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ABSTRACT. We prove the existence of star-products and of formal deformations of the Poisson
Lie algebra of an arbitrary symplectic manifold, Moreover, all the obstructions encountered in the
step-wise construction of formal deformations are vanishing.

(0. INTRODUCTION

In the Hamiltondan formulation of classical mechanics, 2 phase space i3 nothing else but a
symplectic manifold. Passing to quantum theory in the classical way implies a fundamental change
in the nature of observables and makes the interpretation of the classical theory as a limit

of the new one uneasy in many respects. An important aspect of quantization is its relation to
deformations of classical theories, In that spirit, Flato, Lichnerowicz and Sternheimer have
proposed building up quantum mechanics on an ordinary phase space in such a way that
quantization manifests itself in 2 deformation of the algebra of observables. The value of the
parameter of deformation is closely related to the Planck constant and letting it tend to zero

gives back classical mechanics as a limit case. An account of the deformation approach to
quantization can be found in [1, 6].

The algebra of observables is the space of smooth functions over a symplectic manifold with
its natural structure of associative algebra and the appropriate deformations of this structure are
called the star-products. The first star-product appeared as the inverse Weyl transform of the
product of operators (Moyal [9]). It was rediscovered by Vey [10] who also proved the existence
of nontrivial deformations of the Poisson Lie algebra structure for a symplectic manifold with a
vanishing third De Rham cohomology group. The result was extended to associative deformations
by Neroslavsky and Vlassov [8] under the same assumption. Tn the mean time, various classes of
manifolds where this assumption is not necessary have been exhibited [4].

The cohomological obstructions appear as follows: a star-product or a deformation of the
Poisson bracket are usually constructed step by step.

In passing from step & to step k + 1, one encounters a Chevalley or a Hochschild cocycle which
should be a coboundary to allow the construction to continue. The work of Vey and Neroslavsky
and Vlassov consists of confining this cocycle in the De Rham cohomology.

We show in this paper that there exists no obstruction at all: each formal deformation of order
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k of the Poisson bracket extends to a formal deformation and a similar result holds true for star-
products.

The basic tools are, first, cohomological properties of the Nijenhuis—Richardson bracket,
showing in particular that the bracket of a one-differentiable cocycle with an arbitrary cocycle is
always exact. Secondly, if £ is a conformal nonsymplectic vector field for the symplectic form F
of M, homogeneity with respect to £ allows vs to avoid the obstructions. This was first observed
in an analyiic setting in [2]. An algebraic interpretation led to the proof of the existence of star-
products for exact symplectic manifolds {4, 5]. A further refinement combined with gluing
allows us to use this type of argument for nonexact F.

I. NOTATIONS AND DEFINITIONS

We will mainly use the notations and definitions of [5]. Some of them have just to be précised.

Let Mbe a smooth connnected Hausdorff second countable manifold equipped with a symplectic
form F. We suppose dimn M > 2. We denote by A(M) the space of smooth forms on M and by F((M)
the space of smooth vector fields on M. As usual, we set & = A° (M) and L y denotes the Lie deri-
vative in the direction of X € H(M) acting on ACM).

If ¥ and ¥’ are vector spaces, 47 (V, V') is the space of (p + 1)-linear alternating maps from
VP*Linto ¥ and A(V, V') is the direct sum of the AP(V, ¥'Ys (p = —1). For simplicity, we set
AP(Py=A2(V, Vyand A(V)=A(V. V). It is known that (A(¥), [,]), where [,] is the Nijenhuis—
Richardson bracket, is a graded Lie algebra, the degree of C € AP (V) being p. If #is a Lie algebra
structure on ¥, the Chevalley coboundary operator of the adjoint representation of (V, #)is up
to =1 the adjoint action of # on A(V).

We denote by A1 (F(M), AUM)) [resp. Ajye, (VY] the space of all C € A(H(AT), ATM)) {resp. ANV)]
which are local {resp. local and vanishing on the constants]. We set also A,(V) = £(A(V), »] and
Apoe, nelV) = E(d o0 nefN), v) , where E{V, v) denotes the space of formal power series in » with
coefficients in V.

The mapping w: H(M) > A' (M): X ——i(X)F induces an isomorphism between the spaces of
contravariant and covariant tensor fields on M. One sets A = ¢~ F and, foru €N, X, =y~ du.

For C € AP(H(M), AT(V)), set w*Clutg, .., tp) = C(Xy,, . ... X, ) and, if ¢ =2, WC=(A, u*Cr .

In particular, P = u*F is the Poisson bracket of M (A(M) being identified once and for all with
a subspace of A(H(M), M) in the natural way), Denate by Z n0(¥) the space of Chevalley two-
cocycles of (N, P). Then & being the coboundary operator and I' a symplectic connection of
(M, F), each C £Z%,, . is of the form C =S} + u*Q + 0E (r € R, Q € A*(M) closed and
EE Aﬂm’ nelV)); S 2 is a cocycle of the form g &, where &y isa cocycle of the Chevalley
cohomology of the representation (A(M), X - L x} of 3(M). Furiher details may be found in [3, 5, 7].

PROPOSITION-1.1. There exists a linear map 1: Allo,_,, nelV) = Al (FO(M), N) such that *o 7= 1,
To ¥ = lon AXM), 7(S2) = (A, ¢rdand 10 3Afoe ne (V) C im 8 (1 denotes the appropriate
identical map; 8’ is the coboundary operator of the cohomology of the representation (A(M),
X Ly)of H(M))

Proof. 1t is easily seen that u*: Ajo (J((M), N) = Afy (V) Is surjective. Take then a decom-
position
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Alloc, nc(N) = ]RSla" K ”*Az(]u) 20f 2k,,
where

aA?oc,nc(jV) = ”*Az (M) N aAPoc, nc(N) < aEl-

Observe that w*: A>(M) > Aj. no(V) is injective. Choose then any right inverse of y*, ry on £,
and 7, and £, and set 752 = (A, ®ph 70 gy =L7o9=03"or onk, and7=1; on£,.
This defines a linear map 7: Allocﬂ nc(N) = Ao (H(M), V), which obviously verifies the first three
required properties.

For the last property, one notes that by [5, prop. 2.2], u*A(M) N 3A%. 1o(V) = du*A’ (1)
and thaton A' (M), 7o dopu=7ou*0d =9,

In this paper, we fix once and for ail a 7 such as in Proposition 1.1.

LEMMA 1.2. Let R; € Aoe, qo@V), S; € Atbe ne(V) and a closed § € A* (M) be given. Lei also
Ry Si T' € Ao (H(M); N} be such that R; = y¥R}, ;= u*S;and Z;[R;, 8;] = u*T". There exists
T € Ajoe, ne V) such that

Tly =0T~ 3 (D) )R, Si] - . [Ri w*iX)S] (1)

whenever = d3i(X)F on an open subset U CM.

Proof. If Q| = di (X' )Fand UN U+ ¢, then X' — X is a symplectic vector ficld on
UnU', Itis, thus, locally of the form X,,. Since p*i(X,,) = i(u)u*, the right-hand side of (1)
vanishes for X = X, by the graded Jacobi identity.

2. ONE-DIFFERENTIABLE DEFORMATICONS OF P

Recall that a formal deformation of order k of P is an element Z7 - g*Cy of A}, toc, nefV) such
that Co = P and such that (£, £,| vanishes at order & (i.e., the components [£,,, £, ]; of

[£4, £,] are vanishing for / <K). A formal deformation of P is an element £, € A,ﬂﬂ toc, ne(V} such
that Cy = P and that {£,,, £,, = 0.

THEOREM 2.1. Let £, be a formal deformation of P and let Q € A? (M) be closed.
(i) There exists a sequence ILE (k € IN) of elements of A v, loc, ncl ) such that 08 =L, and that

M,iy= 3 [L5, p*(X)r(Lg)] @
prg=Ii—1

whenever §1 = di(X)F on the open subset U C M.
(i) I, is a cocyele for L, and its first term is u*S. More generally,
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L,(L; = F WILY
k=0

is a formal deformation in pof £,.
(iii) In particuler, for each 1 =1,

4
L= 2 VL
k=0

is a formal deformation of P such that £y, = £, + V' i*Q at order ¢.

(iv) If L, is one-differentiable ar order s (i.e., C; is one-differentizble for | < s), then ILX (k € IN)
and L, are one-differentiable at order s.

({Uf it is needed o recall £, and Q, we sometimes will write ILE =X $ (£,; Q).

Proof. Assume the existence of solutions I, (¢ < k) of (2) such that

5 | [M2,19] =0, VI<k (3)
ptg=

From Lemma 1.2, we obtain the existence of a globally defined IL? verifying (2)for I = k. Then
applying (2) and the graded Jacobi identity:

k 5 [IL5,IL7)

pto=k

= 3 WL pmCOe(L)], BT 4 [, (1L, wicx)n(L;)] 1}
prg+r=k—1

= 2 [, L), w*i)r(Iy)] =0

ptrgtr=k—1

in view of (3). Hence, (i), (i) and {iii). For (iv), one has simply to note that the Nijenhuis--
Richardson bracket of one-differentiable cochains is one-differentiable.

Let us say that a formal deformation £, of order & is a driver of a formal deformation .C,, if
L, =L, at order k.

THEOREM 2.2. Every one-differentiable formal deformation of order k of P is a driver of a one-
differentiable formal deformation of P. In particular, there exist one-differentiable formal
deformations of P with driver P + vu*Q, where £ is an arbitrary closed two-form of M.

Proof. 1et £, beaone-dimensional formal deformation of order k of P. Let 0 <[ <k be given.
Suppose that there exists a one-differentiable formal deformation £} of P such that €} = C; for
i<l Then €}, — C;4q is a one-differentiable cocycle. It is thus of the form u*Q for some closed
two-form 2. By theorem 2.1

LT =10 (0 Q)
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is a one-differentiable formal deformation of 2 such that C!** = C; for i < + 1. Taking £2 = P, the
result follows by induction on Z

3. FORMAL DEFORMATIONS OF P WITH DRIVER P + wS}

Let U be open and suppose that Fi;; = di(£)F for some £ € J(L)). It has been seen in [6] that

LEMMA 3.1.
@ Lpf =P,
(i) Lycd=dol; -0,
(iii) Lo d=dc Ly,
(iv) Leopt=p*oL, —pl onA? '(i(M), N),
v) Lgo u = ”’OLE —pl on AP (H(M), A*(M)).

In addition, one may state
LEMMA 3.2. For p # 2,3, Ly +pl — 0 o p* o i(£) o 7 is @ linear proof bijection from Zise ne¥)
into ifself.

Proof Recall that € € Z{,. (V) admits a decomposition € = #S7 + u* + dF where (2 € A* (M)
is closed, r € R. Moreaver, ( is exact if and only if ¥ = 0 and £2 is exact.

By Proposition 1.1, €' = y*§ + 3F = y*7(C") where r(C") is a cocycle for 3'. Using Lemma 3.1,

(L +pl—douoi®)e NESE+CY=rp —3SE+(p —2)C". @)

Thus Lg +pl — 0o p* o i(E)o 7 is surjective. Moreover, if the right-hand side of (4) is vanishing,

r=0and C" = 0. Hence, the injectivity.
Let IT € A°(EQN. »)) be defined by

k=0

ﬂ( 2 Vkuk) = 5. ik
k=0
and set © = 2I1 — 1. As can easily be seen, for every T, €4,(V),

T,= 2 *Ii=>[IL1,] = 3 k5T,
k=0 k=0

THEQREM 3.3. Let ¥ € IR, be given. There exists a unique formal deformation £, of P of driver
P+ vrS3 such that

ILL(L,: F) +9,@=0. 5)
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(3, is the coboundary operator associated to the adjoint representation of (E(N, v), £,)).
Proof (i) If Uis open and Fly; = di(f)F for some ¢ € J(U)), after its definition in Theorem 2.1,
IL,(L; F) reads

TE T (G iE(C,))-
k=0 prag=k

Thus, the kth component of the left-hand side of (5) is

2. [Cqp wHENCH] — 2k + 1)Cy.
pq=k

Observe, moreover, that Ly = u*i(§)F = w*i(E)7(Cp ). Hence, the above expression can be written,
for k >0,

LG — 2k + 1)C + 3™ (Cr) + 57 |Gy ™ (E)T(C)].
pra=k
p.g>0

(ii) Let £, and £, have driver P + S} and satisfy {5). Assume that & > 1 and that €} =C;
fori <{k. Then

(L + 2k + 1) - du*iE))(Ch - C) = 0.

It follows from Lemma 3.2 that C;, = C), on U. Thus C;, = Cy, hence, the uniqueness by induction
on k.

(iif) Observe that (5) means that for every open subset U on which F'= di (§)F, Dy =u*i(E)r(L,)+0
is a derivation of £y, Set Co =P, Cy =#SE, L, =Co +C; and Z [y = Ly + p*i(E)r(SP) + ©. One has
(24, L))o =LeP+P=0
and
[Zy, L1y =r(LSP +3SP — du*i(H)r(51)) = 0
by Lemma 3.1.
Let now k > 1 and suppose that the C;’s € Ajy 4. (V) (i <k) have been constructed such that
LE-t = 3. . p'C; is a formal deformation of P of order £ — 1 and that @ 7! =

e x WFiE)(C) + @ s a derivation of ££7! at order & — 1. Set

Je= T 0Ch Cyl and Af= 5 [Cp, p*iENCy)).
ptag=k pta=k
7.q>0 P, q>0
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Then J, is known to be a cocycle. As seen in [5], it has a decomposition. J;, = ¢'® + u*¥ when
& and ¥ are three-cocycles of the cohomology of the representation (A(M), X — L x) of 3((M).
SetJ, ={A, &)+ . By Lemma 1.2, there exists A € A%, (V) such that

Alg =247, — u*i(EVx.
On the other hand, the coefficient of v* of the identity
(25 e e =2 et 2]
reads
(L + 2+ 2)0, =2 04% (6)
so that, applying Lemma 3.1,
(2k — 2p'D + 2k — D*¥ = 9Q2A4F, — u*iE);) = .
Tt follows that ¢/ ® and u*V¥ are coboundaries [5], prop. 2.3, and thus J; =2 aC for some
C € Aoe, ne).

Substituting 28C to Jy in (6) and observing that 8L, = L0 + 9, we see that L,C + 2k + )C'— A’fj
is a cocycle. 1t also reads, using Lemma 3.1 (iv),

QUF(EIT(C) + pHi(E) I T(C) — A% + (2 — 1)C.
Therefore, B € Ajye, no(V) defined by
Bly = u¥i()3'1(C) RAJf] +(2k - 1)C.
is a cocycle (cf. Lemma 1.2) and
LyC+ (2k +1)C — du*iE)r(C) — A% — B =0. (7)

In view of the properties of 7, the cocycle B has a decomposition B =#'S? + y*B' where
B'=1(B —7'53)is a cocycle. Taking

Cpo =CH+ (2 — D7 1#*B +(2k — 27 1r'sE,
we still have J;, = 20C, and, moreover, (7) transforms into
LeCy + (F + 1)C — D i(E)(Cy) — A = 0.

This means that £f = £5 1 +2%C, is a formal deformation of P of order & and that 2%, = 2% +
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Vuri(E)r(Cy,) is a derivation of order & of £51;;. Hence, the existence of £, by induction on k.
Let T €A ne() or T =rll(r ER). Denote by ad T its adjoint action on A(E(N, )). It is
easily seen that, for ¢ 2 1, if £, is 2 formal deformation of P, then so is

o 7

14

K
Ad(exp VL= 3. T (ad TY* £,
k=0

THEOREM 3.4. Every formal deformation of order k of P is a driver of a formal deformation of P,
Proof. (i) Let £, be a formal deformation of order & of £. Let us assume that £, is one-differ-
entiable at order r — 1, where t < k. As

20C= 3. [Cp Gyl
prg=t
7,q>0

is one-differentiable, we see that C; is of the form 857 + u*n + 37 for some ¢ € IR, some n € A2 (M)
and some T EA&C’HC(N). If 6 = 0, then Ad(exp ' T)L, is a formal deformation of order k of P

and is one-differentiable at order £. Moreover, £, is a driver for £,, if and only if Ad(exp 'T)LC,,
truncated at order £, is a driver for Ad(exp v*T)L,,). Thus, replacing £,, by

Ad(exp v* 175 _ o o Ad (exp ¥T: )L,

for suitable 7;’s € Aﬁ)c, ne(V) if necessary, we may assume that either £, is one-differentiable or
that there exists s <k such that C; is one-differentiable for i < s and that C; — r$% is one-
differentiable for some r € IR,.

(ii) In the first case, we may conclude by Theorem 2.2. Let us now deal with the second case.
Let £E be a formal deformation of P with driver £+ prS{ and define formal deformations
L3, ..., £} of P inductively by £3 = £*; and, for i > 0,

£ =1L (L r(C; - CMY.

It is casily seen that £ = £, at order s, If s = &, the proof is achieved. Suppose then that s <k
and that we have found a formal deformation £, of P such that £, = £, at order 7, with s </ <k.
Then the cocycle C7yq - Cpy is of the form #S3 + u*Q + a7 for some ' € IR, some closed

Q€ A?(M) and some £ €A (V). Replacing £, by Ad(exp /"' T)L;, we may assume that
7= 0. On the other hand, set

rr —_ r’
£y = Ad(exp ' ”1(;) L,

Then, C;' - C; is one-differentiable for i </ + 1 and vanishes for i <7 — s. Define formal
deformations £5-5°1, ., £51 of P inductively by L5 = £ and forj 21— s,

B =L ol - € ).
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Then £/7! is a formal deformation of P which coincides with £,, at order / + 1. Hence, the result
by induction on !/ < k.

It follows from Theorem 3.4 that [C. C] is exact for each two-cocycle C. Moreover,
H _ gifg, nc(V) denoting the cohomology of one-differentiable nc cochains, it can be shown that

THEOREM 3.5.
(i) 14, loe, nc .(-N)’ My diff, nc (]V)] =0.
(ii) [EBz'{ ZHIZOC,HC(N)! ei< ZHI’oc, nc(—N)] =Q.

4. STAR-PRODUCTS

Recall that a star-product of (M, #) is a formal deformation .#, = Z5-oA\Cy of the asseciative
algebra (N, .#), with driver # + AP, where for k > 0, the C¢’s are local, vanishing on the con-
stants and such that Ci(v, #) = (— 1) Cr(ut, v) for all u, v EN.

THEOREM 4.1. Every star-product of order 2k is a driver of a star-product. In particulgr, every
symplectic manifold admits a star-product.
Proof. Let #; = Ei 2 NC; be a star-product of order 2k (k > 0). Then

£u = Z V£C2i+l (8)
i<k

is a formal deformation of order k — 1 of P,

In the proof of the Neroslavsky—Vlassov theorem [8], which asserts the existence of a star-
product when the third De Rham cohomology space of M vanishes, the key steps are the
following.

(i) There exists Coxry EAjne, ne(V) such that 5 = A, +v**71Cyp ., is a star-product of
order 2k + 1; Caz 4 is determined up to an arbitrary one-differentiable element of A, ,.(V).

(ii) .4}, extends to a star-product of order 2k + 2 if and only if £, + »¥Cpe 4+ is2
formal deformation of order k of P.

(iii) 7 [Cops1. Cagiil ©)
ptg=k

is a one-differentiable Chevalley cocycle.

By Theorem 3.5, (8) is a driver for a formal deformation of 2. If #*C is its kth component,
then 8(Cy;. .., — C) is one-differentiable. Thus Cpz4q — C — u* is a Chevalley cocycle for a
suitable £ € A*(M). Then replacing Co 41 by Caxyy —*82, (9) vanishes and .#) extends to a
star-product of order 2k + 2. Hence, the existence of a star-product with driver .#) by induction
on k.

To conclude, observe now that each symplectic manifold admits a star-product of order 2 [8].
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