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Self-Dual Yang—Mills Fields in d =7, 8,
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Abstract, The Yang Mills theories in 4 = 7 and ¢ = 8 with the arbitrary gauge group G are considered.
Generalized self-duality-type relations for gauge ficlds are reduced to systems of nonlinear dilTerential
equations on functions of one variable (Ward equations). Ward equations may be reduced to equations
which follew from Yang—Baxter equations. This permits us to obtain new classes of explicit solutions of
the Yang—Mills equations in 4 =7 and d =8.
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1. Here, we shall aim at finding the solutions of the classical equations for a
pure Yang—Mills (YM) theory in the Euclidean spaces R™? and R*" with an
arbitrary semisimple gauge Lie group G. We start with the potentials 4, in R*
with values in the Lie algebra & of the Lie group G. The field tensor F,, is defined
a8

Fuvz[Dw Dv]:apAv*avAu‘k[Au!Av]a (1)

where D, =0, +[4,, |, p.v,...=1,...,4d
The Yang—Mills equations for the gauge potentials A, have the form

D,F,, =0. (2)

In a series of papers [1-4], it was shown that Equation (2) is satisfied by virtue of
the Bianchi identity i3, £, ; = 0 if the tensor F,, satisfies the generalized self-duality
equation

IjttvaJ.Fo—/’, - yFyv: (3)

where the numerical tensor T is completely antisymmetric and y =const is a
nonzero cigenvalue. Equalion (3) generalizes the usual self-duality equations in
d = 4. In this Letter, we shall describe the classes of self~dual solutions of the YM
equations in 4 =7 and d =8§.

2. Let Ca be the alternative nonassociative algebra of the octanions. Its defining
relations are

- _5 _ _ 2_
e €, = —d e+ frpeCes €, ¢ = CyC, = €y, e; = ey,
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where a4, b,...=1,...,7, ¢, are the basic octonionic units, and ey is the unit
element in Ca. The Cayley siructure constants f,. are tolally antisymmetric in (abc)
and equal to unity for the seven combinations (or cycles): (123), (246), (435), (367),
(651), (572), (714).

In R™, one may introduce the antisymmetric four-index tensor #4,;,; which is dual
10 fope :

1

habcd =% Eabcdmnkf mink

3

WHETC €,pmme 15 8 commipletely antisymmetric tensor in d = 7. The tensors [, and
k... satisfy the following seven-dimensional identities [4, 5]:

habcdhljkd
= (5af 65_] - 5aj 6!)1 )5ck + (551' 5@ - 6&]‘ 501’)5411( +
+ (601! 50_] - 5!;/ 5(11’)5bk __.f;b(‘j:jk + hrzbi] 5:1( +

+ hb(!rj 6ak -+ hom] 5})!{ + hub_,'k 54}! +

A+ hpgsic Qs + Pooyic O+ Plapts Oy + Pocii 05y + P, Opye (4a)
SavkMoer
= fact Ope — Foca Oae + Fade Obec —
~Jode Oac F Jaze Ova = JFiec Oaa- (4b)

We also introduce the following tensors [5]
Batea = 28ac Opg — 8aq Opc) — Mapea
= 38, Opg — Oau Opc) — Sasiceans (5a)
Bavead =SS ede = Oac Fpa — Bag Opc + Papea- (5b)

The tensors g, and £.,.. project an arbitrary antisymmetric tensor 7, onto the
orthogonal 14- and 7-dimensional subspaces of the 21-dimensional vector space of
the antisymmetric tensors in d = 7:

Top =50, Oy — 8,004 ey
= %(gufmd + Zavca) Lo
= t8usoaTea + 58asca Tea
=Ny + Nog.

where N, is the self-dual and N, is the anti-self-dual part of the tensor T,.
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From (4) and (5) one obtains
bopealNog = —2N,,
habcdﬁcd =4N,,.

Notice, that these equations are equivalent to the equations [3]:

ZeaawNan =0, (6a)

Leann Ny = 0. (6b)
3. Let us consider an ansatz for the fields 4, in R™:

A, = 08 upeaXn Weal), (7)
where = =const and the antisymmetric tensor W,,= —W, decpends on

u=1+x,x, and takes its values in the Lic algebra .
Inserting (7) into the definition of £, and using the identitics (4), we obtain the
following expression:

Fop = =208 peaWea + 20, % Eopoa Wea —

72mxbxkgak(.d ch + azxmxngamcdgbnek[ch’ Wek]i (8)
where
, dw,
W, =—==.
“ du
Substitute (8) into the self-duality equations (6a) (i.e. N, —F,,). After long and
tedious calculations using the identities (4) for x = —1, one obtains the equations:
[Wab= ch] = Sabcdmn H'/mn! (9)
where

1o ; . -
Sabcdmn = E(éac ab[m an]d - obc 6a[m 5::]:1' + 5bd 5a[m 5?:]5 - 5ad 5&[:11 6n]c)

are the SO(7) structure constants.
Equation (9) is a particular case of the equation

[H/m’: Wn] = Cm’n’k’a H./k’: (10)

which was considered by Ward [6]. In (10), C,, .+ are the structure conslants of the
Lie algebra # (m’,n’....=1,...,dim #), and W, takes its valuc in the Lie
algebra %. We shall call {10) the Ward equations.
When o = —4 and W, (u) satisfy the Ward equations (9), it is not difficult to
show that the field tensor F,, has the form
Fab = %gabcd{Sch + 4(” - ])VVcd + 4xd'xk Wr.k -

74xcxk de + XX Wmngkmnc — X Xk Wmng-knmd}' ( 1 1)

From (11), the self-duality of F_, becomes obvious.
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PROPOSITION 1. For the ansaiz (7), the self-duality equations (6a) of the YM
model in d =7 with the arbitrary semisimple gauge group G is reduced to the Ward
equation {9). Conversely, with each solution of the Ward equation (9) one may
carrespond the sotution (7) (with o = —3}) of the self-duality equation (6a).

Proof. Follows from (8), (6a), and (4) after direct calculations.

4. Consider the eight-dimensional Euclidean space R®*?. In R®%, lel us define
the next completely antisymmetric four-index tensor H,zep(A, B,...=1,...,8)
[4, 5]:

Habzd = habcds Hﬂbc& zfabz'v

where a, b, ...=1,...,7, and the tensors A, and f,,. were introduced in Sec-
tion 2.
The tensor H, 5. satisfies the identities [3]:

H penHiyn
=347 0ps — 845 081)0cx + (381 6c; — s Bc)dux +
+(0cr 647 — 0cs G ur)0px +
+Hapy dcx + Hpcrr 845 + Heary O+
+Hpix 8cr + Hpcrg 6ar + Heyyx dnr +
+H g1 6cs + Hpckr 0ar + Heari Op. (12)
We also introduce the tensors [4, 5]:
Gancp =3 4c 8pp — 040 05c) — Hapen,
Gasep = 84c 050 — 8ap Opc + Hapep-

These tensors project an arbitrary antisymmetric tensor 7,5 onto the orthogonal
21- and 7-dimensional subspaces of the 28-dimensional vector space of the antisym-
metric tensors in d = §8:

TAB = %(5/1(' 5BD - 5AD 5BC,)TCD = é(GAB(.'D + G_ABCD)TCU
=4GinenTen + G ascnTep = Nap + N yp.

Here, N,p is the self-dual and N, is the ant-self~dual parts of the tensor 7,5.
From (12), one obtains

HyscoNco = —2N 45, HigcoNep = ﬁﬁAB'

These equations are equivalent to
GepasNas =0, (13a)
GepanNap=10. (13b)
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5. For the gauge fields 4,, in R®®, we introduce the ansatz
Ay = BGyncpxy Weplu), (14)

where B =const and the antisymmetric fensor Wy, = — Wy, depending on
u =1+ x,x,,, takes its values in the arbitrary semisimple Lie algebra 4.
Let us insert (14) into the definition of F,,, and use the identities (12). We obtain

Fun==2BCyncoWen + 26X GypcnXsn WCD -

—2Bx5GapepXs WCD + ﬁzx('xu GrrcroGapas [ Wan W sl (15)

WCD = du

Substitute (15) into the self-duality equation (i3a) (i.e. N p — F p). After some
algebra using the identities (12), it is not difficult to show that when f = —%, these
equations are reduced to

[I/VABv chl = Siscomn WMN; (|6)

where

Sapcoun = %(5,« 5B[M 5N]D — 0pc 5A[M 5N1D +
+dan 5A[M 5N]c —b.4n 53[M 5mc)

are the SO(8) structure constants,
When = —1L and W, g(u) satisfy (16), the field tensor Fy,, has the form

Frn = 35G i [12Wg 4+ 6(u — DWW, +
+x:%5Gepps Wcu — X X3Gepnp Wcu]- (a7
From (17), the self-duality of F,,, becomes obvious.

PROPOSITION 2. For the ansatz (14), the self-duality equation (13a) of the YM
model in d =& with the arbitrary semisimple gauge group &, is reduced to the Ward
equation (16). Conversely, with each solution of the Ward eguation (16), one may
correspond the solution (14) (with f = —1) of the self-duality equation (13a).

Proof. Follaws from (12} after substituting (13) into (!3a) and direct calcula-
tions.

6. BEquation (10) was introduced and discussed by Ward [6]. When the gauge
algebra % coincides with #, Equation (10) may be obtained from the well-known
classical Yang—Baxter equations. Morc cxactly, Ward has shown [6] (see also [71),
that classical Yang—Baxter equations for the Lie algchra # may be reduced to
Equation (10) (with W,, e ¥ = #) if one assumes that W, = W, . (4)J, has a
simple pole at 0 with a residue of the form ég,,, (where .J,, are the generators of
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H#, { =consl, and g,,,- 15 the Killing metric on #) and W, (—w) = — W, ().
For classical Yang—Baxter equations (for the definitions, see [8—10]), solutions with
such propertics are calied nondegenerate {9] and each such solution is, necessarily,
also a solution of (10).

Many explicit nondegenerate solutions of classical Yang—Baxter ¢equations are
known (see, e.g., [8—10]). All such solutions for the simple Lie algebra s# belong
to one of three classes: elliptic, trigonometric, and rational [9,10]. A detailed
description of all nondegenerate eiliptic and trigonometric solutions was given in [$]
and a number of rational solutions were constructed. This description permits us to
obtain new classes of solutions of the YM equations in d =7 and d = 8. Namely,
by using formula (7) with % = # =so0(7) and o = —j, onc may correspond the
self-dual solution of the YM equations in d =7 to cach nondegenerate solution
W, (u) of the classical Yang—Baxter equations for so{7). Analogously, using
formula (14) with ¥ = # =so(8) and f = —1, one may correspond the self-dual
solution of the YM equations in ¢ = 8§ to each nondegenerate solution W ,z(u) of
the classical Yang—Baxter equations for so(8).

The simplest rational solution of the classical Yang—Baxter equations for # has
the form [8-10]:

o 1 1
WEgmn Mri’®Jiz’: _;gmnjm'®‘rn’¢> Wm‘ = _;J

m

In particular, for Equations (9) and (16), we obtain the following well-known
solutions:

1
Wy=— —J 18
ab (1+xcxc) ahs ( a)
W,p = 1 (18h)
AB — (] +XM)CA,I) AL

where J, are the generators of the Lie algcbra # =s0(7), and J,, are the
generators of the Lie algebra # = so(8). The solution (7) with W, from (18a) was
obtained in [11], and solution (14) with W, from (18b) was obtained in [3, 4].

7. New solutions ol the YM equations in d = 7 and & = 8 may be abtained by the
substitution of the solutions of the classical Yang—Baxter equations, which are
more general than (18), into (7) and (14). As an example, we write out the
trigonometric solution from [10]. It has the form

- .

W= (cth Qi_—lzfli)) (), (19)
2¢ 1= 2q

where @: #° — # is the Coxeter automorphism of the simple Lie algebra .# and g

is its order, i.e. ®* =1Id. For all simple Lie algebras, the values ol thc Coxcter

numbers g and the description of the automorphism @ in terms of roots, may he

found in [12] (sec also [9]).
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Let us consider the algebra so(#). Fellowing Belavin and Drinfeld [9], we choose
the basis in which the matrices &/ € so(n) salisfy the next relation &' = —Ss75 1,
where S is

o —

1o O
In this basis, the automorphism @ has the form:

() =040 . (20)
For ## =so0(7), the number ¢ and the matrix  are

q =6, Q =diag(l, @, ..., w 1), (21)

where w = exp(i27/6). For # =50(8), onc may choose

g =38, 0 =diag(l, o, ..., ®"% @4 1) (22a)
or
2
& \ O
e
g=8, 0= 0 1 (22b)
1 0
85
0 Lo
67
- <

where & == cxp(i2n/8).

Using the explicit form of the matrices @ from (21) and (22), one may show that
solution (19) is real. With the help of (20)—(22), all constant matrices ®*(J,,) may
be written out for # =so(7) and # = so(8). Notice that solution {19) is singular
only in the points u = 27k, k =0, +.1, £2,... [9, 10]. But we have u# =1 + x,x,
for the ansatz (7) and w = | + x,,x,, for the ansatz (14), Thercfore, ¥ == 1 and the
substitution of (19) into (7) and (14) gives the nonsingular solutions of the YM
equalions in d =7 and 4 = 8.

The explicit form of the general solutions of classical Yang—Baxter equations of
the trigonomectric and clliptic types is given in [9, 10, 13]. We don’t write out these
solutions because it would take up too much room.

To sum up, we have shown that Ward equations and classical Yang—Baxter
equations arise in the study of YM equations in d =7 and 4 = 8. It is desirable to
find more general classes of solutions of Ward equations than thc Yang—Baxter
equations give.
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