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Abstract. For a class of standing electromagnetic waves of a special structure, the motion of the charged 
particles in the vicinities of nodal points is approximable by an exactly soluble dynamical model (the 
Schr6dinger particle driven by a rotating magnetic field). This model shows a sudden qualitative change 
when the field intensity/frequency ratio crosses a critical value. It implies the conversion of the nodal points 
from particle traps into repulsive centers. A hypothesis is thus raised that for high intensity/t?equency values, 
the standing wave traps can undergo a qualitative metamorphosis resembling the phase transitions. 

AMS subject clzss~fications (1980), Principal 70J30; secondary 81D99. 

1o Introduction 

The behavior of  charged particles in quickly oscillating electromagnetic fields is a subject 

of  increasing interest. It is motivated by the discovery of  the 'standing wave traps'  which 

permits the catching of  charged (and/or neutral polarized) particles in crossed lazer 

beams [1, 2]. The almost unique mathematical  tool to predict the motion of  classical 

or quantum objects in quickly oscillating fields is the 'high frequency approximation'  

[3-6] .  It consists of  neglecting the magnetic component  and representing an average 

effect of  the field oscillations by an 'effective potential '  build-up out of  the oscillating 

electric force. When this is monocromatic ,  e.g. E(~,  t ) =  E (Y)s in  cot, the effective 
potential becomes 

~/ef(X) : 2mm ( [E(x~ t)]2~ti . . . . . . .  ge, 

(e)2 
1 [~(~)]~ (1.1) 

4m 

thus creating a 'radiative analogue' of  a solid-state potential (V el periodic for uncompli- 
cated standing waves), with attraction centers placed at the null points of  the oscillating 
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electric force. By sticking consistently to this model, one might expect that by applying 
standing waves of the same frequency but growing intensity, one can only 'improve the 
trap' by increasing the attraction force of the nodal points. However, it turns out that 
once the particle is very near to one of the attraction centers, the high frequency 
approximation can be substituted by a more exact method which leads to different 
results. 

2. The Nodal Point Approximation 

We shall apply the alternative method to the standing waves of a special structure, where 
it works with exceptional simplicity (though it seems that a similar approach is more 
widely applicable). Consider the electromagnetic standing wave described by the four- 
vector potential (A °, A), where A o = 0 and 

w 
COSX 

A = A~,~(~, cot) = A~ sin - -  sincot, (2.1) 
C 

with h, ~ being two orthogonal unit vectors and A ~ ~ the wave amplitude. Let AE~ ' ~1 

mean the 'antisymmetric' combination of two orthogonal standing waves 

1 - -  At~,~l = ~(A~,~ - A~,~). (2.2) 

For ~, N, ~ denoting three mutually orthogonal unit vectors, consider now the 
following solution of the free Maxwell equations 

A ° - = 0 ,  

( - com  
-- sin - sin 7 ) cos co, + 

+ @  sin cob2 c - ~ sin coc-~) sin °°tl " (2.3) 

The field (2.3) is a standing wave satisfying both Coulomb and Lorentz gauges and 
obtained by crossing four standing plane waves of type (2.1). As can be easily seen, it 
possesses a lattice of the nodal points, determined by the wavelength 2 --- 2rcc/co 

iV" = { ~ ( l l  ~ q- 1 2 m  q- 13s): l , ,  12, [3 = 0 ,  --[- 1, + 2 . . . } *  (2.4) 

where the local behavior of the electromagnetic forces becomes specially simple. Each 
point of Y is physically equivalent to the nodal point at ~ = 0. In a close vicinity of this 

-k The set d does not exhaust all the nodal points of the field (2.3). Others can be obtained by taking Ii,/2, l 3 
o be half-integers (see also Remark 2 of Section 4). 
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last one (i.e., for [xl ~ 2/2), the electromagnetic field (2.3) can be approximated by 

1Aco 

2 c 
{[~(sT~) - ~ ( ~ ) 1  coscot + [ ~ ( ~ )  - ~(~x)] sin ~t} 

l m - ~ x  x N(t), (2.5) 

where 

B(t) = B(~ cos cot + N sin cot) 

= B~(t); (B  = ~ ) .  (2,6) 

The vector potential (2.5)-(2.6) can arise in quite independent physical circumstances, 
if one wants to describe the field of a rotating magnet in a 'nonrelativistic approximation' 
in which the retardation effects are neglected and the field is supposed to a~ust  itself 
instantaneously to the motion of the source. (Such a retardation-free picture is, in fact, 
adopted in the description of the magnetic pulses intervening in the spinecho effects 
[7, 8] as well as in the description of nonrelativistic particles in the time-dependent 
magnetic fields [9-10].) Within this doctrine, (2.5) is simply the vector potential of the 
homogeneous rotating magnetic field (2.6). Taking the approximate expression (2.5) as 
bona fide, we shall now show that the motion of the charged SchrOdinger particle (as 
well as of a classical charged point particle) in the rotating field (2.5) is an exactly soluble 
dynamical process. Moreover, it turns out that for some values of the physical 
parameters, the resulting motion, even in the closest neighborhood of the nodal point, 
differs radically from the one predicted by (1.1). 

3. The Motion of the Schr/idinger Particle Driven by the Rotating 
Potential (2.5) 

The motion of the SchrOdinger particle in the field (2.5) is traditionally described by the 
time-dependent Hamiltonian 

H ( 0 = - L  - Z~(~., 
2m c 

leading to 

H(0  = ~ (p + ; x  x ~(:'0" 

(3.1) 

2m m 
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where 

1 eB 1 eAco 
a - 

2 c  2 C 2 ' 

M is the angular momen tum operator,  M = x x ~, ~(t) is the unit vector indicating the 

direction of B(t), 

~(t) = ~ cos cot + r~ sin cot, 

and 5j_ (t) is the projection of the coordinate three-vector onto the direction orthogonal 

to ~(t) 

5 ± ( 0  = 5 - ( ~ ( t ) 5 ) n ( t ) .  (3 .3)  

Due to the particular t ime-dependence of ~(t) (which just rotates around the J-axis), 
the Hamil tonian (4.1)-(4.2) can be expressed as 

H(t) e +* t °~  1 1 ~  a2 ] -- = -- + - -  7 2 - anM e -itc°M~, 
m 2 

(3.4) 

where 5 ±  = 5±(0 )  = 5 - (h~)~ .  
Henceforth,  the differential equation for the evolution operator  U(t): 

dU(t) 
- iH(t) U(t) ; U(0) = 1, (3.5) 

dt 

can be simplified by the substitution 

U(t) = e-it~M~ W(t) ,  (3.6) 

interpreted as a transition to the rotating flame. The resulting differential equation for 
W(t) is 

d W  
- iGW(t ) ,  (3.7) 

dt 

where G is the t ime-independent generator 

G = . . . .  1 ~2 a ~ +  1 a25 2 + CO~r~. 
2m m 2m 

(3.8) 

Taking the unit vectors ~, N, ? in the directions of  x, y, z axes respectively, this can 

be reduced, without losing generality, to 

1 fi2 a2 a G = - -  + _ _  ( y 2 + z  2 ) _ _  M x + c o M ~ .  
2m 2m m 

(3.9) 
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Since G is time-independent, Equation (3.7) is formally solved by W(t) = e-e'G, and 
since G is quadratic in 2, f ,  it can also be explicitly solved [9, 12]. One of the easiest 
solutions [conserving a natural correspondence with the classical theory] consists of 
looking for the time-dependent images of the six canonical operators 

i ~ (3.10) 
q =  ~ iF  

in the Heisenberg flame (the ~Heisenberg trajectory'). The differential equation for the 
time-dependent variables 

qj(t) = W(t)*qjW(t) = e'~; qje i,~: 

dqj(t) _ [iG, qj],  (3.11) 
dt 

reduces to the c-number matrix equation for the six component vector q(t) 

dq(t) 
- Aq(t), (3.12) 

dt 

where 

A = 

0 

co 

- co 0 'i 1 / m  

0 a/m 1/m 

0 - a / m  0 1/m 
. . . . . . . . . . . . . . . . .  p . . . . . . . . . . . . . . .  

0 0 -co 0 

-aZ/m co 0 a/m 

-a2/m 0 - a / m  0 

(3.13) 

The solution of (3.12) is 

q(t) = e'Aq, (3.14) 

and the corresponding canonical trajectory in the original, nonrotating frame can be 
obtained by adding to (3.14) a permanent rotational drift around the ~ axis with the 
constant angular velocity co.* It now turns out that the solution (3.13)-(3.14) exhibits 
some properties which could not be anticipated on the basis of the 'high frequency 
approximation' (1.1). 

* A complete study of the Heisenberg trajectory as well as of the behavior of the SchrOdinger wave packets 
for the dynamical problem (3.1)-(3.2) is carried out elsewhere [12]. 
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4. Instability Threshold 

The global character of the trajectories (3.14) depends on the algebraic type of the 6 × 6 
matrix (3.13), whose characteristic polynomial is 

DA(2 ) = Det(2 - A) = oo6A(e), (4.1) 

where a: = 42 / (2 )  2 and 

A(° ' )=rr3l -2( l+2~x2)° '2+(1+3°¢2)° '+~2;  (~=moo/a ] .  (4.2) 

By virtue of Cardan's discriminant theory, the general properties of the matrix A (and, 
simultaneously, the character of the motion (3.14)) are defined by one dimensionless 
constant: 

o l 
- - - (4.3) 

moo 2 ooc 2 m c  2 

Further on, the type of A changes when ~ crosses the 'catastrophe value' 

e~= 0.579982655598... (4.4) 

Below the critical value (4.4), the polynomial A(a) has three negative real roots 
DA(~ ) has six purely imaginary eigenvalues and, therefore, the formula (3.14) defines 

'circular motions' in the six-dimensional space of the canonical variables [ 12]. Within 
the range of values 0 < e < ec - v2 sec2 x 10 -36 the resulting Heisenberg trajectory (as 
well as the drifting, time-dependent 'squeezed states' of the SchrOdinger representation) 
show a good average agreement with the effective potential (1.1) [12]. However, when 

approaches the critical value (4.4), the Heisenberg orbits (as well as the Schr6dinger 
wavepackets) start to expand beyond the limits permitted by (1.1), suggesting that the 
electrons confined in the standing wave (2.3) may produce some effects of anisotropic 
subcritical conductivity, nonpredictable on the basis of the 'effective potential' (1.1). 
Finally, if a > ec, the polynomial (4.1) acquires two purely imaginary and four complex 
roots of the form +_ ~,, + ~* (where Re ~# 0) causing an exponential explosion of all (but 
a subset of measure zero) of the canonical trajectories. Since this concerns the classical 
orbits passing arbitrarily close to the field center at ~ = 0, we infer that the point ~ = 0 
undergoes a structural metamorphosis, converting itself from an attractive into a 
repulsive center (Figure 1). As the same concerns all other nodal points (2.4), one is led 
to conclude that the standing wave trap (2.3) of sufficiently high intensity 

2m(,Dc 
B ~ . . . . .  ~ (<5) 

e 

undergoes a qualitative change resembling the phase transitions. The weakest statement 
would be that when ~ crosses zc, the approximation (1. i) based upon the potential V,,r 
with minima in the nodal points of (2.3), becomes qualitatively wro,g. ~ghe centers of 
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Fig. 1. The 'exponential explosion' at the nodal point of  the field (2.3) for • = 0.6, co = 2n  x 101°/sec_ The 
computer  was asked to determine numerically the motion of a classical test particle generated by 40 
oscillations of  the standing wave (2.3). The whole trajectory is contained in a nar row surrounding of the 
nodal point, of  the diameter (5 = 10-s  2, where the standing wave (2.3) can be substi tuted by (2.5) with a 
relative error < 10 l°. Were the effective potential (1.1) valid, the trajectory would not  emerge from a sphere 
of  radious 50 = 4.4 x 10 -11 cm = 1.45 × 10 -11 2 forming an invisible black dot in the center of our figure. 

attraction previously existing in the points of Y are wiped out. The charged particle 
wandering around them can, perhaps, form some stable motion patterns but not of 
arbitrarily small size (this might correspond to a qualitative transition from the fix-points 
to the stable orbits in the abstract theory of dynamical systems [13]). A stronger 
hypothesis would be that the field (2.3), instead of serving as a particle trap, may acquire 
the properties of a particle repelling or particle transporting medium (though this still 
requires careful verification). 

R e m a r k  1. We have based our considerations on the specially simple structure of the 
field (2.3) in the vicinities of the nodal points (2.4). Besides X,, the standing wave (2.3) 
possesses two different classes of the nodal points where the behavior of the electro- 
magnetic forces is no longer approximable by (2.5)-(2.6). It is to be presumed that the 
other critical values for ~ may arise in relation to the field behavior around these centers. 
It is also to be expected that analogous stability thresholds might be associated with the 
nodal points of quite arbitrary standing waves. 

R e m a r k 2 .  The breaking of the 'high frequency approximation' which we have 
observed here is not an exception [which would occur only due to an intricate structure 
of the electromagnetic standing waves], but an example of a more general phenomenon 
which can be encountered in much simpler physical situations [14, 15]. 
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