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Summary 

Strategies for computational association of molecular components entail a compromise between con- 
figurational exploration and accurate evaluation. Following the work of Meng et al. [Proteins, 17 (1993) 
266], we investigate issues related to sampling and optimization in molecular docking within the context 
of the DOCK program. An extensive analysis of diverse sampling conditions for six recepto>ligand 
complexes has enabled us to evaluate the tractability and utility of on-the-fly force-field score mini- 
mization, as well as the method for configurational exploration. We find that the sampling scheme in 
DOCK is extremely robust in its ability to produce configurations near to those experimentally ob- 
served. Furthermore, despite the heavy resource demands of refinement, the incorporation of a rigid- 
body, grid-based simplex minimizer directly into the docking process results in a docking strategy that 
is more efficient at retrieving experimentally observed configurations than docking in the absence of 
optimization. We investigate the capacity for further performance enhancement by implementing a 
degeneracy checking protocol aimed at circumventing redundant optimizations of geometrically similar 
orientations. Finally, we present methods that assist in the selection of sampling levels appropriate to 
desired result quality and available computational resources. 

Introduction 

Molecular recognition is a problem fundamental to 
structural biology. The interaction of molecules, be they 
macromolecules or small ligands, is a prerequisite for 
nearly all biological events. Specific modulation of these 
interactions has been the ambition of medicinal chemists 
for over a century. To gain more rapid access to thera- 
peutic agents, we must not only understand, but be able 
to predict, the structural details of recognition events. The 
prediction of the observed orientations of two interacting 
components is known as the 'docking problem'. 

There exist many computational approaches to the 
docking problem [1,2], but each must accomplish two 
principal tasks: sampling and evaluation. The task of 
sampling relates to the exploration of the large number of 
configurations varying in the relative geometry of the 
components. The task of evaluation refers to the ranking 
of each configuration by some metric. These seemingly 

independent phases of docking are in fact closely linked. 
Without an accurate evaluation scheme, the native con- 
figuration cannot be recognized, even when it has been 
sampled. Conversely, without adequate sampling, even 
the most accurate evaluation scheme cannot recognize the 
native configuration if it has not been generated. The 
molecular docking problem is further complicated by the 
thousands of degrees of freedom available to interacting 
atomic assemblies. Even when constraining the compo- 
nents to only six translational and rotational degrees of 
freedom, the docking problem is a difficult one because 
there are still myriads of possible configurations. Heuris- 
tics must be invoked to direct sampling and ensure com- 
putational tractability. 

We previously have reported a descriptor-based rigid- 
body method (DOCK) to address the molecular docking 
problem [3-5]. More recently, Meng et al. [6] showed that 
modest orientational sampling coupled with post-docking 
refinement is more effective at retrieving known binding 
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TABLE 1 
TEST SYSTEMS 

PDB e n t r y  Resolu t ion  Receptor Docked ligand Ligand Receptor 
(A) atoms" spheres 

lgst 2.2 Glutathione S-transferase Glutathione 20 114 
2gbp 1.9 D-Galactose/D-glucose binding protein [3-D-Glucose 12 75 
3cpa 2.0 Carboxypeptidase A Glycyl-L-tyrosine 17 44 
3dfr 1.7 L. casei dihydrofolate reductase Methotrexate 33 72 
4dfr 1.7 E. coli dihydrofolate r edu c t a se  2,4-Diamino-6-methylpteridine 13 86 
6rsa 2.0 Ribonuclease A Uridine 3'-phosphate 21 47 

a Number of nonhydrogen ligand atoms. 

modes than intensive sampling alone. The favorable effects 
of rigid-body minimization as a post-docking tool were 
clearly evident - steric clashes were resolved, scores were 
improved significantly, and experimentally observed ge- 
ometries were reproduced more accurately. Unfortunately, 
the implementation was impractically slow. In this paper, 
we describe an enhancement to the minimization method, 
achieving nearly a 50-fold increase in speed. This acceler- 
ated rate now permits incorporation of the refinement 
directly into the docking process. Every configuration 
generated can be optimized in the context of the receptor, 
thus capturing the power of minimization as a post-dock- 
ing scoring tool in the evaluation phase of docking. We 
shall also show that on-the-fly minimization improves 
sampling, further supporting the close relationship be- 
tween sampling and scoring. 

Despite advances in computational resources, which 
make features such as on-the-fly optimization more palat- 
able, the time spent in the refinement is still large when 
compared with the time spent sampling. If one could judi- 
ciously reduce the number of orientations actually opti- 
mized, however, the refinement bottleneck might be dis- 
sipated. The large number of spatially distributed descrip- 
tors involved in molecular docking give rise to many ge- 
ometrically similar orientations. By removing so-called 
'degenerate' configurations, many noninformative minimi- 
zations are avoided. We describe progress toward this 
goal with a technique we refer to as 'degeneracy checking'. 

Following the work of Meng et al. [6], this paper delves 
further into issues related to sampling and refinement in 
molecular docking. We investigate the tractability and 
utility of on-the-fly optimization, with and without coup- 
ling to a degeneracy checking protocol. The current sam- 
pling scheme used in DOCK is evaluated in light of these 
data. 

Methods 

Test sys tems  
Six well-determined structures of ligand-receptor com- 

plexes available in the Brookhaven Protein Data Bank [7] 
were selected for analysis (Table 1): lgst (glutathione S- 
transferase-glutathione [8]), 2gbp (D-galactose/D-glucose 

binding protein-lg-D-glucose [9]), 3cpa (carboxypeptidase 
A-glycyl-L-tyrosine [10]), 3dfr (L. casei dihydrofolate re- 
ductase-methotrexate [11]), 4dfr (E. coli dihydrofolate re- 
ductase-methotrexate [11]) and 6rsa (ribonuclease A-uri- 
dine vanadate [12]). The 2gbp, 3cpa, 4dfr, and 6rsa sys- 
tems have been used in previous investigations of sam- 
pling [6] and scoring issues [5], as has the 3dfr system 
[4,13]. For reasons noted in earlier work [5], the docked 
ligands for the 4dfr and 6rsa systems differ from the 
complexed ligands; they are 2,4-diamino-6-methylpter- 
idine and uridine 3'-phosphate, respectively. The lgst 
complex has proven a difficult one to reproduce with the 
current site characterization, so we introduce it as a strin- 
gent test of the methods applied here. Preparation for 
docking for all systems was carried out as described pre- 
viously [5]. 

Force-fieM score optimization 
A rigid-body minimizer, affecting only the six inter- 

molecular rotational and translational degrees of freedom, 
was incorporated directly into the DOCK scoring scheme. 
The simplex technique of Nelder and Mead [14] was em- 
ployed, with slight modifications in the convergence treat- 
ment. Because the simplex method requires no derivatives, 
it lends itself to optimization on a jagged potential sur- 
face. The function that is minimized is the grid-based 
force-field score of Meng et al. [5]. Polar hydrogens were 
given a small (0.6 A) non-zero radius to prevent the mini- 
mizer from taking advantage of the large electrostatic 
attraction that would result from a charged, volumeless 
hydrogen approaching an oppositely charged nucleus. 
Construction of the initial simplex allowed up to 1.0 A 
translation and 0.5 ° of rotation. Minimization conver- 
gence is treated in a two-stage fashion. Convergence 
within a simplex occurs when upper and lower bounds 
concur within 0.2 kcal/mol. Completion of a simplex 
signals a restart, initiating a new simplex. The minimi- 
zation is deemed complete when a restarted simplex fails 
to reduce the force-field score by more than 1.0 kcal/mol. 
Other parameter values for simplex construction or con- 
vergence criteria resulted in slower and/or premature 
convergence (data not shown). 

Explicit comparisons between the simplex minimizer 



and the quasi-Newton method published previously [6] 
were carried out using the stand-alone programs DOCK- 
MIN_SIM and DOCKMIN_DFP (distributed with DOCK 
3.5). For each system, output from one DOCK run at an 
intermediate sampling level (400-600 orientations saved) 
was subject to stand-alone minimization. Performance 
was assessed for both minimization techniques in each of 
two modes: continuum (using exact interatomic distance 
calculations) and grid-based (using precalculated interac- 
tion scores and trilinear interpolation [5]). Stand-alone 
minimization was performed with default parameters. 

Degeneracy checking 
Basic algorithm Degeneracy checking aims to remove 

geometrically similar orientations of the ligand to reduce 
the number of time-consuming, on-the-fly minimizations. 
Because geometrically similar orientations usually con- 
verge to the same local minimum upon refinement, bypas- 
sing the optimization of these configurations will increase 
efficiency. We choose to remove degenerate orientations 
before the time-intensive 'orienting' phase [2,15], which 
places the ligand into the context of the receptor. As 
atomic coordinates are therefore not available, the diffi- 
culty lies in deciphering where in the active site an orien- 
tation lies based solely on the sphere-atom pairings in- 
volved in the match. The degeneracy checking algorithm 
must be able to perceive when the same geometry has 
been produced with different sphere atom pairings (Fig. 
1). When a unique orientation is found (e.g. the very first 
match), the new procedure records the nearest sphere to 
every atom in the ligand. Every subsequent orientation 
must be checked for degeneracy prior to the orienting 
phase. A simple check to see if all pairings occurred sim- 
ultaneously in a previous unique match imparts the 
answer. To reduce the memory requirements of a list of 
matches for each possible sphere-atom pairing, we imple- 
ment hashing, using open addressing with double hashing 
as described by Knuth [16]. The hash code enables rapid 
retrieval of matches containing a particular sphere-atom 
pairing. 

Additional features To increase the level of observed 
degeneracy, we use a reduced set of 'virtual spheres' to 
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Fig. 1. Hypothetical, two-dimensional degeneracy checking example. 
E represents the receptor, F the ligand; spheres are numbered and 
atoms are indicated with a letter. Using a three-node match, one can 
superimpose F onto E by the pairings b3, c4, d5 or a2, e6, d5, The 
algorithm must recognize that these pairings will produce an identical 
geometric orientation. 
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define the active site. Virtual spheres result from single- 
linkage clustering (neighbor distance vsph) and averaging 
over the matching sphere set, providing an even distribu- 
tion of points throughout the site. The nearest virtual 
sphere to each point on a cubic lattice is stored for rapid 
access during degeneracy assessment, analogous to the 
utilization of a force-field scoring grid for interaction 
evaluation. Additionally, we permit mismatch, termed 
wobble, in comparing sphere-atom pairings. Introducing 
mistakes into the degeneracy check (nonzero wobble) 
increases the number of degenerate orientations because 
binding modes are smeared out over a larger volume. 
Finally, we reduce the sensitivity, which results from 
representing orientational families by their first member, 
by affording popular binding modes renewed chances at 
locating a superior representative. The parameter degener- 
ate_save_interval dictates how often a degenerate orienta- 
tion must be found in a given family before orienting and 
minimizing another member. This feature has the desir- 
able effect of smoothing sampling over all binding modes. 

Several degeneracy parameters may be varied, but their 
effects have not been examined systematically here. In 
preliminary exploration, we find that a vsph of 1.5-2.0 ]t 
for creating virtual spheres, a wobble of 2, and a degener- 
ate_save_interval of 10-25 offer a reasonable compromise 
between speed and accuracy. Despite the use of hashing 
to reduce storage requirements, memory demands are 
nonetheless considerable. Performance degrades as the 
hash table fills, so we advocate the use of degeneracy 
checking for low to medium sampling levels only. 

Configurational sampling 
DOCK, v. 3.5, was run in single mode for all docking 

studies. The matching algorithm for generating ligand 
orientations remains unchanged from that in DOCK 2.0 
[4]. The number of configurations (matches) generated and 
thus the level of sampling performed is under user control 
through five parameters (all in units of Angstroms). In 
addition to the matching tolerance, the user controls the 
ligand bin size, receptor bin size, ligand bin overlap, and 
receptor bin overlap. Enlarging bin sizes results in a 
greater number of atoms or spheres per bin, and a corre- 
sponding combinatorial expansion in possible matches. 
The overlap parameters smooth the discrete nature of the 
bin architecture and increase sampling by merging por- 
tions of neighboring bins. All orientations producing 
negative force-field scores were examined. To insure that 
timing results were unbiased by slow I/O routines, coordi- 
nates for acceptable matches were never written to disk. 

Performance evaluation 
A clear picture of the impact of new features related to 

sampling results from examining performance over a 
diverse array of sampling parameters. We vary two sam- 
pling parameters, bin size and bin overlap, independently 
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Fig. 2. Best rms deviation to the experimentally observed configuration seen, regardless of force-field score, plotted as a function of the number 
of matches attempted for (a) lgst, and (b) 2gbp. Each point represents a single DOCK run with distinct sampling parameters. The behavior for 
the 3cpa, 3dfr, 4dfr, and 6rsa systems is like that of 2gbp. 

in discrete increments over a large range. We set both the 

ligand bin size and receptor bin size equal to the variable 

bin size. Similarly, we set both the ligand bin overlap and 

receptor bin overlap equal to the variable bin overlap. 

Finally, we set the matching distance tolerance to be 

equal to the sum of the bin size and the bin overlap. The 

dependence of the distance tolerance on the bin parame- 

ters insures that all distance compatibility assessments for 

growing cliques are made with similar stringency. Bin 

sizes and bin overlaps ranged in increments of 0.05 

from 0.05 to between 0.40 and 1.00 ]~. In general, bin 

parameters were no longer incremented when run times 

began to exceed several minutes. This protocol led to a 

few hundred individual single mode D O C K  runs per 

system, enabling a statistically significant analysis of 

result quality versus CPU time. All acceptable matches 

were formed from exactly four nodes and tolerated no 

more than two bad contacts. 

For evaluation of new technology, four sets of runs as 

described above were performed for each system: native 

DOCK,  with no new features; native D O C K  with post- 

docking, lattice-based simplex optimization using DOCK- 

MIN_SIM; D O C K  with on-the-fly force-field score mini- 

mization; and D O C K  with on-the-fly force-field score 

minimizat ion coupled to degeneracy removal. Data  were 

TABLE 2 
PERFORMANCE COMPARISON OF MINIMIZATION METHODS 

transformed into a success-versus-effort format as follows. 

Effort was quantified in two ways: by the number  of 

matches attempted, and by the amount  of CPU time 

required. Success was also measured in two ways: by 

whether the rms deviation of the best force-field-scoring 

orientation was within 1.0 A of the observed mode, and 

by whether the best force-field score obtained was within 

5 kcal/mol about  the global minimum. The global mini- 

mum force-field score was taken as the best force-field 

score seen by any of the D O C K  runs for that system. 

Thus, this extremum represents the best among no fewer 

than several million configurations. The 5 kcal/mol thresh- 

old for success about  the global min imum was selected 

based on an examination of the effect on the success- 

versus-effort plots of varying this threshold over the range 

2.5 10 kcal/mol (data not  shown). Effort is binned on a 

logarithmic scale: within each effort bin, a probability of 

success was computed by dividing the number  of success- 

ful D O C K  runs in the bin into the total number  of 

D O C K  runs falling in the bin. A seven-point moving 

average was used to smooth plots. 

Sampling robustness 
To assess whether failure by D O C K  to reproduce ex- 

perimentally observed geometries generally results from 

System CPU time per ligand (s) Rms deviation ~ (A,) 

Continuum DFP Grid s implex Continuum DFP Grid simplex 

Correlation b 

1 gst 3.10 0.070 1.04 _+ 0.63 1.09 _+ 0.63 
2gbp 1.47 0,039 0.76 + 0.46 0.81 + 0.44 
3cpa 2.93 0.062 0.91 + 0.67 0.95 _+ 0.72 
3dfr 3.92 0,115 1.14 + 0.76 1.09 _+ 0.65 
4dfr 2.72 0,037 0.50 + 0.29 0.49 + 0.28 
6rsa 2.02 0.064 1.37 _+ 0.98 1.39 + 0.96 

y = 0.88x - 2.30; r z = 0.77 
y = 0.97x - 0.83; r 2 = 0.80 
y = 1.01x - 0.76; r z = 0.86 
y = 1.01x - 1.03; r 2 = 0.95 
y = 1.00x - 1.30; r z = 0.87 
y = 0.99x - 1.28; r 2 = 0.88 

The rms deviation from the starting position is given as average + standard deviation; hydrogens were not 
represent minimization of approximately 500 DOCK output orientations for each system. 

b Correlations of continuum DFP force-field scores (y) versus grid simplex force-field scores (x). 

included in the calculations. Values 
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TABLE 3 
SAMPLING CONDITIONS EXPLORED IN METHODOLOGY EVALUATION 

System DOCK Bin size range b Bin overlap No. of Total no. of Matches per Global 
features a (A,) range b (A) DOCK runs c matches second minimum d 

lgst Native 0.05 0.50 0.05-1.00 200 18 833 108 2647 -49.037 
Min 0.05 0.40 0.05 0.80 128 2421 887 83 
Min+deg ° 0.05 0.50 0.05 1.00 128 1783 514 626 

2gbp Native 0.05 0.50 0.05-1.00 200 14 270 188 4187 -24.538 
Min 0.05 0.50 0.05-0.50 100 306 144 52 
Min+deg ~ 0.05 0.50 0.05-1.00 126 956 378 281 

3cpa Native 0.05 1.00 0.05-I.00 300 r 28582470 2566 -47.188 
Min 0.05 0.50 0,05-0.50 100 117 713 78 
Min+deg ° 0.05 0.50 0.05-1.00 162 1597 427 626 

3dfr Native 0.05 0.40 0.05-0.80 128 7136487 2863 -70.945 
Min 0.05 0.40 0.05-0.40 64 125 421 326 
Min+deg g 0.05-0.40 0.05 0.80 111 2616 774 I882 

4dfr Native 0.05-0.50 0.05 1.00 200 6207 365 2354 -33.916 
Min 0.05-0.50 0.05 0.50 100 180 282 36 
Min+deg ~ 0.05 0.50 0.05-I.00 152 1951 826 293 

6rsa Native 0.05-0.50 0.05 1.00 200 2834980 1731 -66.003 
Min 0.05-0.50 0.05 0.50 i00 68 953 68 
Min+deg e 0.05-0.50 0.05 1.00 171 1493 590 596 

'Native' refers to DOCK runs in which neither force-field score minimization nor degeneracy checking was used. 'Min' refers to DOCK runs 
in which force-field score minimization was used without degeneracy checking. 'Min+deg' refers to DOCK runs in which force-field score 
minimization was used in conjunction with degeneracy checking. 

b Increments of 0.05 A were used within these ranges. 
c The number of DOCK runs examined is in some cases less than the bin ranges would indicate, for three possible reasons: run times began to 

exceed several minutes, convergence at 100% in the success-versus-effort plots had been reached, or the maximum number of allowable unique 
matches for degeneracy checking had been exceeded. 

d Minimum force-field score (kcal/mol) observed over all DOCK runs for each system. 
e Degeneracy parameters: wobble = 2, vsph = 1.5, degenerate save interval= 10. 
¢ For bin sizes of 0.55-1.00 in the 3cpa native DOCK runs, bin overlaps ranged only from 0.55 to 1.00, hence only 300 runs resulted. This was 

an effort to obtain more high-sampling runs. 
g Degeneracy parameters: wobble = 2, vsph = 2.0, degenerate save interval = 25. 

deficiencies in s a m p l i n g  or  in scor ing,  we i so la ted  the  

effects  f r o m  sampl ing .  By r emov ing  scor ing  res t r ic t ions  

a n d  ana lyz ing  only  a g r e e m e n t  in Ca r t e s i an  space  b e t w e e n  

d o c k e d  o r i en t a t i ons  a n d  the  o b s e r v e d  b ind ing  mode ,  the  

p rec i s ion  o f  the s a m p l i n g  a l g o r i t h m  is revealed.  A set o f  

D O C K  runs  wi th  s ampl ing  level var ied  as desc r ibed  

above  was  thus  p e r f o r m e d  in which  all o r i en t a t ions  wi th in  

2.5 ~ r m s  dev ia t ion  f r o m  the  exper imen ta l ly  obse rved  

conf igu ra t ion  were  wr i t t en  out ,  regardless  o f  force-f ield 

score. 

l g s t  [ • min [ ]  mindeg [ ]  dock] b 2 g b p  I l l  mFn [ ]  mindeg ~ dockJ 
1^~o~ 
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number of matches number of matches 

Fig. 3. The probability of locating an orientation having a force-fieId score within 5 kcal/mol of the global minimum, plotted as a function of 
number of matches attempted for (a) lgst, and (b) 2gbp. °dock' represents native DOCK, 'min' represents DOCK with on-the-fly minimization, 
and 'mindeg' represents DOCK with on-the-fly minimization and degeneracy checking. The absence of a curve for native DOCK indicates that 
no successful run ever occurred. The 1 gst and 2gbp systems represent extrema; the four other systems show similar features at intermediate points 
along the abscissa. 



128 

100% 

1 g st [ •  mindeg • min [] dock] 2gbp 11 mtn [] rnindeg []dock] 

C 

01 1 10 100 0.1 1 10 100 

CPU seconds 

3cpa [[]mindeg • min@dock] d 

CPU seconds 

3dfr I• rnin [] mindeg • dock I 

CPU seconds 

4dfr L N dock [3 mindeg • rnin] 

CPU seconds 

6rsa I1~ mindeg • min [ ]  dock I 

8 

=, 

o.1 1 lO lOO o.1 1 lo loo 

CPU seconds CPU seconds 

Fig. 4. Probability of locating an orientation having a force-field score within 5 kcal/mol of the global minimum, plotted as a function of CPU 
seconds required for (a) lgst; (b) 2gbp; (c) 3cpa; (d) 3dfr; (e) 4dfr; and (f) 6rsa. The key is as given in the legend for Fig. 3. 

Hardware 
All calculations were carried out on a 200 MHz R4400 

INDIGO-'  workstation (Silicon Graphics, Inc., Mountain 
View, CA) with 128 Mb of physical memory. 

Results 

Sampling robustness 
The ability of DOCK's  sampling algorithm to locate 

the experimentally observed binding mode is illustrated 

in Fig. 2. For each system, all sampling levels that pro- 
duced an orientation within 2.5 A rms deviation are plot- 
ted. For all six receptor-ligand complexes explored here, 
the matching algorithm is robust enough to find the na- 
tive configuration. With the exception of the lgst system 
(Fig. 2a), a few hundred to a thousand matches are suffi- 
cient to locate an orientation within 1.0/~ rms deviation. 
This point highlights the robust nature of the sphere 
description and matching algorithm used in DOCK. As 
the sampling method is adequate, it thus becomes a task 



for scoring schemes to recover the native mode as the 
optimal configuration. 

Minimizer performance 
A fast rigid-body optimization, suitable for incorpor- 

ation into DOCK, operates as effectively as the more 
resource-intensive method explored by Meng et al. [6]. By 
implementing a simplex method using a precalculated 
interaction lattice, between 30- and 75-fold faster oper- 
ation is achieved over the continuum-mode quasi-Newton 
Davidon-Fletcher-Powell (DFP) [17] method described 
previously [6]. The near-unit slopes and high correlation 
between optimized scores indicate that the result quality 
is comparable. The offset favoring the continuum DFP by 
1-2 kcal/mol is attributable to the use of exact inter- 
atomic distances rather than trilinear interpolation among 
precalculated grid scores. We take as a measure of con- 
vergence radius, or the capacity to pull distant structures 
into a local minimum, the rms deviation occurring during 
minimization. Convergence radii for the two minimization 
techniques are nearly identical. The simplex operating in 
continuum mode and the grid-based DFP demonstrated 
performance intermediate to the two methods presented 
in Table 2 (data not shown). 

On-the-fly optimization and degeneracy checking 
The performance impact of on-the-fly force-field score 

optimization and of degeneracy checking was gauged via 
success-versus-effort analyses. The range of sampling 
parameters, number of D O C K  runs, and total configur- 
ations generated for each set of runs are enumerated in 
Table 3. More than 2500 D O C K  runs, covering a wide 
range of sampling conditions, have allowed a comprehen- 
sive analysis of tradeoffs between configurational explora- 
tion and rigid-body optimization. 

~Ndock mmin E~postmin I 

1 lO 10o 
CPU seconds 

Fig. 5. Probability of locating an orientation having a force-field score 
within 5 kcal/mol of the global minimum, as a function of CPU 
seconds required. 'dock' represents native DOCK, 'rain' represents 
DOCK with on-the-fly minimization, and 'postmin' represents native 
DOCK with stand-alone grid-based simplex minimization performed 
on the output. Data represent an average over the systems explored 
for each method. 
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Figure 3 illustrates the ability of new technology to 
locate the global minimum in force-field score as a func- 
tion of sampling level. The use of score optimization 
consistently outperforms native DOCK in this respect. 
This was to be expected: both methods generate identical 
orientations, but the former is afforded a refinement of 
intermolecular interactions, an operation that can only 
improve results. Coupling to a degeneracy checking pro- 
tocol would ideally show identical behavior to minimi- 
zation alone, when effort is measured by the number of 
matches. In actuality, the degeneracy checking method 
generally falls intermediate to D O C K  with and without 
minimization. In two systems examined here (lgst and 
3dfr, not shown), native DOCK is completely unable to 
locate an orientation close to the global minimum in the 
absence of refinement, even when sampling on the order 
of one million configurations. Plots of success in placing 
the best force-field-scoring orientation within 1 A r m s  
deviation of the experimentally observed configuration as 
a function of number of matches tried parallel the force- 
field score success plots of Fig. 3 (data not shown). 

In practice, however, the primary concern for molecu- 
lar docking is not how many configurations are exam- 
ined, but rather how much computer time is required. 
Because each optimization takes on average one hundred 
times longer to carry out than a single score evaluation 
(data not shown), D O C K  runs employing force-field 
score minimization are likely to become intractable unless 
sampling is reduced. But can sampling be reduced suffi- 
ciently to counteract this great disadvantage while main- 
taining high-quality solutions? Figure 4 depicts the trans- 
formation from effort measured in numbers of configur- 
ations to effort gauged by computational demands. 

Excepting only the 4dfr system (Fig. 4e), we see that 
using on-the-fly optimization is dramatically more effi- 
cient than native D O C K  at arriving at near-global-mini- 
mum solutions, despite the much higher per-match re- 
source requirements (Table 3). The implementation of the 
degeneracy checking protocol, while equally superior to 
native DOCK, does not display as dramatic improvements 
when compared with minimization alone. In one case 
(6rsa) we see significant gains, in two cases (lgst, 3cpa) 
slight improvements, in two cases (2gbp, 4dfr) no differ- 
ence, and in one case (3dfr) slightly worse behavior. De- 
generacy checking generally manifests its advantages at 
lower sampling levels, as evidenced by the early successes 
seen in the lgst, 3cpa, and 6rsa complexes. 

A simple alternative to introducing force-field score 
optimization into the docking process would be to per- 
form stand-alone minimization on the output of a native 
D O C K  run. Given the negligible cost of a single grid- 
based simplex refinement (Table 2), this could conceivab- 
ly be an efficient method for improving results. We have 
entertained this possibility in four of the test systems, and 
compare pos t -DOCK minimization to native DOCK and 
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DOCK with on-the-fly optimization in Fig. 5. At very 
short run times, post-DOCK minimization is the most 
effective method, but its usefulness becomes limited as 
run times lengthen. In one system (6rsa, data not shown), 
post-DOCK minimization showed almost no improve- 
ment over native DOCK. Possible explanations for why 
this behavior is likely to be common are given below. 

Discussion 

Perspective 
Molecular docking has become an increasingly popular 

tool for drug discovery in recent years [18]. To be truly 
useful, docking methods must successfully integrate effec- 
tive site description techniques, robust configurational 
sampling algorithms, and accurate evaluation schemes in 
an efficient manner. Our focus here is on a feature that 
ties together sampling and evaluation, i.e., interaction 
optimization. This feature is designed to improve how 
two components fit together, but the physical movement 
involved in the refinement impinges directly upon the ap- 
parent performance of the sampling algorithm. Thus, 
our investigation into the utility of rigid-body refinement 
in DOCK necessarily probes configurational search meth- 
ods. 

Interaction optimization is not new to automated mol- 
ecular docking methods [19-22]. However, to our knowl- 
edge, this article represents the first published systematic 
exploration of sampling space for a docking method. We 
analyze in excess of 2500 docking runs, not simply an 
arbitrary slice of the vast configurational universe, This 
study enables an objective analysis of the tradeoff be- 
tween computationally inexpensive, discrete optimization 
in the form of configurational sampling and the consider- 
ably more expensive, continuous optimization in the form 
of rigid-body refinement. 

Our assessment of the results is colored by our stand- 
point on molecular docking as a tool for database search- 
ing toward lead discovery. This perspective carries two 
biases associated with it: (i) we prefer the amount of CPU 
time spent per ligand to be on the order of seconds, not 
minutes; and (ii) we rank binding modes and ligands by 
interaction scores, not rms deviations to observed con- 
figurations. Experimental orientations are unavailable for 
nearly all database ligands, so a geometrical success cri- 
terion cannot be utilized. The latter point implies that 
efforts should be directed toward locating the global 
minimum in a scoring function, not necessarily toward 
identifying a known binding mode. We make the assump- 
tion that the experimentally observed orientation is at the 
global minimum. It is therefore the task of scoring func- 
tion developers to insure coincidence between the global 
optimum of the evaluation scheme and the observed 
mode. For all six systems studied here, the global mini- 
mum of the force-field score developed by Meng et al. [5] 

does indeed correspond to the crystallographic solution to 
within 0.5 A r m s  deviation. 

Robustness in sampling and optimization 
The coupling of on-the-fly interaction optimization 

with an effective configurational sampling algorithm 
results in a robust docking strategy. The speed of the 
accurate grid-based simplex minimizer introduced here 
enables the incorporation of refinement into the docking 
process, albeit still at considerable computational expense 
when compared with the speed of matching or force-field 
scoring alone (Table 3). Nevertheless, on-the-fly optimi- 
zation is able to not only counteract this handicap, but 
significantly surpass native DOCK in efficiently locating 
low-energy solutions. Because the sampling method read- 
ily retrieves configurations close to the experimentally ob- 
served configuration, failure to identify this mode as opti- 
mal lies with scoring and not with sampling. The effect of 
refinement, then, is to salvage the many orientations gen- 
erated near the crystallographic mode that would other- 
wise be thrown out due to steric clashes with the receptor. 
Optimization allows maximal use to be made of informa- 
tion provided by the matching algorithm. We expect on- 
the-fly optimization to benefit database searches most by 
rescuing ligands for which the proper binding mode is 
sampled but for which no low-energy orientations can be 
found. Two such examples appear in this work, 1 gst and 
3dfr (Fig. 4), and their recovery underscores the utility of 
on-the-fly optimization. The tolerance of a nonzero num- 
ber of bad contacts within DOCK is imperative to taking 
full advantage of minimization as a rescue device. 

Degeneracy removal 
The degeneracy checking protocol described here has 

met with mixed success. Although typically 90% of orien- 
tations are deemed degenerate and are not examined 
further, this savings under the current implementation 
does not significantly outweigh the cost of assessing de- 
generacy. The advantages are manifested primarily at 
shorter run times, as evidenced in the lgst, 3cpa, and 6rsa 
systems (Fig. 4). This capacity will find use in database 
searching applications when CPU resources are quite 
limited, as not all ligands are likely to be sampled ad- 
equately with the same set of sampling parameters. 

The judicious selection of fewer orientations for opti- 
mization is a compromise. By refining all orientations, 
resources are spent insuring each orientation is within a 
local minimum, not sampling the vast configurational 
universe (akin to a depth-first search). Conversely, by not 
refining any orientations, resources are spent exploring 
configuration space without particular regard to the qual- 
ity of each orientation (a breadth-first search). Refine- 
ment is relatively expensive computationally and configur- 
ational exploration is inexpensive, so the optimal tradeoff 
comes when configuration space is thinly but evenly sam- 
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pled with refined orientations. The advantages evidenced 
with the degeneracy removal protocol at short run times 
are the result of exactly this tradeoff. At longer run times, 
when inexpensive configurational sampling is more in- 
tense, minimization alone generally performs at least as 
well as when coupled with degeneracy removal. 

We believe the largest hurdle in devising a more suc- 
cessful degeneracy removal protocol lies in the selection 
of a representative for each binding mode. In this work, 
we choose the first orientation found in a binding mode 
as that family's 'parent' for assessing degeneracy. If this 
orientation should be a poor representative, further orien- 
tations in that family will nonetheless be thrown out, 
regardless of how they might have scored. The degener- 
ate_save_interval alleviates this bias to some extent, but 
functions as a crutch rather than a solution. 

Prospects for post-DOCK optimization 
The appropriate control experiment for the introduc- 

tion of on-the-fly minimization entails performing a 
DOCK run without minimization and subsequently opti- 
mizing the output in the same fashion. In this way, the 
benefits imparted by minimizing all DOCK orientations 
as opposed to minimizing only the best unoptimized 
orientation are revealed. The danger in selecting only the 
lowest energy unoptimized orientation is that other orien- 
tations may lie higher in energy but in a deeper well, so 
that upon optimization these other orientations would 
have finished lower in energy. This possibility is borne 
out by the shuffling of pre- and post-optimization force- 
field scores (data not shown). 

Although we observe the best performance with post- 
docking optimization for very short DOCK runs (Fig. 5), 
this behavior does not extend to more intensive sampling. 
Finding an orientation in the observed binding mode is a 
necessary but not a sufficient condition for obtaining a 
force-field score near the global minimum after optimi- 
zation. Because on-the-fly optimization refines every 
orientation, it is afforded the luxury of the chance that 
any of the orientations near the observed binding mode 
(Fig. 2) will refine near to the global minimum in force- 
field score. In contrast, DOCK without on-the-fly opti- 
mization has available only one orientation deemed best 
by an unoptimized force-field score, with the additional 
constraint that this one orientation must be in the ob- 
served binding mode. DOCK without on-the-fly optimi- 
zation therefore gets at most one chance to refine an 
orientation into the global minimum if post-docking 
optimization is performed. Nevertheless, we find that 
performing a post-DOCK optimization is in all cases 
superior, and in many cases substantially so, to perform- 
ing a native DOCK run without any refinement. 

Matching algorithm discontinuities 
A disconcerting consequence of the bin architecture for 

ligand-site matching is that results obtained at a low level 
of sampling are not guaranteed to be a subset of results 
obtained at a higher level of sampling. This point has 
been noted previously [6]. Although in general this is not 
the case, this artifact can lead to strange behavior, par- 
ticularly when examining arbitrary slices of sampling 
parameters. The analysis of hundreds of DOCK runs for 
each system in this study enables us to collect statistically 
significant success probabilities and bypass much of the 
problem. One will note, however, that the plots in Figs. 
2-4 do not display monotonic functions: the jagged nature 
of these curves is the result of the discontinuity arising 
from the bin architecture. Fortunately, the physical con- 
vergence of orientations into local minima by on-the-fly 
minimization mitigates the severity of this artifact. 

Sampling guidelines 
One of the most instructive findings from the great 

number of DOCK runs examined is insight into the 
amount of sampling required to obtain a desired prob- 
ability of success. The success-versus-effort plots carry a 
great deal of information, and can be used as guidelines 
for performing DOCK runs appropriate to available 
resources. For instance, one might be interested in per- 
forming a large database search where each ligand would 
be allotted the minimum resources to obtain 100% suc- 
cess. In this case, one might calibrate sampling conditions 
to expend an average of 10 CPU seconds per ligand (or 
on the order of 1000-3000 matches). In another example, 
one might be interested in analyzing a small database 
with the assurance that each ligand was well into the 
100% success plateau. For this case, one might calibrate 
sampling conditions to expend 100 CPU seconds per li- 
gand. It would be reasonable to construct a success-ver- 
sus-effort plot for a known ligand, if available, for per- 
formance gauges customized to the system being studied. 
In this manner, the success-versus-effort plots provide a 
valuable mechanism for setting sampling levels in molecu- 
lar docking. 

Conclusions 

We have coupled a fast and effective grid-based, rigid- 
body simplex minimizer with the robust configurational 
sampling algorithm used in DOCK to allow on-the-fly 
force-field score optimization in a tractable manner. This 
coupling, despite the heavy resource demands of refine- 
ment, results in a docking strategy that is computationally 
more efficient at retrieving experimentally observed con- 
figurations than docking in the absence of optimization. 
In some cases, only with the use of on-the-fly optimi- 
zation could the observed binding mode be identified as 
the global minimum in the scoring function. On-the-fly 
optimization salvages poor orientations that would other- 
wise be discarded, thus making maximal use of informa- 
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tion afforded by the sampling algorithm. The removal of  
geometrically similar orientations to circumvent redun- 
dant optimizations is a tradeoff between expensive refine- 
ment and inexpensive sampling - our implementation 
shows mixed success, but with greatest potential at short 
per-ligand run times. Finally, while not as effective as on- 
the-fly optimization, it is highly beneficial to perform an 
inexpensive post-docking optimization, particularly at low 
sampling levels. We find that success-versus-effort plots 
for gauging docking performance lend valuable insight 
into the setting of  sampling levels for the inevitable com- 
promise between result quality and computat ional  re- 
sources. 
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