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Abstract 

Species of the ascomycetous genus Talaromyces have been examined for profiles of secondary metabolites on 
TLC. The greatest number of specific metabolites were produced on oatmeal-, malt extract- and yeast- 
extract sucrose agars. Profiles of intracellular secondary metabolites produced on oatmeal agar were specific 
for each species and provided a means of simple differentiation of the taxa. Examination of the most 
important species using high performence liquid chromatography (HPLC) allowed to solve some taxonomic 
problems. Known mycotoxins are produced by T. stipitatus (duclauxin, talaromycins, botryodiploidin), T. 
stipitatus chemotype II (emodin), T. panasenkoi (spiculisporic acid), T. trachyspermus (spiculisporic acid), T. 
macrosporus (duclauxin) and T. wortmannii (rugulosin). Wortmannin is produced by an atypical strain of T. 
flavus but not T. wortmannii. Several other secondary metabolites were discovered for the first time in the 
following species: Glauconic acid is produced by T. panasenkoi, T. ohiensis and T. trachyspermus; vermicu- 
line by T. ohiensis; duclauxin by T. flavus var. macrosporus and the mitorubrins by T. flavus and T. udagawae. 
The profiles of secondary metabolites support the established taxonomy of the species based on morphology, 
showing the genetic stability of profiles of secondary metabolites in Talaromyces. Two new taxa are 
proposed: T. macrosporus comb. nov. (stat. anam. Penicillium macrosporum stat. nov.), and Penicillium 
vonarxii, sp. nov. for the anamorph of T. luteus. 

Introduction 

Since the monographic treatment by Stolk & Sam- 
son (1972) the species delimitation in the ascomy- 
cetous genus Talaromyces has been generally ac- 
cepted, except for the classification of certain spe- 
cies in either Talaromyces, Hamigera or Byssochla- 
mys (Stolk & Samson 1971 and 1972; Samson & 
Abdel-Fattah 1978; Pitt 1980; Pitt & Hocking 1979; 
von Arx 1986). These genera contain species with 
heat-resistant ascospores (Hocking & Pitt 1984) 
and some species are known mycotoxin producers 
(Frisvad 1986). The stability of Talaromyces taxo- 
nomy contrasts with the different views in Eupen- 

icillium and Penicillium taxonomy (Stolk & Sam- 
son 1983; Pitt 1980; Ramirez 1982; Frisvad 1986). 
Species of Talaromyces should therefore provide 
good test material for the hypothesis that profiles 
of secondary metabolites are fundamental taxo- 
nomic criteria in filamentous fungi. 

In this paper the results of the analysis of second- 
ary metabolites of the genus are presented and the 
taxonomic implications discussed. 

Materials and methods 

Isolates in good condition of all species in Talaro- 
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myces (Table 2) were grown on Czapek yeast-ex- 
tract agar (CYA), malt extract agar (MEA), yeast- 
extract sucrose agar (YES) agar, and oatmeal agar 
(OA) (for formulations see Samson & Pitt 1985; 
Frisvad & Filtenborg 1983). Trace metals were 
added to all media (Frisvad & Filtenborg 1983) and 
the yeast extract and peptone ingredients were 
from Difco. The fungi were incubated at 25 ~ C and 
30 ~ C in the dark and examined after 1 and 2 weeks. 

Representative and authentic strains of all spe- 
cies in Talaromyces were examined for secondary 
metabolites by simple thin-layer chromatographic 
techniques (Filtenborg & Frisvad 1980; Filtenborg 
et al. 1983): Extracellular metabolites were deter- 
mined by applying of superimposed agar plugs of 
YES and MEA agar; intracellular metabolites 
were determined by applying of superimposed ex- 
tracted mycelial plugs of YES plus CYA agar, 
MEA plus OA or either MEA or OA agar alone on 
silica gel plates. The plates were developed in tolu- 
ene: ethylacetate: 90% formic acid (5/4/1, v/v/v) 
(TEF) and chloroform: acetone: 2-propanol (85/ 
15/20, v/v/v) (CAP) with griseofulvin as an external 
standard. All elutions were allowed to migrate 
15 cm from the application line. Plates eluted in 
TEF were treated with cold 48% sulphuric acid and 
afterwards with anisaldehyde spray (Frisvad & Fil- 
tenborg 1983) and heated at 130~ for 8 minutes. 
Plates eluted in CAP were treated with cerium 
sulphate spray (Filtenborg et al. 1983). The plates 
were examined in daylight and under UV light (254 
and 366 nm) before and after all treatments. Liquid 
chromatography (HPLC) was performed accord- 
ing to Frisvad & Thrane (1987) using a Hewlett 
Packard diode array detector (DAD) to obtain 
UV-VIS spectra of all eluting compounds and an 
alkylphenone retention index system. A series of 
standards were used to confirm the identity of some 
of the secondary metabolites detected. These stan- 
dards are listed in Table 1. For HPLC analysis the 
contents of five 9 cm diam Petri dishes each of 
MEA and OA, with 14 day old cultures grown at 
25 ~ C, were placed in a plastic bag together with 
100 ml chloroform/methanol (2:1, v/v) and extract- 
ed for 3 min in a Colworth Stomacher 400. After 
filtration through a hydrophobic filter (Whatman 
1PS), the remaining agar and mycelium was reex- 

tracted with 100 ml ethyl acetate containing lml 
85 % phosphoric acid. The filtered water free orga- 
nic phases were combined and evaporated in va- 
cuo. Further details of the procedure are described 
by Frisvad & Thrane (1987). 

Results and discussion 

Production of secondary metabolites 

All species in Talaromyces produced high numbers 
of secondary metabolites making a direct identifi- 
cation of each species based on TLC profiles of 
coloured spots possible. The HPLC results showed 
that each species produced chromophore families 

Table 1. Retention indices for secondary metabolites standards 
in the study of Talaromyces. 

Secondary metabolite Retention index (RI) 

Alternariol 937 
Alternariol monomethylether 1070 
Catenarin 1191 
Chrysophanol 1240 
Citreoviridin 1028 
Dipicolinic acid 670 
Duclauxin 1133 
Emodin 1130 
Erythroglaucin 1439 
Flavoglaucin 1538 
Glauconic acid 910 
Helminthosporin 1325 
Islandicin 1354 
Luteoskyrin 1240 
Mitorubrin 1083 
Mitorubrinic acid 924 
Mitorubrinol 928 
Mitorubrinolacetate 1052 
Monorden 917 
Naphthalic anhydride 1432 
Purpurogenone 1184 
Rubratoxin B 1071 
Rugulosin 1123 
Rugulovasine A 716 
Secalonic acid D 1165 
Skyrin 1333 
Stipitatic acid 676 
Vermiculine 834 
Vermicelline 962 
Wortmannin 938 



specific for one taxon and some chromophore fam- 
ilies which were shared by two or more taxa. 

All species of Talaromyces produced many yel- 
low, orange and red metabolites. Some of these 
metabolites were members of the known anthra- 
quinone chemosyndrome (biosynthetic family) 
centered around emodin, skyrin, rugulosin, cate- 
narin and erythroglaucin (T. wortmannii and che- 
motype II of T. stipitatus). The mitorubrin chemo- 
syndrome was restricted to T. flavus, T. macro- 
sporus, T. udagawae, T. mimosinus and T. wort- 
mannii. The variety of members of the mitorubrin 
biosynthetic family differed from species to species 
and were most diverse in T. wortmannii. Other 
chromophore families with UV-vis spectra contain- 
ing strong absorptions from 400 to 450nm were 
major coloured products of species like T. helicus 
and T. luteus, so the macroscopically visible yellow 
pigments in the mycelium and ascomata of these 
species are caused by different biosynthetic fam- 
ilies of compounds. Weakly coloured secondary 
metabolites such as duclauxin are present in only 
two taxa: T. stipitatus and T. flavus var. macro- 
sporus, while the closely related bacillosporins 
were only present in another heat-resistant fungus 
T. bacillisporus. These three heat-resistant species 
characteristically contained these closely related 
phenalenones in large amounts and as dominant 
secondary metabolites, indicating that they may be 
a major protective principle in heat resistance. 

While stipitatic acid was only produced by T. 
stipitatus, glauconic acid was detected for the first 
time in T. panasenkoi, T. ohiensis and T. trachys- 
permus indicating a close chemotaxonomic rela- 
tionship between the latter three species. This con- 
firms the morphological observations by Stolk and 
Samson (1972), who found that these species pro- 
duce similar ascomatal initials. Vermiculine was 
found in T. ohiensis and the production of this 
secondary metabolite was confirmed for T. fiavus, 
but the production of vermiculine in T. wortmannii 
(Jones et al. 1984) could not be confirmed. All the 
secondary metabolites mentioned above have also 
been found in one or more species of Penicillium 
subgenus Biverticillium (Turner 1971; Turner & 
Aldridge 1983; Frisvad 1986; Mantle 1987), and 
this supports the close taxonomic relationship be- 
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tween Talaromyces and the anamorphic Penicilli- 
um subgenus Biverticillium. 

The profiles of intracellular metabolites pro- 
duced on OA, as seen on TLC plates using the agar 
plug method, were specific and consistent for each 
taxon, but with TLC alone it is difficult to assess 
whether these metabolites represent one or more 
biosynthetic families in each taxon. T. stipitatus and 
T. wortmannii (Table 2, see also Turner 1971; 
Turner & Aldridge 1983) are at least 4 to 5 known 
biosynthetic families and our HPLC results strong- 
ly indicate that all Talaromyces taxa produce at 
least four, often eight to ten chromophore families 
on MEA and OA. The profiles of intracellular 
metabolites produced on MEA were less specific as 
evaluated using TLC, but the technique was useful 
in showing which metabolites were common in dif- 
ferent taxa. The most conspicous of these metabo- 
lites was a yellow coloured (both in daylight and 
UV light before and after spraying with sulphuric 
acid, relative Rf value to griseofulvin 0.98) sub- 
stance produced by T. flavus, T. macrosporus, T. 
mimosinus, T. udagawae, T. wortmannii and sever- 
al species in Penicillium subgenus Biverticillium, A 
partial spectroscopic characterisation (UV-vis and 
NMR) showed that this metabolite was mitorubrin- 
ic acid and this was confirmed by comparison with 
an authentic standard. T. rotundus, T. trachysper- 
mus, T. assiutensis and T. ohiensis also have some 
metabolites in common, viz. glauconic and glau- 
canic acid seen on TLC (Table 2 and 3). 

Mycotoxin production by Talaromyces species is 
of interest because these species may occur in pas- 
teurized fruit juices (Hocking & Pitt 1984; Bagger- 
man & Samson 1988) and other food products. T. 
flavus could be a potential producer of wortmannin 
in food, but this species is much less heat-resistant 
than T. flavus var. macrosporus, a producer of the 
mycotoxin duclauxin, Wortmannin, however, is al- 
so reported from food-borne species such as Pen- 
icillium funiculosum, Myrothecium roridum and 
Fusarium oxysporum (Abbas & Mirocha 1988). 
Very little is known on the toxicity of the metabo- 
lites of the other species in Talaromyces but emo- 
din, cited as a toxin by Wells et al. (1975) is pro- 
duced by an atypical strain of T. stipitatus (see 
discussion under Taxonomic implications). Other 
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Table 2. Species in Talaromyces, anamorph names, isolates examined and secondary metabolite production. 

Teleomorph / anamorph Isolates Secondary metabolites 

T. f lavus (Klocker) Stolk & Samson / 
P. dangeardii Pitt 

T. macrosporus (Stolk & Samson) Frisvad, 
Stolk & Samson chemotype I / 

P. macrosporum Frisvad, Stolk & Samson 

T, macrosporus chemotype II 
T, helicus (Raper & Fennell) C.R. Benjamin / 

P. spirillum Pitt 

T. stipitatus (Thom) C.R. Benjamin 
chemotype I / P. emmonsii  Pitt 

T. stipitatus chemotype II 
T. panasenkoi Pitt / P. panasenkoi Pitt 

7~ luteus (Zukal) C.R. Benjamin / 
P. vonarxii Frisvad & Samson 

T. udagawae Stolk & Samson / P. udagawae 
Sto|k & Samson 

T. wortmannii (Klocker) C.R. Benjamin / 
P. kloeckeri Pitt 

T. rotundus (Raper & Fennell) 
C.R. Benjamin / P. sphaerum Pitt 

T. trachysperrnus (Shear) Stolk & Samson / 
P. lehrnanii Pitt 

T. assiutensis Samson & Abdel-Fattah 
(= T. gossypii Pitt) / P. assiutense 
Samson & Abdel-Fattah 

T. ohiensis Pitt / P. ohiense Huang & Smith 

NRRL 2098 (NT) (b) 
CBS 261.55 
CBS 284.58 
CBS 582.72A 
CBS 387.47 
Frave1282.3 
CBS 317.63 (T) 
CBS 117.72 
CBS 353.72 
CBS 580.72 
CBS 130.89 
CBS 350.72 
CBS 335.48 (T) (poor) 
CBS 137.65 
CBS 76O.68 
CBS 550.72B 
CBS 562.72 
CBS 585.72 
CBS 375.48 (T) 
CBS 292.53 
CBS 189.72 
CBS 227.72 
CBS 349.72 
CBS 583.72C 
NRRL 2103 
CBS 348.51 (NT) 
CBS 533.59 
CBS 865.71 
CBS 750.74 
CBS 579.72 (T) 

CBS 391.48 (T) 

CBS 235.38 

CBS 293.63 

CBS 319.63 

CBS 387.67 

CBS 533.72 

CBS 369.48 (T) 
CBS 587.72 
CBS 373.48 (T) 
CBS 346.54 
CBS 282.58 
CBS 112.64 
CBS 147.78 (T) 
CBS 645.80 

CBS 162.67 (T) 

Mitorubrin (+ acid) (a), Vermicellin, vermiculine 
Mitorubrin (+ acid), Vermicellin, vermiculine 
Mitorubrin (+ acid), Vermicellin, vermiculine 
Mitorubrin (+ acid), Vermicellin, vermiculine 
Mitorubrin (+ acid), Vermicellin, vermiculine 
Mitorubrin (+ acid), Vermicellin, vermiculine 
Mitorubrin (+ acid), Duclauxin 
Mitorubrin (+ acid), Duclauxin 
Mitorubrin (+ acid), Duclauxin 
Mitorubrin (+ acid), Duclauxin 
Mitorubrin (+ acid), Duclauxin 

Stipitatic acid, Duclauxin 
Stipitatic acid, Duclauxin 
Stipitatic acid, Duclauxin 
Stipitatic acid, Duclauxin 
Catenarin, emodin, erythroglaucin 
Glauconic acid 
Glauconic acid 

Mitorubrin (+ acid), 

Mitorubrin (+ acid), 
Rugulosin, skyrin 
Mitorubrin (+ acid), 
Rugulosin 
Mitorubrin (+ acid), 
Rugulosin, skyrin 
Mitorubrin (+ acid), 
Rugulosin, skyrin 
Mitorubrin (+ acid), 
Rugulosin, skyrine 
Mitorubrin (+ acid), 
Rugulosine, skyrine 

mitorubrinol acetate 

mitorubrinol (+ acetate) 

mitorubrinol (+ acetate) 

mitorubrinol (+ acetate) 

mitorubrinol (+ acetate) 

mitorubrinol (+ acetate) 

mitorubrinol (+ acetate) 

Glauconic acid 
Glauconic acid 
Glauconic acid 
Glauconic acid 
Glauconic acid 
Glauconic acid 

Vermiculine, Glauconic acid 
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Teleomorph / anamorph Isolates Secondary metabolites 

T. galapagensis Samson & Mahoney / CBS 751.74 (T) 
P. galapagense Samson & Mahoney 

T. mimosinus Hocking / P. mimosinum Hocking CBS 659.80 (T) 
T. intermedius (Apinis) Stolk & Samson / CBS 152.65 (T) 

P. intermedium Stolk & Samson 
T. derxii Takada & Udagawa / NHL 2981 

P. derxii Takada & Udagawa NHL 2982 
T. bacillisporus (Swift) C.R. Benjamin / CBS 296.48 (Y) 

G. swiftii Pitt 
T. byssochlamydoides Stolk & Samson / CBS 413.71 (T) 

Paecilomyces byssochlamydoides CBS 533.71 
Stolk & Samson 

Z emersonii Stolk / Penicillium emersonii Stolk 

Z thermophilus Stolk / P. dupontii 
Griffin & Maublanc 

T. purpureus (E. Miller & Pacha-Aue) Stolk & 
Samson / P. purpureum Stolk & Samson 

T. leycettanus Evans et Stolk / Paecilomyces 
leycettanus (Evans & Stolk) Samson & Evans 

CBS 393.64 (T) 
CBS 814.70 
IMI 116825ii 
CBS 204.75 
CBS 373.75 
CBS 236.58 (T) 
CBS 116.72 
CBS 475.71 (T) 

CBS 398.68 (T) 

Mitorubrin (+ acid) 

(a) T = type culture, NT = neotype culture 
(b) (+ acid)= mitorubrinic acid, (+ acetate)= mitorubrinol acetate. 

mycotoxin producers in Talaromyces are T. stip- 

itatus, producing duclauxin (Mantle 1987) talaro- 
mycins (Phillips et al. 1987), and botryodiploidin 
(Fuska et al. 1988), T. macrosporus  producing du- 
clauxin (this paper) and T. t rachyspermus produc- 
ing spiculisporic acid (Fujimoto et al. 1988) 

Strains of T. f lavus  have been applied as biolog- 
ical control agents of Verticillium wilt of potato 
(Davis et al. 1986; Fravel et al. 1986). One of the 
isolates (Fravel 282.3) was examined and found to 
produce mitorubrin, mitorubrinic acid, and vermi- 
cellin, typical products of T. f lavus.  Fig. 1 shows a 
HPLC trace of this strain grown on MEA and OA. 
Kim et al. (1988) identified glucose oxidase as a 
metabolite that mediated inhibition of Verticillium 

dahliae. However,  other secondary metabolites de- 
tected by us could play also a role (vermicellin). 
Another  metabolite (retention time 28.6 min), pro- 
duced in quite large amounts on MEA and OA 
shown in Fig. 1 seems to agree well with talaron, a 
fungal inhibitor (Mizuno et al. 1974). 

All known species in Talaromyces are homothal- 
lic, with the exception of a recently described het- 
erothallic taxon, T. derxii Takada & Udagawa 
(1988). The extract of this fungus was green, (like 
that of T. bacillisporus), and both A and a strains 
and mated A + a strains produced the same char- 
acteristic profile of secondary metabolites. The 
major products in this fungus has not been found in 
any other species of Talaromyces or the related 
anamorphs Penicil l ium of subgenus Biverticillium. 

Taxonomic  implications 

Table 3 lists the species accepted in Talaromyces,  

their anamorphic states and representative cultures 
chosen for the profile of secondary metabolites. 

Raper & T h o m  (1949) placed N R R L  2103 hesis- 
tantly in T. luteus. The TLC trace of this strain was 
typical of T. panasenkoi  and our morphological 
reexamination of N RRL 2103 showed that this 
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Table 3. Biosynthetic families of secondary metabolites produced by species of Talaromyces. 

Species Specific profile of spots Production of secondary metabolites including mycotoxins 
on TLC plates (a) 

T. flavus + + I: Mitorubrin (c,d), mitorubrinic acid (c,d) 
II: Vermicellin (Fuska et al. 1979) (c) 
III: Vermiculine (Fuska et al. 1972) (c) 
IV: Vermistatine (Fuska et al. 1986) 
V: Talarone (Mizuno et al. 1974) 
VI: Wortmannin, deoxywortmannin (Simpson et al. 1979; 
MacMillan et al. 1972), wortmannolone (only seen in IMI 44277) 

T. helicus + + 

T. macrosporus chemotype I + + 

T. macrosporus chemotype If + + 
T. stipitatus chemotype I + + 

T. stipitatus chemotype II + + 
T. panasenkoi + 

T. luteus + + 

T. udagawae + + 

T. wortmannii + + 

T. rotundus + + 

T. trachyspermus + + 

T. assiutensis + + 

T. ohiensis + + 

T. galapagensis + 

T. mimosinus ++ 

T. intermedius + 

T. purpureus + + 

T. thermophilus + + 

T. derxii + + 
T. bacillisporus + + 

T. emersonii + 
T. byssochlamydoides + + 
T. leycettanus + + 

I: Mitorubrin (c,d), mitorubrinic acid (c,d) 
II: Duclauxin (c,d) 

I: Stipitatic acid (c), stipitatonic acid (c), stipitalide, 
ethylstipitate, stipitaldehydic acid (Dewar 1945; Segal 1959; 
Divekar et al. 1961; Bryant & Light 1974) 
II: 3-methyltriacetic acid lactone, triacetic acid lactone, 
tetraacetic acid lactone (Acker et al. 1966; Bentley & Zwitkovitz 
1967; Scott et al. 1971) 
III: Botryodiploidin (Fuska et al. 1988) 
IV: Duclauxin (c) (Kuhr et al. 1973) 
V: Talaromycins (Phillips et al. 1987) 
I: Catenarin (c), emodin (c), erythroglaucin (c) (van Eijk 1973) 
I: Spiculisporic acid (Fujimoto et al. 1988) 
II: Glauconic acid (c,d) 
I: Luteic acid (Turner & Aldridge 1983) 
I: Mitorubrin (c,d), mitorubrinic acid (c,d), mitorubrinol acetate 
(c,d) 
I: Mitorubrin (c), mitorubrinol (c), mitorubrinic acid (c), 
mitorubrinol acetat (c), wortmin (Turner & Aldridge 1983) 
II: Flavomannin (Atherton et al. 1968), skyrin (c), chrysophanol 
(c) (Turner 1971) 
III: Rugulosin (c) (Breen et al. 1955) 

I: Spiculisporic acid, ( - )  decyl citric acid (Gatenbeck & Mahlen 
1968; Tabuchi et al. 1977) 
II: Glauconic acid (c,d) 
II: Glauconic acid (c,d) 
I: Vermiculine (c,d) 
II: Glauconic acid (c,d) 

I: Mitorubrin (c,d), mitorubrinic acid (c,d) 

I: Bacillosporin A, B & C (Turner & Aldridge 1983) 
II: Pinselin, pinselic acid (Turner & Aldridge 1983) 

(a) + +: A very distinct pattern of more than 5 spots before spraying on a TLC plate developed in TEF, +: 2-5 spots on the TLC plates 
before and after spraying with sulphuric acid and heating. 
(b) The known and newly found secondary metabolites were ordered in biosynthetic families and given roman numbers. 
(c) Confirmed by TLC and HPLC-DAD and using authentic standards (see table 1). 
(d) New record. 
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Fig. 1. H P L C  traces of  an extract of  T. flavus (Frave1282.3). Note the production of mitorubrinic acid, vermicellin and possibly talaron 
(see U V  spectrum in upper  right corner).  

strain was indeed T. panasenkoi. The TLC traces 
also showed that T. helicus var. major is not suffi- 
ciently distinct from var. helicus. 

Stolk & Samson (1972) recognized two varieties 
in T. flavus: var. flavus and var. macrosporus. The 
strains of both varieties only had one metabolite 
family in common (the mitorubrins), but both taxa 

produced a conspicous profile of blue, violet, yel- 
low and orange metabolites in TLC plates. This 
observation was confirmed by HPLC of cultures 
grown on MEA and OA (Fig. 3). Three isolates of 
var. macrosporus (CBS 353.72, CBS 317.63, and 
CBS 130.89) all produced great amounts of du- 
clauxin and other specific metabolites, while 
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Fig. 2. H P L C  traces of  Talaromyces macrosporus CBS 353.72 and two isolates of  T. flavus (CBS 387.48 and CBS 284.58)�9 Members  of 
the mitorubrinic biosynthetic family were the only common  metabolites.  
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F i g .  3 .  HPLC traces of T a l a r o m y c e s  u d a g a w a e  (CBS 579.72) and two isolates of T. l u t e u s  (CBS 865.71 and 348.51) to show the different 
profiles of secondary metabolites. 

strains of Z flavus produced vermiculine, vermicel- 
line and other unknown secondary metabolites not 
found in var. macrosporus. Beuchat (1988) com- 
pared several isolates of T. flavus and found that 
small-spored strains are less heat-resistant than 
large-spored strains�9 Among the large-spored 
strains he included CBS 317.63, the type culture of 
T. flavus var. macrosporus, isolated as a heat resist- 
ant strain from pasteurized apple juice by Van der 
Spuy et al. (1975). Based on these differences in 
ascospore size, heat-resistance and profile of sec- 
ondary metabolites we propose that the two taxa 
should be considered as separate species�9 

Talaromyces macrosporus (Stolk & Samson) 
Frisvad, Samson & Stolk, comb. nov. 

Basionym: Talaromyces flavus (Kl6cker) Stolk & 
Samson var. macrosporus Stolk & Samson, Stud. 
Mycol., Baarn 2: 15, 1972. 

Status conidialis Penicillium macrosporum stat. 
n o v  �9 

Descriptio stat�9 anam. in Stolk & Samson, Stud. 
Mycol., Baarn, 2: 15, 1972�9 Metabolica: Duclaux- 
in, mitorubrin, mitorubrinic acid. Typus: CBS 
317�9 

Stolk & Samson (1972) separated T. udagawae 
and T. luteus on the basis of different ascoma ini- 
tials and smaller ascopores with different orna- 
mentation. Pitt (1980) found that these differences 
were not sufficient and synonymized both taxa. 
Our TLC and HPLC results, however, showed that 
T. udagawae is a well-defined species, and that the 
two taxa have no secondary metabolites in com- 
mon (metabolites having the same retention time 
in the two species were different as they had differ- 
ent UV-VIS spectra (Fig. 3)�9 

In recognizing T. luteus and T. udagawae as two 
different species, there is no name available for the 
anamorph of T. luteus, as P. luteum was described 
inclusive of the teleomorph. We therefore propose 
the following name for the anamorph of T. luteus: 

PeniciUium vonarxii Frisvad & Samson, sp. nov. 

Status anamorphosis Talaromycetis lutei. Coni- 
diophora portata ex hyphis aeriis, stipites 15-35 
(-100) • 2.0-3tzm, parietibus levibus, interdum 
incrustatis, penicilli biverticillati et monoverticilla- 
ti, metulae 10-20 x 2-3/zm, phialides acerosae, 
9-15 • 2-3/zm, collulis longis, apicibus interdum 
viridibus, conidia ellipsoidea vel pyriformia, 



2.5-4 x 2-3.2/zm, parietibus levibus, viridibus. In 
agaro CYA, coloniae aetate unius hebdomadis 15- 
20mm diam. Metabolica absorb, max. 232nm, 
281nm, 320nm, 330nm, 404nm. Typus: CBS 
579.72. 

Samson & Abdel-Fattah (1978) described T. assi- 
utensis. A morphological and chemical comparison 
of the type cultures of T. assiutensis and T. gossypii 
Pitt (1980) showed that these species are con- 
specific. 

In their monograph Stolk & Samson (1972) men- 
tioned deviating strains of T. flavus var. macro- 
sporus (CBS 350.72) (with more ellipsoidal ascos- 
pores, showing more variation in size than other 
isolates of var. macrosporus) and T. stipitatus (CBS 
349.72) (with slightly larger ascospores and differ- 
ent mycelial colours than T. stipitatuson all media) 
respectively. In our studies of the secondary me- 
tabolites these strains produce completely different 
profiles of secondary metabolites and they might 
represent new taxa in Talaromyces. As neither of 
the two aberrant strains have any metabolites in 
common with the other species of the genus they 
cannot be regarded as mutants or varieties of those 
species. However, before warranting their descrip- 
tion as new species we would like to examine more 
than one isolate. For the time being we call them T. 
macrosporus chemotype II for CBS 350.72 and T. 
stipitatus chemotype II for CBS 349.72, following 
the recommendations by Pitt & Hawksworth 
(1985) for naming chemical variants. 

Our comparative studies of the strains of Talaro- 
rnyces and Penicillium subgenus Biverticillium 
showed that T. wortrnannii and the anamorph P. 
variabile have many secondary metabolites in com- 
mon, which may indicate that the latter may be the 
anamorph of the former fungus. This is further 
supported by similar growth rates and the fact that 
Raper &Thom (1949) reported the production of a 
few ascomata in P. variabile NRRL 2025 with as- 
cospores like those of T. wortmannii. Both T. wort- 
mannii and P. variabile have, however, each some 
specific secondary metabolites too and at present 
we prefer to keep these species separate. 

The results reported here indicate the great val- 
ue of profiles of secondary metabolites as taxonom- 
ic characters in Talaromyces. While the morph- 
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ological treatment of the genus Talaromyces by 
Stolk & Samson (1972) and Pitt (1980) is upheld, 
the simple TLC technique can also help in solving 
problems where morphological characters alone 
leave uncertainty. The profiles of secondary me- 
tabolites in Talaromyces and Penicillium subgenus 
Biverticillium indicate a close relationship between 
these taxa, but no Biverticillium taxa could be re- 
garded as anamorphs of any Talaromyces species. 
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