerical 

T A B L E  I I  

nume r i c a l  a s y m p t o t i c  

R 1"(0) 1"(1) 1"(0) I"(1) [/"(0)] 

- -24 .815 132.2 - -3 .259 91.8 - -3 .242 40.4 

-- 40.367 188.2 --  2.950 149.9 -- 2.943 38.8 

- -55.817 244.6 - -2 .815 206.5 --2.811 38.1 
-- 66.034 282.2 -- 2.761 244.3 --  2.758 37.9 

--  73.566 308.9 -- 2.731 272.2 -- 2.729 36.7 

N u m e r i c a l  and  a s y m p t o t i c  va lues  of 1"(0) a n d  1"(1) for large in jec t ion  Reynolds  

n u m b e r s  (section I I I  solutions),  [y'(0)] is the difference b e t w e e n  the n u mer i ca l  

a n d  the  ana ly t i ca l  va lues  of ]"(0). 
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results whereas the values of/"(0) can be used to confirm the inner 
solution. 

The outer solution, given by  (37), should be accurate to the 
second order; that  is, the neglected terms are of order e 2. This is 
confirmed by  the numerical solutions. There is considerable differ- 
ence between the numerical and theoretical values for/"(0). How- 
ever, the theoretical solution given by  (36) is accurate only to 
order 1/e. Thus, it is expected that the difference between the theo- 
retical and numerical values for/"(0) will be a constant and this is 
confirmed by  the results in Table II. 

§ 6. Solution for small Reynolds numbers 

A solution for small R has been obtained in [6] by  a regular pertur- 
bation of (13)ofthe form/(~) = y~o/r(*]) er. When e = 0 this gives 
the solution for impermeable flow, the profiles taking the familiar 
parabolic form. This solution gives accurate results in the range 
--2  < R < 2, but  does not yield results in the region where the 
skin friction vanishes. Another solution by  E4], based upon the 
method of averages given in [7], has some success in predicting 
the solutions beyond the point of vanishing skin friction. White 
[5], using a power series expansion, finds solutions up to the point 
where /"(1) becomes zero. Beyond this point a power series ex- 
pansion fails because the function / and its derivatives become in- 
creasingly large and tend to infinity as R tends to zero. 

The purpose of this section is to obtain an approximate solution 
of (13) valid for small suction and for small injection Reynolds 
numbers in the regions II and II I  where reverse flow exists. Nu- 
merical results indicate that  in regions II and III ,  when R is small, 
the functions /(n)(~]) (n = O, 1, 2, ...) are of order 1/R and so a 
linear stretch of variable of the form g ( ~ ) =  e/(~) is suggested, 
where e = - -R /2 .  Substitution into (13) yields 

~lg" -F g" --  g,2 nt_ gg,, = _f12, (39) 

where f12 = - -Ke is a constant to be determined, and the boundary 
conditions (15) become 

g(0) = g'(1) ~ 0, g(1) ---- e, lim ,7~g"(~) = 0. (40) 
*/--~0 

The solution of (39), subject to the boundary conditions (40), will 
be to first Order independent of e. Hence, to first order the con- 
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dition on g(~) at  the wall m a y  be taken as g(1) ~ 0, and, since 
/cn~(V) = e-lg(n)(V) the solution for small injection will be every- 
where the image of the solution for small suction. 

If  a power series of the form 
c o  

g(~) = X an~  n 
n=O 

is subst i tu ted into (39), the solution, denoted by  ge(~), satisfying 
the boundary  conditions at  ~ : 0 is found to be 

(a~ - ~2) (a~ - ~2) 
ge(~) -~ al~ - /  2 ~ + al  12 ~ -j- 

(al  ~ _ ~ ) 2  
+ 7 2  ~4 + . . . .  (41) 

A similar expansion was obtained for the inner solution for large 
injection and, as in tha t  case, we will choose 

a I = - - 2 / ~ ,  

so tha t  ge(*/) reduces to 

gc(~) = fl~ + 3 e - ~  -- 3. (42) 

Although the solution (42) does not satisfy the boundary  conditions 
at  the wall, it gives an excellent approximation to numerical re- 
sults between , / =  0 and the point where g~(,/) = 0. Equat ion  (42) 
will be taken to be the solution near ~ ~ 0, and will be matched  
with a solution valid near ~ ---- 1. 

T h e  so lu t ion  near  ~ = 1. To first order, the boundary  conditions to 
be satisfied by (39) at the wall are g ( 1 ) =  g ' ( 1 ) =  0. For  small 
suction Reynolds numbers the viscous terms are small compared 
with the inertial terms in the neighbourhood of the wall ~ = 1. 
Thus, near ~ = 1 equation (39) reduces to 

~g,,, + g,, = _f12. (43) 

The solution of (44), subject to g(1) -- g'(1) ~- 0, is 

t~2 
g(n) = ~ -  (~ -]- */In n --  V 2) + ~(1 + n in n -- ~/), (44) 

where ~ is an arbi t rary constant .  This solution, denoted by  g0(~]), 
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will be assumed to be valid between ~ / =  1 and the point ~ = ~* 
where g£(~]*) = 0. 

From (42), g~(~*) = 0 when 

~* = /~-1  In 3. (45) 

Then ge(~*) = In 3 -- 2, and the constants  a and  /~ are found by 
comparison of g(~) and g'(~) at ~ = ~*. Then 

In 3 -- 2 = (~* + ~* In ~* -- ~,2) + ~(1 + ~* In ~* -- ~*), (46) 

and  

0 =  2 [ 2 + 1 n ~ * - - 2 ~ *  l + ~ l n ~ ] * .  (47) 

The solution of (45), (46), and (47) gives 

= 0.971, fi : 4.025, ~/* = 0.273. (48) 

The solutions (42) and (44), where the constants  are given by  (48), 
give good agreement  with numerical  results for the whole range of ~]. 

When the solution (44) was obtained it was assumed tha t  the 
inertial terms could be neglected. While this assumption is valid 
near ~ --- 1, the solution is required to be valid as far as ~ = 0.273. 
I t  is therefore necessary to consider the effect of the inertial terms 
on (44). 

The series solution of (39) near ~ = 1 can be expressed as a power 
series in z, where z = 1 --  ~, in the form 

+ g(z) = a2z 2 + a3 z3 + ~ -  3 0  ] 

+('a a2a3)z6 +(,as a2a3 ) 
3 45 30 63 35 - z7 + 

+ " 28 84 5040 560 560 zs + O(z9)' (49) 

where a2 and a3 are constants  to be determined. 
The solution go(~) previously assumed can be expressed as a 

power series in z in the form 

( _ ~  ) ( @  z3 z 4 z 5 z6 ) f12z2 

go(z) = + ~' + Y + -12 + -26- + -3d + "'" 2 

(5o) 
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Equat ions  (49) and (50) together  show tha t  

1 
a2 -~ ~ -  o~ 2 and  aa = ~ -  

and the correction to (50) is 

g l ( z )  = - - -  30 \45 + 30 ]z6 \63 + ~ +  70]z7-- 
__( a~ a~ lla2aa l la~ 

\ ~  + 56~0 + 576 + 560/~8 + 0(~9). (51) 

The solution g(z) = go(z) + gl(z) was matched  with the solution 
ge(~) at the point ~ = ~*, and the modified values of a, fl, and ~*, 
together  with the correction terms, were obtained by  an i terat ive 
process. The corrected solution gives 

= 1.577, fi = 4.196, 7" = 0.262, (52) 

350 

3 0 0 ~  

250i ''\~ " 

150~ '\', 
'f'(') 100 ? ~, 

\ 

Fig.  10. Veloc i ty  profiles for R = 0.052 (section II) : 
numer ica l  solut ion 
ana ly t i c  solut ion near  ~ = 0 
ana ly t ic  solut ion near  ~ = 1 
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TABLE I I I  

numerical  analyt ica l  

R /"(0) 1"(1) 1"(0) /"(1) 

--0.932 162 --22 t13 --15 
--0.592 231 --33 179 - -24  

- -0 .297  418 --61 356 --49 
--0.041 2773 --416 2577 --353 

0.052 --2105 319 - -2032  278 
0.141 --755 115 --749 103 
0.267 --382 59 --396 54 
0.346 --286 44 --305 42 
0.422 - -227  35 --250 34 
0.564 -- 160 25 -- 187 26 

Numerical  and analyt ica l  values of fl'(0) and/"(1)  for small  suction 
and injection Reynolds numbers (sections I I  and III) .  

and 
gc(~]) = 4.196~] @ 3 exp[--4.196~]] --  3, (53) 

g0(~/) q - g l ( ~ ) =  8.81(~ q-~ In ~ _~2)q_  1.577(1 q-~ l n ~ - - ~ ) -  

-- 0.435(1 -- ~)5 _ 0.082(1 -- V) 6 -- 0.071 (1 -- ~)7 _ 

- 0 . 0 8 2 ( I  - + 0 [ ( I  - (54) 

This solution shows that the effect of the inertial terms is not very 
significant even at ~ = ~*. Fig. 10 shows a plot of g'(~) against 
for the numerical and theoretical results, and it can be seen that 
for small Reynolds numbers agreement is extremely close. Table I I I  
gives numerical and theoretical values of/"(1) and/"(0)  for small 
suction and injection Reynold numbers and shows that, within the 
limits of accuracy of the solution near the wall, agreement between 
the values is reasonably good. The difference between the numerical 
and the analytical values of/"(0) is explained by  an error of 3% in 
the evaluation of/5. 

§ 7. Solution for large suction R e y n o l d s  n u m b e r s  

In this section a solution of (13), subject to the boundary conditions 
(15), is obtained for large suction by  using the method of inner and 
outer expansions. Equation (13) may be written 

+ I") + - / / "  (55) 

where e = 2/R and /52 = Ke. When there is large suction at the 
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wall it is, in general, expected that there will be a boundary layer 
at the wall; this is confirmed numerically for this problem (see 
Figs. 6 and 7), so that  a perturbation solution of (55) valid outside 
the boundary layer would break down inside the layer as the viscous 
terms become dominant. For this reason an inner solution is sought 
which satisfies the conditions at the wall, and then is matched to 
the outer perturbation solution to determine the arbitrary constants. 

7.1. Outer expansion.  An expansion of the form/(7) = ~o/n(~)  en, 
= ~ finen is assumed. Then substitution into (55) and equating 

coefficients of e n yields 
/~2 _/o/o = ~o ~, (56) 

~I0' + / 0  + 2/~II - I0/1 - l i /0  = 2~0~1, (57) 

The boundary conditions (15) become, at the centre of the pipe, 

Ado) = o, lira n-~/~(w) = o. (58) 
~-+0 

To obtain the outer expansion we must solve (56), (57) . . . .  subject 
to the boundary conditions (58). Since the flow for large suction 
gives rise to boundary layers at the wails it seems physically reason- 
able that  the outer solution should be of the form/(~) ~-~ 7. However, 
since the flow appears to be unstable throughout much of the range 
of wall suction, it appears more satisfactory to argue from the nu- 
merical solutions. These also suggest a solution of the form 

i0(~) = ~0~. (59) 

The solution of (57) and further perturbations produce polynomials 
in ~r. However, it will be shown that the inner solution expressed 
in outer variables only involves terms linear in ~ and exponentially 
small terms, so it is clear that  the solutions of successive equations 
relating to the outer expansion are/r(~) = flr~. Hence 

c o  

/(~) = • finen~. (60) 
n=0 

This form of the outer expansion agrees with numerical results, 
which shows that /"(7) and higher derivatives are exponentially 
small outside the boundary layer. The outer expansion will be 
slightly modified later in this section to consider the leading ex- 
ponentially small term. 
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7.2. I n n e r  expans ion .  The outer  expansion (60) breaks  down near 
the wall of the  pipe since it cannot  sat isfy the condit ion of no slip 
at  the wall. To obta in  a solution valid within the bounda ry  layer 
a suitable s t retch of variable mus t  be employed to make  the viscous 
and inertial terms of (55) of the same order near ~ / =  1. I t  is easy 
to show tha t  the  appropr ia te  s tretching t ransformat ion is 1 ~/--  
= et. Subs t i tu t ion  into (55) gives 

- - ( l  - -  et) 1" + el" + / ,2 - -  11" = f12e2, (61)  

where primes denote  differentiat ion with respect  to t. Since the 
inner solution mus t  tend asympto t ica l ly  to the outer  solution and 
satisfy the condit ion at  the wall, /(0) ----- 1, the inner solution will 
be t aken  to be 

fit)  = i - -  ew(t, e), (62) 
where 

o o  

w(t ,  e) = Y, wn(t)  e n. (63) 

Subs t i tu t ion  into (61) and equat ing coefficients of e r yields 
/ t /  tt 

w 0 + w 0 = 0, (64) 
I l l  I l l  f l  It t t  

w l  - two - Wo + w6 ~ + w l  - WoWo = / ~ ,  (65) 
° . . . . ,  . . . . . . . . . .  . . . . . . . .  . , . . . . . .  , . . . .  

The bounda ry  condit ions at  the wall become 
wn(O) = o, w~(o) = o. (66) 

The solution of (64), subiect  to the  bounda ry  conditions (66), is 

wo = Ao( t  - -  1 + e-t), (67) 

where A o is an a rb i t ra ry  constant .  For  simplicity the solution for 
each i terat ion will be ma tched  to the  outer  solution to obtain  the 
a rb i t ra ry  constants .  Then (62), (63), and (67) give the first two 
terms of the  inner expansion 

/(t) = 1 - - e A o ( t -  1 + e-').  (68) 

Equa t ion  (68), expressed in outer  variables and expanded  for small 
e, gives 

/(~) = 1 - -  Ao(1 - -  ~/) - -  eAo + ... (69) 

and comparison with the outer  expansions shows tha t  flo = A 0 = I. 
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Equat ion  (65) then becomes 

/// tt 
W 1 --~ 72) 1 = 2 e - t .  ( 7 0 )  

The solution of (70), subject to the boundary  conditions (66) is 

Wl = (2t + 2 + A1) e -t + Al ( t  --  1) --  2. (71) 

If/( t)  = 1 - e w o ( t )  - e2wl(t) is writ ten in terms of the outer  vari- 
able and expanded for small e, then 

](~7) ---- W + e(1 --  A1 -t- Al~) + O(s2), (72) 

and matching  with the outer  solution shows tha t  fll = A1---- 1. 
Proceeding similarly we find tha t  the equation for w2(t) is 

w;' + w~ = (t + 1) e -t. (73) 

The solution of (73), subject to the boundary  conditions (66), is 

w2(t) = (-7~- + 1 5 t  + 1 5  + A e ) e - t  + A 2 t - - 1 5  --  A2, (74) 

where A2 is an arbi t rary  constant.  Now/(t)  = 1 --  ewo(t) - -  S 2 w l ( t )  - -  

--saw2(t), and  pu t t ing / ( t )  in terms of the outer  variable and ex- 
panding for small e yields 

/(~) = n + ~ + ~2(3 - A2 + A2~) + O(~a). (75) 

Comparison with the outer  solution gives A 2 = 3 = fi2. The equation 
for wa(t) is 

w~' -t- w~ = (16t 2 + 17t --  1) e - t  -F 3 e -2t. (76) 

The solution of equat ion (76), subject to the boundary  conditions 
(66), is 

./'16ta ~ 8 1 t  2 2~1) 
w3(t) = [ ~  + + 1 2 9 t  + Aa + - -  e - t - -  

3 519 
- -  - -  e - 2 t  + A 3 ( t  - -  1 )  - -  - - -  ( 7 7 )  

4 4 ' 

where Aa is an  arb i t rary  constant.  If 
3 

/(l) ~-- 1 -- ~ en+lwn(t) 
n = 0  

is expressed in the outer  variable and expanded for small e, then 

1(,~) = ,7 + ~,~ + 3~2,~ + ~a(18 - A3 + A3,7) + O(~4) (78) 
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and matching with the outer expansion yields A3 = 18 = f13. The 
outer expansion has the form 

/ (~)  : ~] -[- 8~] -j- 382~] -q- 1883~] -}- 0 (84) ,  (79) 

and the inner expansion becomes 

where t = (1 - -  ~)/e. Equat ion  (80) gives the value of f'(1), which 
is proportional to the skin friction at the wall, 

This value is sensitive to changes in the Reynolds number, and is 
therefore useful as a basis for comparison of numerical and theo- 
retical results. 

The solutions (79) and (80) together correspond well with nu- 
merical results. Table IV shows values of/"(1) against R for large 

TABLE IV 

Section V(ii) Section IV 
-/-(i) -/"(i) 

R numerical  analyt ica l  R numerical  analyt ical  

9.871 4.6 2.1 30.978 20.2 14.1 
10.610 4.5 2.7 37.952 19.6 17.7 
15.275 4.8 5.6 41.993 20.7 19.7 
20.040 6.2 8.3 51.954 24.96 24.76 
29.582 11.1 13.4 62.241 29.96 29.94 
35.482 14.8 16.4 72.439 35.06 35.07 
39.574 17.3 18.5 92.480 45. I I 45.12 
51.475 24.2 24.5 99.038 48.40 48.41 
59.006 28.21 28.31 103.05 50.41 50.42 
62.159 29.83 29.90 122.81 60.31 60.32 
72.426 35.04 35.06 
82.499 40. I 0 40.12 

Numerical  and analyt ica l  values of --]"(I) for largo suction Reynolds numbers 
(section IV and V(ii) solutions). 
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suction Reynolds numbers for both section IV and section V so- 
lutions. For values of R greater than approximately 70, the theo- 
retical and the numerical solutions agree to three significant figures 
for both sections IV and V, which suggests that  asymptotically 
there is no difference between the two branches of the solution for 
large suction, and that the difference must lie in exponentially 
small terms, even within the boundary layer. 

Equation (79) shows that as R - +  oo the limiting profile /'(~) 
tends to a uniform velocity outside the boundary layer with a 
sharp discontinuity at the wall as the axial velocity falls to zero. 
This is typical of both section IV and section V profiles and sug- 
gests again that  the perturbation solution is valid for both branches 
of the large suction solution. 

In order to distinguish between the two solutions obtained nu- 
merically the outer expansion will now be examined in more detail. 

7.3. Modified outer expansion. The outer expansion / = ~ o  flnsn ~ 
was obtained from (55) by  considering only terms of order s n, and 
the solution was such that no information was found about/"(~)  
and higher derivatives, which are exponentially small. An exami- 
nation of numerical results suggests that  the difference between 
the two solutions for large suction is in the exponentially small 
terms, which were neglected in the matching process, so the outer 
expansion will now be modified to include these terms to find a 
possible reason for duality. 

It  will be assumed that, in (55) 

o o  

= E + = + ( 8 2 )  
~--0 

where O(oq@)) < en for all n. A perturbation of the outer solution 
of the form 

I(7i) = ~o~/ + g(~/) (83)  

is considered. Substitution of t5 and /(~/) from (82) and (83) into 
(55) yields 

s(~g" + g") + 2~og' -- ~o*/g" : 2~o~1. (84) 

The boundary conditions at the centre of the pipe become 

g(O) = 0, lim ~7.~g"(~) = O. (85)  
,rk->O 
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The solution of (84) subject to the boundary conditions (85) is 

g(7) = ~17 + To7 1 - -  o~71-t- ~ - - ] ,  (86) 

where ~ = oLo/e, and where ~1 and yo are arbitrary constants. For 
(86) to be a valid approximation, y0~ 2 must be exponentially small. 
Then 

~.7 ~ \ 
/(B) = (c~0 -t- al) 7 ~- )'07 1-- a 7 ~- - -~ - - ) .  (87) 

This solution will now be compared with the solutions obtained nu- 
merically to see if any guide can be obtained concerning the differ- 
ences between the two numerical solutions. 

From (87),/"(7*) = 0 when 7" = 2/o~ = 2e(1 -t- e + 3ez + .. .)-1. 
This implies that  a turning point of/ ' (7)  exists at this point. Since 
f"(7) = ~2~0, then/ '(7*) is a minimum for y0 > 0, and is a maxi- 
mum for y0 < 0. This is contirmed by  numerical results, where 
section IV solutions have a minimum at approximately 7 * =  2e, 
and section V(ii) solutions have a maximum value at this point. 

Further justification for the solution (87) is found by  considering 
the ratio 

+ . . . .  

This ratio again agrees with numerical results for both section IV 
and section V(i) solutions. 

As a further check on the validity of the solution given by  (87), 
the constant y0 was evaluated for R equal to 72.43 and 72.44, the 
cases in which the solutions had been obtained for sections V(ii) and 
IV, respectively. 

From equation (87) 

r0  = - t " ( o )  

and, using the values of f'(0) given by  the numerical solutions it is 
found that y0 = ~5 .9  × 10 -7. With this value of yo the solution 
(87) accurately predicts the numerical solutions for both section IV 
and section V(ii) in the range 0 ~< 7 ~< 0.6. 

No further progress could be made to find a method of evaluating 
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y0. Since the difference between the two solutions appears to lie in 
this constant, it would be of interest to know whether such a method 
can be found. 
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