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Abstract. The finite-zone solutions of relativistic Toda lattices are investigated using the recurrence relations 
method. As a result, a nonlinear bundle of relativistic Toda lattices is with corresponding stationary and 
dynamical systems. New Poisson and Hamiltonian structures are introduced. Then the problem of integrat- 
ing the obtained canonical systems are reduced to the Jacobi problem of inversion. 
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1. Introduction 

Between 1975 and 1976 [ 1,2], the author found a method of recurrence relations for 
investigation integrable equation s and systems. This method was used [3-7 ] for discrete 
integrable systems (in particular, for Toda lattices). Also studied were the corresponding 
stationary and dynamical systems and a new Hamiltonian structure was found. Then 
the problem of finite-zone solutions was reduced to the oridinary Jacobi problem of 
inversion. 

In March 1988, O. Ragnisco and M. Bruschi acquainted me with their new paper 'Lax 
representation and complete integrability for the periodic relativistic Toda lattice' [ 11 ]. 
They found a very important symmetric representation for the relativistic Toda lattice 
and Poisson and Hamiltonian structures for the periodicity problem. They also proved 
that the periodic relativistic Toda lattice was a completely integrable Hamiltonian 
system. 

Using the results of [ 3-7] and the Ragnisco-Bruschi representation for the relativistic 
Toda lattice, in this letter is found a nonlinear bundle of relativistic Toda lattices with 
corresponding stationary and dynamical systems. Then, new Poisson and Hamiltonian 
structures are introduced and the finite-zone problem is reduced to the Jacobi problem of 
inversion. 

2. Generating Equations 

Here, we obtain a complete set of higher-order relativistic Toda lattices and describe 
the corresponding recurrence chains. 
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In the case of the relativistic Toda lattices, the corresponding discrete Schrodinger 
operator L has the form 

(Z~t)  k : g d  k 11/]k- 1 + (V k -- g2)l l lk  -]- E d k l l l k + l ,  ( 2 . 1 )  

where dk(t), Vk(t), qsk(t ) are functions of a discrete variable k and the continuous variable 
t, E is a free complex parameter. (Note that the Ragnisco-Bruschi representation uses 
the operator L / E . )  The operator (2.1) is similar to the operator for the usual Toda lattice 
[6]. 

We chose the operators A in the form 

(A~O)k = dk( t ,  E)~bk + EdkMk(t ,  E)l/tk+ 1 . (2.2) 

THEOREM 1. The lax sys tem o f  identities 

L~  = 0 , (2.3) 

+ L A  0 = 0  . (2.4) 

is equivalent to the sys tem o f  generating equations 

elk 1 = -- d k - I  (~k-1 -}- d k  -- ~k(Uk -- E2)) , (2.5) 

Vk= - - 2 a g k ( V k - - E 2 ) +  ~ i ~ k ( ' O k - E 2 ) 2 - E 2 ( d 2 _ l ' ~ k _  1 - dk2' ~ k + l )  . (2.6) 

It is obvious that the functions ag k and Mk can be chosen as the functions on it = E 2 .  

If we consider the system of equations (2.5) and (2.6) for all polynomials dk, Mk 

agk = a0,k i t '+1  + ' "  + am,kit + ~m+l ,k  , (2.7) 

~ k  = bo,k itm + " '"  + bm,k (2.8) 

of the powers m = 0, 1, 2, . . . ,  we obtain an infinite set of usual and higher-order 
relativistic Toda lattices. 

EXAMPLE. Let the polynomials d k and ~k be as follows: 

d k  = ao(~" - (Vk + d2k-1 -- d2)) (2.9) 

& = - 2ao (2.10) 

1 and let a o be equal to 5- Then from (2.5) and (2.6) it follows that the system 

~/~ 1 _ 
= 5dk(Vk Vk+ z + d~_~ - d ~ + l )  (2.11) 

Ck = Vk(d2-1 -- d2) (2.12) 

is the relativistic Toda lattice [ 11 ] in the Ragnisco-Bruschi variables. 

Note that for v k =_ O, system (2.11) and (2.12) turns into the Langmuir lattice [7] 

dk 1 2 2 = 5 d k ( d k _ l  - dk+ 1) " (2.13) 
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N o w  we consider the set of  all relativistic Toda  lattices for general polynomials (2.7) 

and (2.8). Equating the coefficients at equal powers of  the parameter 2 in the identities 

(2.5) and (2.6), we get two chains o f  recurrence relations 

- aj,k 1 -- aj,k -- bj,k + v k b j -  1,k = 0 , (2.14) 

2 
2aj, k + bj, k - 2 v e a j _  1,k -- 2 1 ) k b j - 1 , k  "{" O k b j -  2 &  - 

--d2 l bj 1,k- d2 bj 1 , k + l  - 1 + - = 0 ( 2 . 1 5 )  

Here j = 0, 1, . . . ,  m and al, k = 0, bl, k - 0 for all l < 0. 

The coefficient at 2 in (2.6) is equal to 

2 2~m+1, k - 2Vkam, k -- 2Vkbm& + V2bm_ l,k -- d k _  l b m , k _  l + 

2 = 0 (2.16) + dkbm,k+ 1 

N o w  we introduce new functions aj,k, bj, k for j > m so that they obey the relation 

2am+ 1 , k  -}- bin+ 1,k = am+ 1,k (2.17) 

and also satisfy the relations (2.14) and (2.15) for j > m. 

We get the infinite chains (2.14) and (2.15) of  recurrence relations with j = 0, 1, 2, . . .  

The dynamical system (2.5) and (2.6) yields the dynamical equations 

dk 1 = dk-1 (bm+l,k-  bm+lk 1 )  , 

2 ' - 

- 2 ( 2 . 1 8 )  Vk = -- 2Vka,, ,+ 1,k -- Vkbm+ 1,k + Vkbm,k " 

Thus, the infinite recurrence chains (2.14) and (2.15) are separated from all set of  

dynamical systems (2.18) (m = 0, 1, 2, . . . ) .  

Infinite chains (2.14) and (2.15) are equivalent to simple identities 
A A A 

& - i  + ~'~ - ~k(Vk -- 2) = 0 , (2.19) 

-- 2 ~ ( V  e -- 2) + ~k(Vk -- 2) 2 -- 2(d~_ 1 ~k-1  -- d~ ~k+ 1) = 0 (2.20) 

for the formal series 

~- (2.21) ~ k  = aj ,k2 - j  , fYk = bj,k2 - j -  1 
j=o  j=o  

A A A A 

Multiplying (2.19) by ~ k ( V k  - -  ~ - )  - -  ~'~k ~-  ~-k-- 1 and (2.20) by f#k and summing both 
relations, we get the identity 

_ ~ 2  + 2d 2 ~k ~k+l  = d(2) , (2.22) 

where d(Z) = Y,~ o cj 2 - j  is a formal series with constant  coefficients. 
A new recurrence chain can be obtained from the identity (2.22) 

j i j 
d2 Z b~,kbj-  l -~ , k+  a - Z ai, k a j - ~ , k  = Cy (2.23) 

i = 0  i = 0  
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Comparing (2.19) and (2.20) with (2.5) and (2.6), we are led to the conclusion that 
system (2.19) and (2.20) is equivalent to the stationary Lax system (2.3) and (2.4) for 
a formal F-operator 

(F~)k  = ~k~lk q- 2d~ ~ ¢ k +  ~ • (2.24) 

Since the functions aj, k and bj, k are connected to al, k and bao k by recurrence chains 
(2.19), (2.20) and (2.22), we can prove the following theorem. 

THEOREM 2. The system (2.5) and (2.6) is equivalent to the system of  dynamical 

equations 

= ~ G ( ~ & + ,  - & G +  ~),  G 

~ d k = ( I ) k + l - - ~ ) ( ~ k g ~ l ~ k + l - - , . ~ k ~ k + l ) - -  

ix A IX 
-- ~ k ( d k + l  -- ~ / k )  "}- ~ k (  ~ k + l  -- "~k )  

and stationary equations (2.19) and (2.20). 

(2.25) 

(2.26) 

C(,~) = 22" + 2 (~(2) (3.2) 

(3.1) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

an+ l + j , g -  0 ,  bn+j,k-~O, for all j >  0 . 

We introduce new functions 

A A O% = ~n+l g~ ,  ~k : ; t '+ l  ~ ,  

and get the following stationary equations 

O%+ O%-1-  ~ ( v ~ - 2 ) = 0  , 

2 = c ( o  

and dynamical systems 

= ,~d~(~¢~+ 1 - & ~¢~+,) , 

_G (~+ _ ~ ) ( ~ +  _ &~¢~+ ) _  
(ffk q" ~k d k :  1 1 1 

- ~ ¢ ~ ( N ~ + ,  - d ~ )  + ~ ( O % +  1 - o%) , 

where O%, ~k, dk, ~k, C(2) are polynomials 

~,~(2) = ao,k2 "+1 + . .. + a ,+l ,k , 

~k(,~) = bo,k 2~ + . . .  + bn,k , 

3. Finite-Zone Dynamical System 

Suppose that almost all the coefficients vanish in stationary equations (2.19)-(2.22) and 
in dynamical equations (2.25) and (2.26) 
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¢5~k(,~) = a O , k l ~ m +  1 _[_ , .  + ~l m + 1 , k  , 

Mk(2) = bo,k am + '" + bm,/~ , 

C ( / ~ )  = Co/~ 2 n + 2  + ' ' '  + c 2 , , +  2 . 
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(3.9) 

(3.lO) 

(3. l l )  

Now we go over f rom the variables bj, k to new root  variables. Let b o be equal to - 1. 
Represent  the polynomial  ffk in the form 

~,~ = 1:1 ( 2 -  >,k) - (3.12) 
j = l  

I f  we set 2 = 7j,k in equations (3.4) and (3.6), we obtain the equations in root variables 

( ~ 1 ~  ~ ,,,k) 2 = - C(~,,,) (3.13) 

and 

~k l ,  = ,,.k = - 2 MkJ~la = ,,.k = -T- 2 Mk (Tj,k)--X/7~Tj,k) (3.14) 

F rom (3.12)-(3.14) follows the dynamical  system of  equations 

-T- 2 " f - -  C(~"k) &(Tj  k) (3.15) 

The stationary system can be obtained f rom (3.3) and (3.4) by putting 2 = 7j,e- We have 

~ ( a , e )  + ~ - ,  (Yj,k) = 0 , (3.16) 

(~ " ~ ' 2  

% +1%,~) = (3.17) 
d~ ~,,~ rI ,~j  (7;,~ - 7,.,k) 

System (3.15) can be directly reduced to the Jacobi  system of inversion 

1 I ~ j , k  - - I  g Xj "Iv?* ,,/-C'[,~c-=" k) d~'k= +6~'+l(t-- t°) l= 1 . . . .  ,n (3.18) 

on the Riemann surface 

w 2 = - c ( ~ ) .  

Here 3 is the Kronecker  symbol 

/5~+ {0, i f / ¢ m + l  , 

i = 1, i f / = m + l  . 

We can also 

(3.15)-(3.17). 
find a new Hamil tonian structure for the system of  equations 
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First of all we introduce impulses Wj~k conjugating to ~,k 

oz" WSk = ~k(?j,~) • (3.19) 

Then we introduce a Poisson structure by a skew-symmetric matrix 

C, ,+ j  = b j~ , k  , for l < ~ i ~ n  , 

P ,  + id = - bj 7j,k , for 1 ~< i ~ n . (3.20) 

It is easy to notice that the Poisson structure (3.20) can be transformed to the standard 
constant skew-symmetric matrix by changing the variables 

~),~ = In ~,k - 

System (3.15) in new variables is a first part of the Hamiltonian system 

7j, k = 2WSk ~k(Tj,k) • (3.21) 
I /s~j  (Tj,k - 7,,k) 

From (3.13) and (3.19), the second part of the Hamiltonian system can be obtained: 

(Wj,~) 2 + C(Tj,k) = 0 . (3.22) 

It is obvious that system (3.21) and (3.22) is a Hamiltonian system with the Hamiltonian 

~D = ~ (WSk)2 + C(~,~) ~k(~'j,k) (3.23) 
j= 1 ~j,k I-[s=/-j (~)j,k -- ~)s,k) 

and with Poisson structure (3.20). 
Now we introduce new 'action-anNe' variables and then reduce the finite-zone 

problem to the Jacobi problem of  inversion. 
Let S be the action function 

l" 'J'k ~ -  C(?J'k) dTj,k S(Ta,k, . . . ,  7,,k; H a , ' - . ,  H , )  = (3.24) 

whe re / / l  = C, + a +l- 
We define the impulse conjugate t o / / l  as derivatives of the function S 

OS . f ~- . . . .  t 

- - -  i 
~?Hz 1 2 7j,k d?j,k (3.25) 

j = l  JTjOk N / =  ,k) 

Using the equations of Hamiltonian system (3.21) and (3.22), we have 

d W , ~  _ " , n - -  I 
I j Z  l ~,k ~J 'nk - -1  ~k(Tj  k) = b~ +1 • (3.26) 

d t  -= ~ 7j, k = ~ C(Tj,k) 
" 
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After integrating this equation, the Jacobi system of inversion on the Riemann surface 
W 2 = - C(y) has the form 

n ~ T3,k n--I 
1 ~, | 7),k , Wz~,k(to) (3.27) j=a v~o~ ~ -  C(Tj,k) dTy'k = firm + l(t - to) + 

Finally, the finite-zone potentials can be found in the form 

1 @1 + 2aoa,,k) : 

1 (  ~ ~j,k__bo(d2_l _d2)+ 2al,k) , 
Vk = boo j = l  

where 

al,k= ~ x / - C ( b ' k ) -  N~-Co ~j:~c + 1 -  N/-C2n+2 

j= 1 ~j,k l"[s~j(~j,k -- ?s,k) 

(3.28) 

(3.29) 
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