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ABSTRACT. We prove that the dynamics of an infinite quantum system, as formulated in the 

Schr6dinger representation within the framework constructed in an earlier work [1 ],  corresponds 

to *-automorphisms of the W*-algebra dual to the space of its physical states. 

The dynamics of infmite quantum systems is generally taken to be given by some appropriate limit 

of that of corresponding finite ones [ 1 ] - [9]. Accordingly, it has been established, with the 

C*-algebraic formulation of quantum theory, that in the simplest ones, e.g., lattice systems with 

t'mite range forces, the dynamics corresponds to automorphisms of the observables [10], [11] ; 

while, more generally, this is not so [3 ] - [5 ], [9 ], [ 12 ],  [ 13 ], and time-translations in the island ~ 

of a Gibbs state correspond in some cases to automorphisms [3], [4], [9], in others to non- 

automorphic isomorphisms [13], of the weak closure of the associated GNS representation of the 

algebra of observables. 

The object of the present note is to show that the dynamics of an infinite quantum system, as 

formulated in the SchrSdinger representational framework that we constructed some time ago 

[1 ],  corresponds quite generally - not merely in the Gibbs islands - to automorphisms of the 

W*-algebra, dual to the subset of states designated to be the physical ones. We shall summarise 

the essentials of the framework of Reference [1], and then present our theorem concerning the 

W*-dynamics of infinitely extended systems. It will then be seen that the present scheme 

generalises previous results on the dynamics of such systems. The mathematical key to our result 

is the classic treatment by Kadison [14] of the relationship between the Schr6dinger and Heisen- 

berg pictures in quantum theory. 

We formulate the observables of an assembly of particles occupying the space P(= IR v or Z v) 

in the following standard manner [2], [15]. We define L to be the family {A) of bounded open 

subsets of P, and we assign to each A (~ L) a W*-algebra d (A) ,  corresponding to the observables 

for the region A, and possessing the natural isotony property that d ( A )  D d(A ' )  if A D A'. We 

then define alL, the normed *algebra of local observables, to be I.J A EL ~ ( A ) ;  and d ,  the C*- 

algebra of quasi-local bounded observables, to be the norm completion of d L . 

We assume that each of the local subalgebras, d (A) ,  is equipped with a weakly continuous 

*By the 'island' of a state r on a C*-atgebra ~/, we mean the famdy of states on d that correspond to denstty 
matrices in the GNS representation space of w. 

209 
Letters in Mathematical Physics 6 (1982) 209-213. 0377-9017/82/0063-0209 $00.50. 
Copyright �9 1982 by D. Reidel Publi~hing Company. 



one-parameter group {al a) [ t c IR) of inner automorphisms, corresponding to time translations 

of a system of particles of the given species confined to A. In order to specify the physical states 

and dynamics of the system in terms of the family of groups a(a), we introduce the following 

definitions. 

A set o ~" of positive, normalised, linear functionals on ~r is termed a foIium [ 17 ] if it is convex, 

norm-closed and stable under the transformations a~ -~ r with ~o B = a~(B*(.)B)/r and 

B E 5 ~  L . A pair ( o~', r) is termed a dynamicalfolium [1 ] if,~'is a folium and {r t I t E IR} is a 

one-parameter group of affine transformations of ~'.  This pair is termed a physical folium [ 1 ] if, 

furthermore, ~z- consists of locally normal states on ~ (i.e., states whose restrictions to the sub- 

algebras ~r are normal), and r is inducer by the local dynamical groups (a (A) } according to 

the following formula: 

(rtco)(A)=fimco(ath)A) YvoE ~ , A  E agL, t~IR , (1) 
A t  

where the limit is taken over an increasing absorbing sequence of elements ofL.  Thus, a physical 

folium (.~, r) may be characterized by the following properties, which we regard as natural 

desiderata for the physical states and dynamics of a system. 

(I) J is closed with respect to convex combinations, i.e., if oot and a~= E ~', then mixtures 

of these states also belong to ~-. 

(2) ~- is stable under the localised modifications ~ -~ co B. 

(3) ~-consists of locally normal states, i.e., [16] ones for which there is zero probability of 

finding an int'mite number of particles in a bounded region of space. 

(4) The dynamical law, given by r, takes a 'natural' limiting form of thattof corresponding 

finite systems. 

The above definitions imply [1] that there is a unique maximal physical folium (~-, ~ of the 

system, characterised by the properties that, if ( ~ ,  r) is any physical folium, then ~- c ~ and 

r = 71~. Accordingly, we take Y" to be the physical state space of the system, and we take ~'to 

represent its dynamics. 

We now note (cf. [17] ) that the linear space [ ~ ]  of any folium ~ is the predual of a W*- 

algebra [~-] *, which may be canonically identified with the weak closure rr(~r of any represent- 

ation 7r of J belonging to the quasi-equivalence class of that given by the direct sum �9 ~o E ~- 7r~o 

of the GNS representations rrco induced by the states in ~-. Thus, each dement, co of o~ corres- 

ponds to a unique normal state, &, on [o~] *, with 

co(A) = &(A) and A = lr(A), (2) 

and r induces a group {rt l t C IR} of transformations of the normal linear functionals on [o ~ ]  * 

according to the formula 

~t& = rtw (3) 
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The following theorem tells us that, if ( ~', r) is a physical folium, then i induces a dual group 

(&t I t E IR} of *-automorphisms of the Ir [ ~-] *. We note here that Roos [18] obtained 

a similar result for the case where f f i s  a the island of a KMS state, as described in the SchrSdinger 

picture, and r is a group of affme transformations of ~,~ with suitable continuity properties. 

THEOREM. Let ( ~ ,  r) be a physical folium. Then, with the above definitions and assumptions, 

"~ is the predual o f  a one-parameter group of  *-automorphisms o f  [ ~ ]  *, i.e., 

G&)(B) = &(&tB) Vco e ~ ,  a e [ ~ ]  *, t e n~, (4) 

where (&t I t E IR} C Aut [ ~ ]  *. 

The following corollary is an immediate consequence of this theorem. 

COROLLARY. The dynamics o f  the entire system corresponds to a one-parameter group o f  
*-automorphisms of  [~-] *, dual to 7,, where (~-~, r~ is its maximal physieal folium. 

COMMENTS. We note here that previous results fit into the general picture provided by the above 

theorem and corollary in the following ways. 

(1) Lattice systems for which the local algebras, d (A) ,  are finitely generated, and the forces 

are sufficiently tempered to ensure that, for eachA in ~ L ,  al A)A converges in norm to 

atA, where a t is thus a *-automorphism of d [10], [11]. In this case, ~,~ consists of all 

positive normalized linear functions on d ,  [~]  * is the weak closure of the universal 

representation ~ of d ,  ~'t is the dual of at, while the restriction to ~(W) of a~, the dual 

of rt, is given by atTr'~(A) = 7r"(atA ). 
(2) Systems satisfying the assumptions of References [3] or [9] for a Gibbs state co. These 

assumptions lead to a physical folium ( ~ w ,  r), with ~-w the island of co and r the preduaI 

of a one-parameter group of automorphisms of [ffr ] * ----7rio(a/), where ztr is the GNS 

representation for w. 

(3) Systems for which the dynamics in the island ~-w of a Gibbs state w correspond to non- 

automorphic isomorphisms of n w (s/), of the type inferred by Namliofer [13]. In this 

case, one has a physical folium (~w,  r), where ~ o  is the minimal folium containing 

{rt ~to it  E IR); and further ~w~ is not stable under r. Correspondingly, [~---~o] * is the 

weak closure of a representation ~-of ~ ,  of which rrw is a subrepresentation and lro~ (,~) 

is not stable under the dynamical group &, dual to r. 

PROOF OF THEOREM. Identifying [,~] * with the weak closure of a representation ~r of d in a 

Hilbert space ~f, we define &l n) to be the *-automorphism of rr(d(A)) given by 

afa)u(A) = a(4A)A) v a  e d ( a ) .  (s) 

Thus, it follows from Equations (1), (3) and (5) that if f is a normal linear functional on rr(ar 
and B belongs to/r(d~gL) , then 
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(+,f)(B) : ~rn/(aIA)B). 
Ai" 

Hence, as &~h) E hut  rr(~C(A)), 

i(~tf)(B)i < [I/ll liB II 

for all linear functionals/on 7r(d) and B E rr(dL). Further, the formula may be extended by 

continuity to all B in rr(ef), in view of the fact that the unit ball of .(.ef), and thus of . (efL),  

is weakly dense in that of 7r(ef). Therefore, for any B in . (ef) ,  the mapping f-+ (r 

corresponds to a continuous linear functional on the predual of 7r(~) and thus to an element of 

that If*.algebra. Hence ~ induces a one-parameter group (&t i t E IR} of linear transformations of 

.(z~r according to the formula 

('~t~)(B) = ~(&t B) V6o E ,~,, B E ,(gg).  (6) 

Hence, it follows from a theorem of Kadison [14, Corollary 4.7] that the transformations a are 

Jordan*-automorphisms of 7r(ef), i.e., 

&t(B)* = &t(B*) VB @ .(-eft) (7) 

and 

&t(B 2) = ~t(B) 2 VB =B* C ~(d) .  (8) 

Consequently, ifB is an arbitrary self-adjoint element of . (a lL)  and w an element of ~ ,  then it 

follows from Equations (1) - (3), (5), (6) and (8) that as &~A) C Aut . (d(A)) ,  

lim ~(&~A)B) = ~(~tB)  and lim c~((&~A)B) 2) = ~((~tB)  2). 
A t  A t  

Since these equations are valid for all a~ E ~ ,  they imply that 

If - lim &~A)B = &tB and If - lira (&~A)B)2 = (atB) 2 
A t  A t  

and therefore that s - limAt &~A)B = &t B for all self-adjoint elements B of 7r(dL) and therefore, 

by linearity, for all B in 7r(~/L). Hence, as &~A) E Aut 7r(~C(A)), 

&t(B1B2 ) = &t(B1)at(B: ) VBI, B: @ ~r( sCL ), t E IR. (9) 

Finally, we see from Equation (6) that, for each t E IR, at is a weakly continuous transformation 

of n ( J )  and therefore we may extend Equation (9) by continuity to the form 

at(B1B2 ) = &t(B1)at(B2 ) VBt,  B2 ~ 7r(gg), t E IR, (10) 
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thereby establishing that the group & of Jordan *-automorphisrns consists indeed of bona fide*- 

automorphisms of lr(d) = [,~r] *. QED 
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