Conversion of gibberellin A_{20} to gibberellins A_1 and A_5 in a cell-free system from *Phaseolus vulgaris*

Yuji Kamiya¹, Masahiro Takahashi¹*, Nobutaka Takahashi¹ and Jan E. Graebe²

¹ Institute of Physical and Chemical Research, Wako-shi, Saitama 351, Japan, and

² Pflanzenphysiologisches Institut der Universität, Untere Karspüle 2, D-3400 Göttingen, Federal Republic of Germany

Abstract. The soluble fraction of a cell-free system from immature seeds of *Phaseolus vulgaris* L. converts gibberellin A_{20} (GA₂₀) to GA₁ and GA₅. It does however not metabolize GA₁ and GA₂₉ to GA₅, showing that in this system GA₂₀ is converted directly to GA₅. The steps from GA₂₀ to GA₁ (3-hydroxylation) and from GA₂₀ to GA₅ (Δ^2 double-bond formation) require oxygen, Fe²⁺ and α -ketoglutarate, and are stimulated by ascorbate. The enzymes catalyzing these conversions have properties similar to those of GA oxidases found in *Cucurbita maxima* and *Pisum sativum*.

Key words: Gibberellin biosynthesis – α -Ketoglutarate – Oxidase – *Phaseolus* (GA synthesis).

Introduction

Cell-free systems that catalyze steps in gibberellin (GA) biosynthesis have been mainly prepared from immature seeds of Cucurbitaceae and Leguminosae (see Graebe 1982, Hedden 1983 for recent reviews).

In the Fabaceae (Leguminosae), most of the endogenous GAs are 13-hydroxylated GAs which also are found in many other higher plants studied but do not occur in the Cucurbitaceae (Takahashi 1974; Graebe and Ropers 1978). Sponsel et al. (1979) suggested that from a chemotaxonomic consideration of endogenous GAs the Fabaceae could be divided into two groups. The major endogenous GAs of *Pisum sativum* (Frydman et al. 1974) and

Vicia faba (Sponsel et al. 1979), both in the tribe Vicieae, are hydroxylated only in the 13-position (e.g. GA_{20} ; structure 1) but those of *Phaseolus vulgaris* (Hiraga et al. 1974) and *Phaseolus coccineus* (MacMillan et al. 1960), in the tribe *Phaseoleae*, are 3,13-dihydroxylated (e.g. GA_1 ; structure 2). Recently, we studied the metabolism of GAs in a cell-free system from *Pisum sativum*; we elucidated the biosynthetic pathway of all major endogenous GAs of this plant and concluded that the system was favorable for studying the conversion of C_{20} -GAs to C_{19} -GAs. The immediate precursor of C_{19} -GAs was confirmed to be C-20 aldehyde GAs (Kamiya and Graebe 1983).

We now have prepared a cell-free system from *Phaseolus vulgaris* to study 3-hydroxylation and the introduction of a double bond in GAs. The mode of introduction of the Δ^2 double bond to form GA₅ (5) has not been studied before. A cell-free system from suspensors of *P. coccineus* prepared by Ceccarelli et al. (1981) also produces GA₁, GA₅ and GA₈ (4) but these authors did not study the sequence in which these GAs are formed. The biosynthetic pathway of GA₅ has so far been unknown.

^{*} Graduate student, University of Tokyo

Abbreviations: GA_n = gibberellin A_n ; HPLC = high-performance liquid chromatography; GC-MS = combined gas chromatography-mass spectrometry; TLC = thin-layer chromatography; TMSi/TMSi = trimethylsilyl ether/trimethylsilyl ester

In this paper, we describe the metabolism of GA_{20} (1) to GA_1 (2) and GA_5 (5) in the cell-free system from *P. vulgaris*.

Materials and methods

Preparation of cell-free extracts. Phaseolus vulgaris L. cv. Kentucky Wonder (from Kaneko Seeds, Tokyo, Japan) was grown in the summer of 1983. Immature seeds were harvested 17 d after anthesis and the seed coats removed. The embryos were homogenized in potassium-phosphate buffer (0.05 M, pH 8.0; 1:1, v/w) with a mortar and pestle on ice for 5 min. The homogenate was filtered through cheesecloth and centrifuged at 2000 g for 10 min at 4° C. The supernatant was concentrated with dry Sephadex (G-25 fine, 3:1, v/w; Pharmacia Fine Chemicals, Uppsala, Sweden), then centrifuged at 1000 rpm for 3 min to separate the concentrate from the Sephadex. The concentrate (two to three-fold) was centrifuged at 20000 g for 1 h at 4° C. The supernatant, referred to as S-200, was stored in liquid N₂.

Gel filtration of S-200. Lyophilized S-200 (10 ml) was dissolved in H_2O (5 ml) and filtered through a Sephadex G-25 column (1.6 cm diameter, 44 cm long) equilibrated and eluted with potassium-phosphate buffer (0.05 M, pH 8.0). The effluent was monitored at 280 nm and 254 nm. The protein-containing fraction (25 ml) eluting immediately after the void volume and absorbing at 280 nm was collected and lyophilized. Before use, the protein fraction was dissolved in H_2O (8 ml).

Preparation of $[1^{4}C]GAs$ and $[1^{8}O]GA_{20}$. $[1^{4}C]Gibberel$ $lin A_{12}$ was prepared from $[2^{-14}C]$ mevalonic acid using a cellfree system from the endosperm of *Cucurbita maxima* (Graebe et al. 1974); $[1^{4}C]GA_{20}$ and $[1^{4}C]GA_{29}$ were prepared from $[1^{4}C]GA_{12}$ using a cell-free system from the embryo of *Pisum* sativum (Kamiya and Graebe 1983); $[1^{4}C]GA_{1}$ was prepared from $[1^{4}C]GA_{20}$ using the *P. vulgaris* cell-free system described in this paper. The specific activities of the $[1^{4}C]GA_{3}$ were as follows: $[1^{4}C]GA_{20}$, 1.67 GBq mmol⁻¹; $[1^{4}C]GA_{29}$, 0.59 GBq mmol⁻¹; $[1^{4}C]GA_{1}$, 0.67 GBq mmol⁻¹. The radioactivity was measured with a liquid scintillation counter (Packard Instruments, Downers Grove, III., USA; model 3300) using a toluene scintillator (efficiency approx. 88%) and converted to Bq by using an internal standard.

Gibberellin A_{20} (100 µg) was heated with 2 N K¹⁸OH (90A% ¹⁸O) (20 µl) at 100° C for 3 h in a sealed tube, then acidified with 5 N HCl, and extracted with ethyl acetate. The ethyl-acetate extracts were dried under an N₂ flow to give [¹⁸O]GA₂₀. The proportion of [¹⁸O] in the [¹⁸O]GA₂₀ was estimated to be 60 A% by combined gas-chromatography-mass spectrometry (GS-MS).

Incubation of $[^{14}C]GAs$ and $[^{18}O]GA_{20}$ under normal conditions. $[^{14}C]Gibberellin A_{20}$, $[^{14}C]GA_1$ and $[^{14}C]GA_{29}$ (1000 Bq) were incubated for 4 h at 30° C with S-200 (1 ml) containing 0.5 mM FeSO₄, 5 mM ascorbate and 5 mM α -ketoglutarate at pH 8.0. $[^{18}O]GA_{20}$ (5 µg) was incubated with S-200 (5 ml, containing the same cofactors and under the same conditions.

Incubation under N_2 or with different cofactors. Three 1-ml portions of S-200 containing 0.5 mM FeSO₄, 5 mM ascorbate and 5 mM α -ketoglutarate were lyophilized in test tubes (1 cm diameter, 10 cm long) with rubber caps. Two syringe needles were put through the cap and N₂ gas was passed through the tubes to replace air. One portion was dissolved in H₂O (1 ml) and was incubated with $[{}^{14}C]GA_{20}$ (1000 Bq) in air at 30° C for 2 h. The second portion was dissolved in de-gassed H₂O and was incubated with $[{}^{14}C]GA_{20}$ first under N₂ for 1 h and then in air also for 1 h. The third portion was incubated for 2 h under N₂ after addition of de-gassed H₂O and $[{}^{14}C]GA_{20}$

For the study of cofactor requirements, $[^{14}C]GA_{20}$ (530 Bq) was incubated with the gel-filtered protein fraction (1 ml) for 4 h at 30° C and cofactors as in Table 2.

Extraction of GAs from the incubation mixtures. After incubation, the mixtures were acidified to pH 2 with 5 N HCl and acetone was added (1:1, v/v). The products were extracted with ethyl acetate (same volume as acetone) three times and the combined ethyl-acetate extracts were washed with a small amount of water and dried under N₂ flow.

Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Silica-gel plates ($20 \cdot 20 \text{ cm}^2$, 0.2 mm thickness; DC-Alufolien Kieselgel 60, Art. 5553, E. Merck, Darmstadt, FRG) were developed with ethyl acetate: acetic acid (100:1, v/v). Rf values of the GAs studied were as follows; GA₅ and GA₂₀, 0.63; GA₁ 0.48; GA₂₉, 0.36. Preparative TLC was performed on 0.2-mm layers which had been washed with methanol: acetone (1:1, v/v) before use. The plates were scanned for radioactivity with a radiochromatogram scanner (Aloka TLC-101; Aloka Co., Tokyo, Japan), and the radioactive zones were eluted with methanol: acetone (1:1, v/v) for further analysis.

For HPLC, a Nucleosil 5 N $(CH_3)_2$ column (4.6 mm diameter, 50 mm long) eluted with methanol containing 0.05% acetic acid was used. Flow rate was 1 ml min⁻¹. The eluant was collected in 1-ml fractions, by means of a Spectra Physic (San Jose, Calif., USA) SP8770 pump.

Combined gas chromatography-mass spectrometry (GC-MS) and GC-high-resolution MS. The mass spectrometers used were Hitachi (Tokyo, Japan) M80A (GC-MS) and JEOL (Tokyo) DX-300 (GC-high-resolution MS) equipped with a glass column (3 mm diameter, 1 m long) packed with 2% OV-1 on Chromosorb W (Gaschro Kogyo, Tokyo). The ionizing voltage was 15-20 eV and the oven and injection temperatures were 210° C. The carrier gas was helium at a flow rate of 50 ml min⁻¹.

The ¹⁴C-specific activities were determined as described in Kamiya and Graebe (1983). Samples for GC-MS and GC-high-resolution MS were trimethylsililated with N-methyl-N-(trimethylsilyl)trifluoroacetamide at 80° C for 30 min.

Results

Conversion of GA_{20} to GA_1 and GA_5 by soluble enzymes. [¹⁴C]Gibberellin A_{20} was incubated with S-200 in the presence of Fe²⁺, α -ketoglutarate and ascorbate. As shown in Fig. 1, GA_{20} (1) was metabolized to a more polar compound with an Rf value on TLC identical to that of authentic GA_1 (2). Since GA_5 (5) and GA_{20} (1) were not separated by TLC with this solvent system, the radioactive zone corresponding to GA_{20} was eluted from the Silica-gel plate and further purified by HPLC to give two radioactive fractions (Fig. 2). The retention time of the radioactive compound first eluting was identical with that of GA_{20} , and the retention

Fig. 1. Separation of radioactive products obtained by incubation of $[^{14}C]GA_{20}$ with a cell-free preparation from *P. vulgaris* (S-200) and cofactors. Separation by Silica-gel TLC. *a* GA₂₀ and GA₅-like fraction; *b* GA₁-like fraction. *Black circle* shows the position of GA₂₀

Fig. 2. High-performance liquid chromatography of the $[^{14}C]GA_{20}$ and GA_5 -like fraction eluted from the Silica-gel TLC plate shown in Fig. 1. *Black circle* shows the retention time of GA_{20}

time of the second fraction identical with that of GA₅ (Yamaguchi et al. 1982). The fraction resembling GA₁ was the main product while the GA₅-like fraction was about 40% of it. This ratio remained almost constant in different incubations. Conclusive identification was obtained by using [¹⁸O]GA₂₀ as a substrate and identifying the products by GC-MS. Alkaline treatment of GA₂₀ in 2 N K¹⁸OH afforded [¹⁸O]GA₂₀ with 60 A% ¹⁸O. [¹⁸O]Gibberellin A₂₀ was incubated with S-200, Fe²⁺, α -ketoglutarate and ascorbate. After incubation, the ethyl acetate-soluble fraction was purified

Fig. 3A, B. Mass spectra of trimethylsilyl derivatives of GA_1 and GA_5 obtained by incubation of $[^{18}O]GA_{20}$ with a cell-free preparation of *P. vulgaris* (S-200) and cofactors. A Mass spectrum of TMSi/TMSi $[^{18}O]GA_1$; B mass spectrum of TMSi/TMSi $[^{18}O]GA_5$

by TLC and HPLC as for the ¹⁴C experiments. The fractions corresponding to GA_1 , GA_5 and GA_{20} were derivatized and analyzed by GC-MS. Trimethylsilyl derivatives of the GA_1 and GA_5 fractions gave clear spectra with strong $(M+2)^+$ ions shwoing the presence of one ¹⁸O atom in each compound (Fig. 3). The presence of ¹⁸O was confirmed by GC-high-resolution MS; M⁺ of [¹⁸O]GA₁ trimethylsilyl ether/trimethylsilyl ester (TMSi/TMSi) (C₂₈ H₄₈ ¹⁶O₅ ¹⁸O₁ Si₃; calculated 566.2701, observed 566.2737), M⁺ of [¹⁸O]GA₅ TMSi/TMSi (C₂₅ H₃₈ ¹⁶O₄ ¹⁸O₁ Si₂, calculated 476.2201 observed 476.2257).

The ¹⁸O atom in the lactone ring was not exchanged with ¹⁶O of water during the incubation and purification since the [¹⁸O]GA₂₀ recovered after incubation showed almost the same A% ¹⁸O as the starting material. On the other hand, GA₁ was diluted with endogeneous GA₁ (approximately two-fold). This result is in agreement with the amounts of endogeneous GAs in *P. vulgaris* reported by Yamane et al. (1977).

Table 1. Incubation of $[{}^{14}C]GA_1$, $[{}^{14}C]GA_{20}$ and $[{}^{14}C]GA_{29}$ with a cell-free preparation from *P. vulgaris* (S-200) and cofactors^a

Substrate	Radioactivity in products (Bq)					
	GA ₁	GA5	GA ₂₀	GA ₂₉		
GA ₁	727	0	0	0		
GA ₂₀	435	152	100	22 ^b		
GA ₂₉	0	0	0	587		

^a 0.5 mM FeSO₄, 5 mM α-ketoglutarate, 5 mM ascorbate

^b GA₂₉-like compound, not identified conclusively by GC-MS

Table 2. Cofactor requirements for the conversion of $[^{14}C]GA_{20}$ to GA_1 and GA_5 by a gel-filtered preparation from *P. vulgaris* (S-200)

Cofactors ^a				Products (Bq) ^b	
Fe ²⁺	α-Keto- glutarate	Ascorbate	NADPH	GA1	GA ₅
+	+	+		70.1	30.8
	+	+		24.5	16.8
+	_	+	-	8.3	8.8
+	+	_	~	9.8	9.0
+	+		+	14.6	10.5

^a 0.5 mM FeSO₄, 5 mM α -ketoglutarate, 5 mM ascorbate, 1 mM NADPH

Mean values of two experiments. The ratios of GA_1 and GA_5 were identical in both experiments

Table 3. Requirement for air in the conversion of $[^{14}C]GA_{20}$ to GA_1 and GA_5 by S-200

Conditions	Radioactivity in products (Bq) ^a		
	GA ₁	GA ₅	
2 h in air	165.0	72.7	
1 h in N_2 , then 1 h in air	165.0	80.1	
$2 h in N_2$	61.7	24.3	

^a Mean values of three experiments

There are two other possible precursors for GA_5 (5), namely GA_1 (2) and GA_{29} (3). Gibberellin A_5 could conceivably be formed via GA_1 by dehydration of the C-3 hydroxyl group or, less likely, via GA_{29} by dehydration of the C-2 hydroxyl group. [¹⁴C]Gibberellin A_{29} and [¹⁴C]GA₁ were therefore incubated with S-200 in the presence of Fe²⁺, α -ketoglutarate and ascorbate. As shown in Table 1, GA_1 and GA_{29} were not converted to GA_5 . Thus GA_{20} is directly converted to GA_5 .

Cofactor and oxygen requirements for the conversion of GA_{20} to GA_1 and GA_5 . The protein fraction of S-200 was separated from the small-molecule fraction by Sephadex G-25 column chromatography and incubated with $[{}^{14}C]GA_{20}$ as the substrate to define the cofactor requirements for its conversion to GA_1 and GA_5 . Table 2 shows that the conversion of GA_{20} (1) to GA_1 (2) and GA_5 (5) requires α -ketoglutarate, Fe^{2+} and ascorbate. Ascorbate could not be replaced by NADPH.

When GA_{20} was incubated under aerobic and anaerobic conditions with S-200 and various cofactors, the conversion of GA_1 and GA_5 was found to be dependent on the presence of oxygen for full activity, but that about one third of the activity remained even under a nitrogen atmosphere. This may have been a consequence of incomplete replacement of adsorbed oxygen with nitrogen, but the possibility remains that the requirement for oxygen is less than absolute.

Discussion

The cell-free system prepared from immature seeds of Phaseolus vulgaris very actively converted GA20 (1) to GA_1 (2) and GA_5 (5). [¹⁴C]Gibberellin A_{53} , the precursor of 13-hydroxylated GAs in peas (Kamiya and Graebe 1983), was also converted by the *P. vulgaris* system to several, more polar products. but these were not identified and the data are not shown here. ¹⁸O was used as a convenient stable isotope label for conclusive identification of products by GC-MS. [²H]Gibberellins are more commonly used but their preparation is often timeconsuming (Hedden 1979). In comparison, it is easy to label GAs having a γ - or δ -lactone with ¹⁸O by treatment with 2 N K¹⁸OH; ¹⁸O-labeled GA_9 , GA_{15} , GA_{20} and GA_{44} were prepared by this method. Since the ¹⁸O atom in the lactone ring was shown not to exchange with ¹⁶O of water during the incubation and purification, [180]GAs should be good substrates for metabolic studies.

Gibberellin A_3 (7), GA_5 (5) and GA_7 (6) contain double bonds at Δ^1 or Δ^2 in ring A but the mechanism of the introduction of a double bond is unknown. The chemical synthesis of GA₅ from GA_1 by dehydration of C-3 hydroxyl group (Murofushi et al. 1977) indicated that GA₅ might arise from GA_1 or GA_{29} (3) in the metabolic pathway. In our experiments, GA₁ and GA₂₉ were not converted to GA₅, so GA₂₀ must have been directly converted to GA_5 , thus eliminating the route by dehydration of the C-2 or C-3 hydroxyl group. This result is in agreement with those from the in-vivo experiments of Yamane et al. (1977). These authors reported that GA_1 was metabolized to GA_8 (4), and GA_{20} was metabolized to GA_1 , GA₂₉ and GA₈. Their chromatographic systems

The amount of GA₁ produced without adding Fe^{2+} was about one third and the amount of GA₅ about one half of the amount produced when all cofactors were present (Table 2). This was probably because of incomplete removal of Fe²⁺ from the enzyme solution by Sephadex gel filtration. Hedden and Graebe (1983) reported the same cofactor requirements for the soluble GA oxidases in the endosperm of Cucurbita maxima and also found residual activity in the absence of Fe²⁺ after Sephadex gel filtration; this residual activity was strongly reduced by addition of bipyridine to bind Fe²⁺. Removal of α -ketoglutarate or ascorbate strongly reduced the conversion of GA_{20} to GA_1 and GA5; the ascorbate could not be replaced by NADPH. Although there is no incorporation of oxygen into the GA molecule when GA₂₀ is converted to GA₅, the depression of both conversions by over 60% under nitrogen shows that oxygen is required nevertheless. This resembles the case of the conversion of GA_{19} to GA_{20} in the pea system, which also requires oxygen (Kamiya and Graebe 1983) although the two oxygen atoms of the lactone ring come from C-19 carboxylic acid and not from molecular oxygen (Bearder et al. 1976).

The mechanism of the Δ^2 double-bond formation could be explained by an Fe-O enzyme complex (Visser 1980) attacking GA₂₀ (1) at the C-3 position. If the Fe-O bond is cleaved, GA₁ (2) will be formed. If the O-C bond is cleaved, GA₅ (5) may be formed with elimination of the hydrogen at C-2. However, our data do not allow conclusions with respect to a common enzyme-substrate complex as an intermediate in the formation of the two products.

Although a 2-hydroxylating enzyme has been isolated and characterized from mature seeds of *P. vulgaris* (Hoad et al. 1982), 2-hydroxylation activity in our preparation was weak. The immature seeds we used may have at the wrong stage of development for strong 2-hydroxylating activity. In peas, 2β -hydroxylation activity is typical for later stages of seed development (Frydman et al. 1974; Sponsel 1983).

We are grateful to Dr. S. Yoshida, University of Tokyo, for the GC-high-resolution-MS measurements. We thank Miss K. Nakayama and Mr. M. Kobayashi for the preparation of the cell-free systems. The Deutsche Forschungsgemeinschaft supported part of the work.

References

 Bearder, J.R., MacMillan, J., Phinney, B.O. (1976) Origin of the oxygen atoms in the lactone bridge of C₁₉ gibberellins.
 J. Chem. Soc. Chem. Commun., 834–835

- Y. Kamiya et al.: Biosynthesis of GA1 and GA5 in Phaseolus
- Ceccarelli, N., Lorenzi, R., Alpi, A. (1981) Gibberellin biosynthesis in *Phaseolus coccineus* suspensor. Z. Pflanzenphysiol. 102, 37-44
- Frydman, V.M., Gaskin, P., MacMillan, J. (1974) Qualitative and quantitative analyses of gibberellins throughout seed maturation in *Pisum sativum* cv. Progress No. 9. Planta 118, 123–132
- Graebe, J.E. (1982) Gibberellin biosynthesis in cell-free systems from higher plants. In: Plant growth substances 1982, pp. 71–80, Wareing, P.F., ed. Academic Press, London New York
- Graebe, J.E., Hedden, P., Gaskin, P., MacMillan, J. (1974) Biosynthesis of gibberellins A₁₂, A₁₅, A₂₄, A₃₆ and A₃₇ by a cell-free system from *Cucurbita maxima*. Phytochemistry **13**, 1433–1440
- Graebe, J.E., Ropers, H.J. (1978) Gibberellins. In: Phytohormones and related compounds. A comprehensive treatise, vol. 1, pp. 107–204, Letham, D.S., Goodwin, P.B., Higgins, T.J.V., eds. Elsevier/North Holland, Amsterdam
- Hedden, P. (1979) Aspects of gibberellin chemistry. In: Am. Chem. Soc. Symp. Ser. No. 111: Plant growth substances, pp. 19–56, Mandava, N.B., ed. Am. Chem. Soc., New York
- Hedden, P. (1983) In vitro metabolism of gibberellins. In: The biochemistry and physiology of gibberellins, vol. 1, pp. 99– 149, Crozier, A., ed. Praeger Press, New York
- Hedden, P., Graebe, J.E. (1982) Cofactor requirements for the soluble oxidases in the metabolism of the C₂₀-gibberellins.
 J. Plant Growth Regul. 1, 105–116
- Hiraga, K., Kawabe, S., Yokota, T., Murofushi, N., Takahashi, N. (1974) Isolation and characterization of plant growth substances in immature seeds and etiolated seedlings of *Pha-seolus vulgaris*. Agric. Biol. Chem. **38**, 2521–2527
- Hoad, G.V., MacMillan, J., Smith, V.A., Sponsel, V.M., Taylor, D.A. (1982) Gibberellin 2β -hydroxylases and biological activity of 2β -alkyl gibberellins. In: Plant growth substances 1982, pp. 91–100, Wareing, P.F., ed. Academic Press, London New York
- Kamiya, Y., Graebe, J.E. (1983) The biosynthesis of all major pea gibberellins in a cell-free system from *Pisum sativum*. Phytochemistry 22, 681–689
- MacMillan, J., Seaton, J.C., Suter, P.J. (1960) Isolation of gibberellin A₁ and gibberellin A₅ from *Phaseolus multiflorus* (coccineus). Tetrahedron 11, 60–66
- Murofushi, N., Durley, R.C., Pharis, R.P. (1977) Preparation of radioactive gibberellins A₂₀, A₅ and A₈. Agric. Biol. Chem. **41**, 1075–1079
- Sponsel, V.M. (1983) The localization, metabolism and biological activity of gibberellins in maturing and germinating seeds of *Pisum sativum* cv. Progress No. 9. Planta 159, 454–468
- Sponsel, V.M., Gaskin, P., MacMillan, J. (1979) The identification of gibberellins in immature seeds of *Vicia faba*, and some chemotaxonomic considerations. Planta **146**, 101–105
- Takahashi, N. (1974) Recent progress in the chemistry of gibberellins. In: Plant growth substances 1973, pp. 228–240, Sumiki, Y., ed. Hirokawa Publishing Co., Tokyo
- Visser, C.M. (1980) Role of ascorbate in biological hydroxylations: origin of life consideration and the nature of the oxenoid species in oxygenase reactions. Bioorg. Chem. 9, 261-271
- Yamaguchi, I., Fujisawa, S., Takahashi, N. (1982) Qualitative and semi-quantitative analysis of gibberellins. Phytochemistry 21, 2049–2055
- Yamane, H., Murofushi, N., Osada, H., Takahashi, N. (1977) Metabolism of gibberellins in early immature bean seeds. Phytochemistry 16, 831–835

Received 5 March; accepted 12 May 1984