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Abstract. This article presents a new approach for planning the dispatching, conflict-free routing, and scheduling
of automated guided vehicles in a flexible manufacturing system. The problem is solved optimally in an integrated
manner, contrary to the traditional approach in which the problem is decomposed in three steps that are solved
sequentially. The algorithm is based on dynamic programming and is solved on a rolling time horizon. Three
dominance criteria are used to limit the size of the state space. The method finds the transportation plan minimiz-
ing the makespan (the completion time for all the tasks). Various results are discussed. A heuristic version of
the algorithm is also proposed for an extension of the method to many vehicles.
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1. Introduction

Automated guided vehicles (AGVs) are programmable material handling equipment used
in a flexible manufacturing system (FMS). These vehicles transport tools and materials
between different workstations. FMSs consist of several workstations performing the specific
functions of machining, plus some service functions such as tooling, storage, etc. When
production of each required part type is divided into lots, each production lot specifies
the movement of tools, fixtures, and parts through the workstations. Different lots may
specify different sets of workstations and thus different sequences in which the workstations
must be visited.

The AGVs circulate on a network of guidepaths connecting the various workstations. AGV
technology has introduced new challenges both in the planning and management of the
material handling system such as fleet sizing, guidepath network and workstation layout
design, lot sizing, and vehicle management (see Co and Tanchoco, 1991; Maxwell and
Muckstadt, 1982). Vehicle management itself is composed of three main functions:

¢ dispatching, which consists of assigning transportation tasks to vehicles;
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¢ routing, which consists of selecting the route that each vehicle will follow in order to
accomplish its transportation tasks;

¢ scheduling, which consists of determining the times at which vehicles enter and leave
each guidepath segment on their routes in order to avoid conflicts.

As there can be more than one vehicle in the system simultaneously, two or more vehicles
may be competing for the same path at the same time. Thus, the routing and scheduling
of the vehicles should take into account these possible conflicts.

The problem to solve consists of determining the dispatching, the routing, and the schedul-
ing of the fleet of AGVs. The main objective of the vehicle controller is to satisfy the trans-
portztion demands in the shortest time and in a nonconflicting manner. The inputs to the
computerized controller of the AGV system are the layout of the guidepath, the number of
vehicles in the system and their characteristics (travel speed, loading, and unloading times),
and the transportation requests with their corresponding due dates.

The traditional approach to these kind of problems has been to decompose the problem
in three steps, and to optimally or heuristically solve them sequentially. Some authors have
proposed methods to solve two combined steps. However, to our knowledge, it is the first
time that the three steps, i.e., dispatching, routing, and scheduling, are integrated and solved
optimally.

2. Literature review

Various strategies have been proposed for vehicle management, as evidenced by the increas-
ing literature on the subject. We shall survey the more relevant articles here. Egbelu and
Tanchoco (1984) propose a set of heuristic dispatching rules. These rules are divided into
two classes: workstation-initiated and vehicle-initiated, depending on whether the system
has idle vehicles (vehicle-initiated) or whether the system has transportation requests queued
(workcenter-initiated). These heuristic rules are used to assign transportation requests to
vehicles. The results demonstrate their effects on the performance of a 13-machine and
6-vehicle FMS with a unidirectional guidepath. Kusiak and Cyrus (1985) present a heuristic
method to find an approximate solution to an integer linear program formulation of the
vehicle scheduling problem with time window constraints on each movement. In their model,
dispatching is done by a heuristic method that does not take into account traffic management.

Taghaboni and Tanchoco (1988) propose a control strategy based on dispatching rules
in Egbelu and Tanchoco (1984), but they also plan vehicle routes which avoid conflicts.
When a vehicle is dispatched to a new task, all preestablished routes for other vehicles
are considered fixed, and a route is chosen for the new task so as to avoid any conflict
with the preplanned routes of the other vehicles. The intersection conflict is solved on a
first-come, first-served basis. Fujii, Sandoh, and Hohzaki (1988) develop a control model
to minimize vehicle interference and idle time. Routes are obtained by solving an LP. For
a given set of paths (one per vehicle), this LP produces a conflict-free schedule that mini-
mizes delays. The method produces its routing and scheduling solution by solving this LP
for different sets of paths. These paths are the k-shortest paths for a particular vehicle.
The computational complexity of this approach makes it inapplicable in a real-time context.
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Krishnamurthy, Batta, and Karwan (1991) present a method for obtaining conflict-free
routes for AGVs via an LP model. They assume that the dispatching has already been done.
The proposed model discretizes time and fixes the routes of all vehicles simultancously.
The LP is solved by a column generation heuristic. Palekar, Kapoor, and Huang (1990)
introduce a method using a shortest path with time-windows algorithm to obtain conflict-
free routes for an AGV system so as to avoid all conflicts with preplanned routes of other
vehicles. The dispatching is done by a heuristic method. Kim and Tanchoco (1991) propose
a similar approach using a time-windows-constrained shortest path algorithm.

Daniels (1991) proposes a branch-and-bound technique to obtain a conflict-free route for
a new vehicle task. Branching is done on sets of possible paths. Here again, the dispatching
of the tasks to the vehicles is done heuristically. Sabuncuoglu and Hommertzheim (1992)
propose a dynamic dispatching algorithm for scheduling machines and AGVs. They define
an FMS as two interrelated subsystems: a machining subsystem and a material handling
subsystem. Both subsystems must be taken into account simultaneously in a real-time sched-
uling decision. A similar approach is proposed by Blazewicz et al. (1991). However, they
only solve very small problems (three machines, nine operations, two vehicles). Sabuncuoglu
and Hommertzheim (1993) investigate the scheduling problems of FMSs. They analyze
the relative performances of machine and AGV scheduling rules against various due-date
criteria. The rules are tested by using simulation. The objective is to model three important
elements of FMSs (machines, AGVs, a finite buffer capacities) and their interactions.

In this article, we propose an optimal dynamic programming approach to determine both
the dispatching of the transportation tasks, and the routing and scheduling of the vehicles.
It constitutes a more general approach to the dispatching and routing problems. Routing
conflicts are resolved using a shortest path with time-windows algorithm. Our method uses
a state-space of partial transportation plans (dispatches and associated conflict-free routes)
to obtain a solution to the dispatching/routing problem over a certain time horizon. This
method is reiterated on a rolling time horizon for real-time operation. The travel speed
of the vehicles is assumed constant and the vehicles may travel along a track segment in
either direction.

3. The method

The production schedule is assumed to be known on a certain time horizon. This produc-
tion schedule generates a set of transportation “requests” or tasks. A request consists of
a pickup point with an earliest time and a drop-off point. The AGV system is represented
by a network, i.e., a set of guidepath segments (the edges of the network) delimited by
control points (the nodes) (see figure 1). A weight representing travel time is associated
to each edge. We consider two bidirectional vehicles.

The objective is to obtain a transportation plan for all of the requests, that is, we seek
a schedule and an itinerary for each vehicle. However, as both vehicles travel on the same
network, possible conflicts, i.e., simultaneous occupations of a node or an edge, must be
avoided. The method that is presented herein allows one to find the transportation plan
that minimizes the makespan (the completion time for all tasks).
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Figure 1. The FMS layout with the AGV network.

3.1. The method of solution

To solve the problem, a dynamic programming approach is used. In this subsection, an
outline of the method is presented. The dynamic programming scheme is detailed in the
next subsection.

Let us define a partial transportation plan as a schedule and a route for each vehicle
satisfying a subset of the transportation tasks. The underlying idea is to iteratively construct
partial transportation plans with more and more tasks until complete transportation plans are
obtained. From a given partial transportation plan, the best way to add another task to each
one of the two routes (one for each vehicle) is found, hence generating two new partial
transportation plans, including one more task. Each time a task is added at the end of the
itinerary of a vehicle, a shortest path problem is solved. Then possible conflicts between the
two routes are detected. If no conflict is detected, then a new partial plan is generated. If a
conflict is detected, one of the two routes is kept fixed, while the other is modified. The new
route is obtained by solving a shortest path problem with time windows using the algorithm
of Desrochers and Soumis (1988). The time windows on the nodes and edges of the net-
work are determined by the occupation intervals for the fixed route. The best solution, i.¢.,
the one with the smallest makespan, is kept as a new partial plan. So the method is based
on an enumeration of the sets of transportation plans by means of dynamic programming.
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3.2. The dynamic programming scheme

The states correspond to the partial transportation plans. A state S; is defined by
S; = (¢, R}, ¢f, RD),

where ¢} (¢?) is the ordered set of tasks accomplished by vehicle 1 (2) and R} (R?) is
its associated route. Let Z(S;) be the objective function value associated with the state. In
our case, the objective function value is the completion time of the transportation opera-
tions. We define Cy(¢!, R}) as the completion time of the route R} for vehicle 1 accom-
plishing tasks ¢!. We define C,(¢?, R?) analogously. Then, for a given state S;,

Z(S;) = max{Ci(¢}, RY), C(¢?, RD)}. )

The transition from a given state to an immediate successor state is done by adding one
of the yet unscheduled requests to one of the two routes, following the method described
in subsection 3.1. If §; is a successor state of S; obtained by adding to route 1 a task ¢
with an origin node o, and a destination node d,, then:

5 = (4], R}, ¢}, R))
with
¢} = ¢! U 1, (% added at the end)
R' = R! U {0, d;} (added at the end)
¢ = ¢
Rj2 = R?

The value of this new state Z (S) is calculated using (1). Adding a task to route 2 is analo-
gous. The method starts from an initial state Sy, with a starting position for both vehicles
and no request assigned to either one. We have

So = (81, Ry, ¢3, R?), and Z(Sp) = 0
with

#7 = empty set, R = {starting point of vehicle 1}

@3 = empty set, Ry = {starting point of vehicle 2}.

The successive states are then generated until all final states representing complete transpor-
tation plans are produced. The set of the generated states constitutes an enumeration tree.
The order in which successive states are generated corresponds to a best first search: the
state with the smallest value of Z is chosen among the already generated states for which
their successors have not been generated. All of the first successors of this state are generated
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and added to an active list. The final state with the best Z value constitutes the optimal
solution to the scheduling and routing problem. It describes a conflict-free route and sched-
ule for both vehicles.

The algorithm
The algorithm uses two lists of states: an active list and a final state list.

Step I: Place initial state Sy on the active list.
Step 2: Repeat until the active list is empty:
¢ select the §; in the active list with the smallest Z(S));
* for each task not yet assigned satisfying the precedence relations, generate two
immediate succesor states of S; by assigning the task to each vehicle;
* place each successor state on the active list or on a final state list if it is a final state;
¢ remove state S; from the active list.
Step 3: Select the best final state.

Dominance tests

This algorithm generates an astronomical number of states. To make it usable, a procedure
has been designed to eliminate some states (and their numerous successors) by way of domi-
nance tests. A state §; is said to dominate another state S, if it can be shown that any suc-
cessor of S, can be associated with a successor of S, which is equivalent or better. The
dominated state S, can then be discarded.

Three types of dominance tests have been implemented. In each test, two states are
compared.

1. Redundancy: This test allows the elimination of states that are identical: if two states
have the same set of tasks, the same finishing time for both vehicles, and if the finishing
position for each vehicle is the same in the two states, then the two states are considered
identical, and the successors of only one of them have to be generated.

2. Dominance 1: Let S, and S be two states. If S, contains all of the tasks of S, i.e.,

o5 U ¢ 2 ¢F U 45,

and if it is possible for vehicle k (k = 1, 2) to travel from the finishing positions of
S, to the finishing positions of S, and arrive there before Ci(¢2, RY) (k = 1, 2), then
S, dominates S,, and consequently S, can be eliminated.

3. Dominance 2: Let M be an upper bound on the time needed to optimally travel from
any origin to any destination (taking into account possible detours to avoid conflicts),
and let S, be a state and ¢, be the set of tasks stili to be assigned. If for each task in
¢, the earliest pickup time is greater than Z(S,) + M, then each state S, such that
2 U ¢% 2 ¢¢ U ¢5 and Z(S,) > Z(S,), is dominated by S,. This test is similar to
the dominance 1 test, except that the time to travel from the finishing position of S,
to the finishing position of S, is not calculated, since no task can begin before M time,
and hence both vehicles can travel to any point on time.
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Real-time operation

The algorithm described produces the dispatching and routing of vehicles to accomplish
a given set of tasks, To obtain a workable control strategy, this problem is resolved on
a certain time horizon for a certain set of tasks. It is resolved anew when one of three
events occurs:

¢ a breakdown on the track (modification of underlying network);
¢ a task is modified (added or deleted);
¢ a new plan is required because the planned time horizon has expired.

A new time horizon is thus considered, and a new transportation schedule (due dates) is
elaborated. This way of considering more and more tasks defines what is usually called
a rolling time horizon. The length of the horizon will depend on the specific characteristics
of a given manufacturing system. Of course, as will be seen in the next section, the shorter
the time horizon is, the more efficient the procedure is.

4. Experimentation

The FMS which we model in this experiment consists of 12 machines of which seven are
production machines, while the five others are service stations, such as washing, prepara-
tion, etc. The FMS mills, turns, grinds, pressworks, and has foundry, inspection, and
assembly operations. The layout of the FMS is shown on figure 1. The material handling
system is an AGV system. The guidepath is schematized by a network of 30 nodes and 44
bidirectional edges. Thirteen nodes correspond to the input/output positions of the machines.
The two AGVs travel at a constant speed of 0.5 meters per second, and the loading and
unioading times are 20 seconds each. To validate our dynamic programming method, we
used a six-part-type production release (Drolet, 1991). With the process sheet of each order
(provided in table 1), production was planned, and the transportation schedules derived
using the job-oriented heuristic developed by Hastings and Yeh (1990). The aim of this
heuristic is to complete a set of jobs as soon as possible, but without scheduling the sup-
porting jobs (e.g., tools and fixtures preparation) unnecessarily early. All the jobs are first
scheduled forward. The scheduled start times of the final job are thus obtained. The sup-
porting jobs are then rescheduled backward from that time. The result is a schedule in
which the jobs are completed as soon as possible, but with no waiting time for the support-
ing jobs.

Results

For the tests, two typical eight-hour production days have been divided into 16 one-hour
blocks. A dispatching and scheduling plan has been elaborated for each block. The corre-
sponding set of transportation requests was quite demanding for the AGV system, especially
at the beginning and end of the production days. The tests were conducted on a Sun Sparc
Station (Sun 4) running at 10 mips. The number of tasks in a given block varies from eight
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to 61 and is typically between 20 and 30. The number of states that were generated varies
considerably (from ten to many thousands). The conflict testing routine is called two or
three times per generated state on average, and a conflict is resolved in about half the cases.

The results shown in table 2 illustrate the efficiency of the dominance tests. For each
of the 16 one-hour blocks (test 1.0, 1.1, ..., 1.7,2.0, 2.1, ..., 2.7), three runs of the
program have been done; in each run, the dominance 2 test was applied. In the first run,
the redundancy test was added; in the second run, the dominance 1 test was added; in
the third run, the dominance 2 and redundancy tests were both applied. For each block,
three lines of results are presented in table 2, corresponding to the three runs. The columns
correspond to the solution time in seconds, the total number of states generated, the max-
imum number of states at a time, and then, for each test, the number of times which the
test was called and the number of states that were eliminated by the test.

It can be seen that the dominance 1 test is much more efficient than the redundancy
test. Without the dominance 1 test (and with the redundancy test), the solution times vary
up to almost 100 seconds. Using the dominance 1 test dramatically reduces the number
of generated states and consequently the solution times. With this test, the hardest problem
is solved in 3.27 seconds. Also, dominance 1 with redundancy is almost equivalent to domi-
nance 1 only. The dominance 2 test is independent of the two other tests and does not
affect their efficiency. The horizon taken is one hour with the transportation times under
a minute, Reducing the time horizon (by half or more) would have a striking effect on
the solution times, given the exponential nature of the process. This would allow the solu-
tion of every problem to be under a second.

As the running times were extremely quick, we then tested the method on more difficult
problems. To do so, we compressed the earliest times of the requests by a factor of two
and of three, that is, we divided the earliest times by two or three (see table 3).

The compressions increase the number of requests per time unit. The results of the com-
pressions are presented in table 4. It can be seen that with the compression (i.e., with more
challenging problems), the method is able to handle most of the instances. However, one
can see that, in some instances, the number of states and the solution times explode, and
as the program was limited to a maximum of 10,000 states, some instances were not solved.
With compression 2, four instances out of 16 were not solved (due to the number of states
exceeding the maximum allowed). With compression 3, 2 more instances were not solved.

In order to assess the difficulty of the problems, in table 5, we present the vehicle utiliza-
tion. The effect of the compressions is to multiply the utilization by a factor approximately
equal to the factor of compression.

To summarize the results of the test, we see that the method was validated on actual
examples. The method is, however, sensitive to the number of requests to be scheduled.
We planned on time horizons of one hour, 30 minutes, and 20 minutes, whereas the trans-
portation times were under a minute. In a real-world implementation, shortening the time
horizon to ten or 15 minutes could be extremely efficient. Whenever an event having a
major impact on production occurs (having some of the machines starving, for instance),
or lateness accumulates sufficiently to impede the normal course of the production plan
or the transportation missions, a new production plan is easily obtained (via the Hasting
and Yeh heuristic), and a new transportation schedule is derived within a few seconds.
It should be noted that potential blocking of the AGVs is prevented by the way the dynamic
programming algorithm generates the routing of each vehicle.



256 A. LANGEVIN, D. LAUZON, AND D. RIOPEL

Table 2. Dominance tests.

Redundancy Dominance 2 Dominance 1
Test  Time Number  Maximum Number

No. (cpuw) of States at a Time Calls Elim. Calls  Elim. Calls  Elim.
1.0 70.02 9001 2888 2824 3543 11 8 — —
1.34 626 62 — — 11 7 261 337
1.30 621 61 259 56 11 7 259 278
1.1 30.75 5984 2108 2565 877 1 2589 — —
1.81 1011 106 — — 11 115 448 424
1.92 970 97 423 53 11 113 423 358
1.2 0.05 28 3 14 0 11 3 — —
0.05 28 3 — — 11 3 14 0
0.03 28 3 14 0 11 3 14 0
1.3 0.01 8 1 2 0 6 0 — —
0.01 8 1 — - 6 0 2 0
0.00 8 1 2 0 6 0 2 0
1.4 9.94 2535 1021 997 498 9 1036 - —
1.08 551 105 — — 9 56 230 256
1.13 551 102 230 40 9 51 230 221
1.5 1.31 822 231 372 221 7 227 — —
0.46 304 65 — —_ 7 29 139 129
0.48 302 63 138 42 7 28 138 87
1.6 0.01 8 1 2 0 6 0 — —
0.01 8 1 -— — 6 0 2 0
0.00 8 1 2 0 6 0 2 0
1.7 97.17 9000 3622 3226 2226 14 4 — —
3.27 977 184 — — 17 69 409 482
3.61 988 178 414 101 17 57 414 399
2.0 0.60 571 182 260 69 12 231 — —
0.22 197 35 — — 12 39 94 49
0.23 197 35 94 0 12 39 94 49
2.1 10.04 4000 645 2406 686 16 49 — —
0.41 345 37 — — 16 16 162 134
0.41 345 37 163 13 16 16 163 121
2.2 0.04 38 4 19 0 14 5 — —
0.05 38 4 — — 14 5 19 0
0.05 38 4 19 0 14 5 19 0
23 0.01 12 1 2 0 10 0 — —
0.01 12 1 — — 10 0 2 0

0.00 12 1 2 0 10 0 2 0
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Table 2. Continued.

Redundancy Dominance 2 Dominance 1

Test Time Number Maximum Number

No. (cpu) of States at a Time Calls Elim. Calls  Elim. Calls Elim.

2.4 0.01 12 1 2 0 10 0 — —
0.01 12 1 — — 10 0 2 0
0.01 12 1 2 0 10 0 2 0

2.5 0.02 22 3 8 1 11 2 — —
0.02 22 3 — — 11 2 8 1
0.03 22 3 8 1 11 2 8

2.6 0.01 12 1 3 0 9 0 — —
0.01 12 1 — — 9 0 3 0
0.0t 12 1 3 0 9 0 3 0

2.7 0.01 17 2 7 0 9 1 —_ —
0.02 17 2 — — 9 1 7 0
0.01 17 2 7 0 9 1 7 0

Table 3. Compression by a factor of 3.

Earliest Times

Request Uncompressed Compressed
#1 4.5 1.5
#2 12.0 4.0
#3 19.5 6.5

5. Extensions

In this section, we explore some extensions of our method. First, we consider the use of
lateness measures in the comparison and selection of partial transportation plans. Then,
in section 5.2, we devise a heuristic based on our method in order to handle more difficult
problems, i.e., problems with more than two vehicles or with too many tasks for the opti-
mal approach.

5.1. Lateness

A transportation task is said to be late if its assigned vehicle does not reach the origin
of the transportation request by the earliest pickup time. This concept of lateness could
be generalized to account for more sophisticated time windows associated with requests
and would then encompass a scheduling problem class wider than our earliest pickup time
scheme. For the complete transportation plans generated, we tabulate different lateness
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Maximum Maximum
Number  Number Number  Number
Test Compression of of States Test Compression of of States
No. Factor Time States at a Time No. Factor Time States  at a Time
1.0 1 1.34 626 62 20 1 0.22 197 35
2 186.24  * 9002 3426 2 174.23  * 9002 4145
3 206.43 * 9011 4610 3 57.80 * 9002 1634
1.1 1 1.81 1011 106 2.1 1 041 345 37
2 81.82 * 9002 1701 2 22.12 4089 554
3 79.49 * 9008 2360 3 59.80 * 9002 1901
12 1 0.05 28 3 2.2 1 0.05 38 4
2 0.24 133 25 2 0.16 149 21
3 0.53 330 41 3 2778  * 9002 513
1.3 1 0.01 8 1 2.3 1 0.01 12 1
2 0.01 10 2 0.01 14 2
3 0.01 8 1 3 0.01 14 2
1.4 1 1.08 551 105 24 1 0.01 12 1
2 28.58 5962 753 2 0.01 14 2
3 100.73  * 9002 2337 3 0.01 14 2
1.5 1 0.46 304 65 2.5 1 0.02 22 3
2 1.89 1059 158 2 0.07 47 11
3 9.43 3537 317 3 0.08 61 11
1.6 1 0.01 8 1 2.6 1 0.01 12 1
2 0.01 10 2 2 0.01 14 2
3 0.01 9 2 3 0.02 18 4
1.7 1 3.27 977 184 2.7 1 0.02 17 2
2 142.46  * 9000 2294 2 0.02 24 3
3 91.87 *9001 2471 3 0.03 35 6

*Before stopping.

statistics, such as total lateness for all of the transportation tasks in the plan, the number
of late tasks, and the maximum lateness of any single task in a transportation plan (see
table 6). As some of the generated transportation plans produce lateness, it seems that a
natural extension can account for this lateness by using some measure in the comparison
and selection of partial transportation plans. Hence, we use two approaches to incorporate

these ideas into the algorithm.

The first approach consists of adding “hard” constraints to limit admissible states to a
fixed upper bound of a lateness measure, either limiting the total accumulated lateness for
a plan or limiting the maximum lateness of any single request in a plan. The second ap-
proach integrates a measure of lateness into the objective function:

Z' = Zmskespan 4 K Jateness,

where K typically has a large value (K > 1).
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Table 5. Vehicle utilization.

Compression

1 2 3
Test Vehicle 1 Vehicle 2 Vehicle 1 Vehicle 2 Vehicle 1 Vehicle 2
1.0 31.56 30.83
1.1 60.95 58.08
1.2 24.30 24.03 45.31 45.48 64.92 65.42
1.3 7.13 7.66 14.07 13.41 24.22 19.02
1.4 25.32 22.26 47.82 43.81
1.5 19.08 15.88 32.50 38.72 50.74 51.93
1.6 8.06 8.54 15.87 14.94 25.35 21.17
1.7 32.22 31.73
2.0 37.44 38.63
2.1 41.91 42.73 75.65 79.92
2.2 30.97 26.32 57.19 51.17
2.3 11.82 12.16 24.89 22.26 35.33 32.81
2.4 11.82 12.16 24.89 22.26 35.33 32.81
2.5 16.15 15.64 29.91 33.01 50.92 43.92
2.6 14.68 14.29 30.81 27.49 44,27 37.81
2.7 19.26 11.96 37.53 21.56 47.06 38.11

The two approaches have a significant impact on the lateness characteristics of the solu-
tion. In most instances, both the total amount of lateness and the maximum lateness are
substantially reduced. The first approach is also very effective computationally as it limits
the number of admissible states to examine. However, for a given upper limit on the late-
ness measure, one cannot guarantee a priori the existence of a feasible solution. The second
approach increases the computational complexity in time and number of generated states.
With these tests, we conclude that, while adding to the complexity of the solution process,
the second approach performs very well, and is a viable extension to our approach that
could significantly improve the quality of the generated solution.

5.2. Heuristics based on the dynamic programming scheme

We now present a heuristic generalization of our method for cases where the number of
states explode despite the elimination of states by the dominance tests described in section
3.2. The idea is to limit the number of states that are generated. Optimality is lost if all
possible states are not explored. However, a clever exploration of the tree can lead to a
very good, if not optimal, solution.

A first way to limit the number of states is to consider, in generating the successor states
of a given state, only the tasks in a certain time interval from the finishing time of the state
(Z(S;)). The tasks are ordered according to time and only the first “n”* tasks are generated
for the successor states. By not considering the later tasks, there is little chance of losing
optimality. By reducing the number “‘n” of considered tasks, the decrease in solution time
can be important. This would allow the consideration of many AGVs.
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Table 6. Lateness statistics.

Number  Total Maximum Number Total  Maximum
Test Compression of Late Lateness Lateness Test Compression of Late Lateness Lateness
No. Factor Tasks  (second) (second) No. Factor Tasks  (second) (second)
1.0 1 7 397.00 15824 2.0 1 13 379.92 92.14
2 2
3 3
1.1 1 28 1024.80 141.06 2.1 1 14 597.52 142.76
2 2 25 1299.32  166.88
3 3
1.2 1 3 37.34 36.52 22 1 4 53.62 27.96
2 5 234.40 70.58 2 8 197.28 42.96
3 11 399.08 120.92 3
1.3 1 0 0.00 000 23 1 0 0.00 0.00
2 0 0.00 0.00 2 0 0.00 0.00
3 0 0.00 0.00 3 0 0.00 0.00
1.4 1 8 37596 139.80 24 1 0 0.00 0.00
2 13 814.50  160.50 2 0 0.00 0.00
3 3 0 0.00 0.00
1.5 1 7 31790 103.06 2.5 1 1 29.62 29.62
2 8 496.48  158.30 2 1 62.04 62.04
3 9 727.62 168.30 3 4 247.68  138.58
1.6 1 0 0.00 0.00 26 1 0 0.00 0.00
2 0 0.00 0.00 2 0 0.00 0.00
3 0 0.00 0.00 3 1 4.26 4.26
1.7 1 8 534.60 236.50 2.7 1 1 47.92 47.92
2 2 3 97.14 47.92
3 3 3 173.86  105.68

Another way of limiting the number of states is to assign a given new task to only one
vehicle (the best one according to our time measure). Hence, for each task, only one suc-
cessor of a state is generated instead of two.

These two ways of limiting the number of states would permit an efficient use of the
method when, in a real-time setting, the solution needs to be obtained quickly and when
many incidents require frequent reoptimization.

6. Conclusions

This article presents a dynamic programming-based method of generating an optimal trans-
portation plan, consisting of the dispatching, routing, and scheduling of two AGVs in a
conflict-free manner so as to meet a production plan. The method is well-suited for a pro-
duction plan having lots of variations over time. The algorithm was implemented and tested
on realistic data provided by the Industrial Engineering Department of Ecole Polytechnique
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de Montréal. The corresponding set of transportation requests was quite demanding for
the AGV system, especially at the beginning and end of the production days.

Our method produces, within acceptable time for real-time operations, conflict-free dis-
patching and routing so as to minimize the makespan. Additional tests were conducted to
incorporate a measure of lateness into the objective, and again the method proved to be
very efficient. Moreover, by considering concurrently the dispatching, routing, and sched-
uling, the method produces high-quality solutions.

We have also indicated how the method can be used efficiently in a heuristic manner to
handle the dispatching, routing, and scheduling of more than two vehicles. We presented
ways to limit the number of states that are generated.
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