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ABSTRACT. We prove the existence of star-products and of formal deformations of the Poisson 

Lie algebra of an arbitrary symplectic manifold. Moreover, all the obstructions encountered in the 

step-wise construction of formal deformations are vanishing. 

0. INTRODUCTION 

In the Hamiltonian formulation of classical mechanics, a phase space is nothing else but a 

symplectic manifold. Passing to quantum theory in the classical way implies a fundament",A change 

in the nature of observables and makes the interpretation of the classical theory as a limit 

of the new one uneasy in many respects. An important aspect of quantization is its relation to 

deformations of  classical theories. In that spirit, Flato, Lichnerowicz and Sternheimer have 

proposed building up quantum mechanics on an ordinary phase space in such a way that 

quantization manifests itself in a deformation of the algebra of observables. The value of the 

parameter of  deformation is closely related to the Planck constant and letting it tend to zero 

gives back classical mechanics as a limit case. An account of the deformation approach to 

quantization can be found in [1, 6]. 

The algebra of observables is the space of smooth functions over a symplectic manifold with 

its natural structure of associative algebra and the appropriate deformations of this structure are 

called the star-products. The first star-product appeared as the inverse Weyl transform of the 

product of operators (Moyal [9]). It was rediscovered by Vey [10] who also proved the existence 

of nontrivial deformations of the Poisson Lie algebra structure for a symplectic manifold with a 

vanishing third De Rham cohomology group. The result was extended to associative deformations 

by Neroslavsky and Vlassov [8] under the same assumption. In the mean time, various classes of 

manifolds where this assumption is not necessary have been exhibited [4]. 

The cohomological obstructions appear as follows: a star-product or a deformation of the 

Poisson bracket are usually constructed step by step. 

In passing from step k to step k + 1, one encounters a Chevalley or a Hochschild cocycle which 

should be a coboundary to allow the construction to continue. The work of Vey and Neroslavsky 

and Vlassov consists of confining this cocycle in the De Rham cohomology. 

We show in this paper that there exists no obstruction at all: each formal deformation of order 
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k of the Poisson bracket extends to a formal deformation and a similar result holds true for star- 

products. 
The basic tools are, first, cohomological properties of the Nijenhuis-Richardson bracket, 

showing in particular that the bracket of a one-differentiable cocycle with an arbitrary cocycle is 

always exact. Secondly, if ~ is a conformal nonsymplectic vector field for the symplectic form F 

of M, homogeneity with respect to ~ allows us to avoid the obstructions. This was first observed 

in an analytic setting in [2]. An algebraic interpretation led to the proof of the existence of star- 

products for exact symplectic manifolds [4, 5]. A further refinement combined with gluing 

allows us to use this type of argument for nonexact F. 

1. NOTATIONS AND DEFINITIONS 

We will mainly use the notations and definitions of [5]. Some of them have just to be prdcised. 

Let Mbe a smooth connnected Hausdorff second countable manifold equipped with a symplectic 

form F. We suppose dim M > 2. We denote by A(M) the space of smooth forms on M and by Js 

the space of smooth vector fields on M. As usual, we set N = A ~ (3/) and L X denotes the Lie deri- 

vative in the direction of X E ~C(M) acting on A(M). 

If V and V' are vector spaces, AP(K l / )  is the space of (p + 1)-linear alternating maps from 

V p+I into V' and A(V, V') is the direct sum oftheAP(V,  V')'s (p ~> -1). For simplicity, we set 

AP(IO = AP(V, V) and A(V) = A(V, IT). It is known that (A(I 0 ,  [, ] ), where [, ] is the Nijenhuis- 

Richardson bracket, is a graded Lie algebra, the degree of C E A p (V) being p. If ~ is a Lie algebra 

structure on V, the Chevalley coboundary operator of the adjoint representation of (V. N) is up 

to -+1 the adjoint action of ~ onA(V). 

We denote byAtoc0C(M), Aq(M)) [resp.Aloc, nc(N)] the space of all CEAQC(M), Aq(M)) [resp.A(N)] 
which are local [resp. local and vanishing on the constants]. We set also A v(N) = E(A (N), v] and 

Av, loc, he(N) = E(A toe, no(N), u), where E(V, v) denotes the space of formal power series in v with 
coefficients in V. 

The mapping p: JC(M) ~ A 1 (214): X -->-i(JOF induces an isomorphism between the spaces of 

contravariant and covariant tensor fields on M. One sets A = p - i F  and, for u EN, X u = p-1 du. 

For C E AP(Js Aq(N)), set p*C(uo,..., Up) = C(Xuo ..... )(Up ) and, if q = 2, p'C = (A, p ' C ) .  

In particular, P = p F is the Poisson bracket ofM (A(M) being identified once and for all with 

a subspace of A(Jf(M), N) in the natural way). Denote by Z~oc, nc(N) the space of Chevalley two- 

cocycles of (N, P). Then ~ being the coboundary operator and P a symplectic connection of 

2 �9 =rS~,+p*~2 IR, FZE (M, F), each C ~ Zloc, nc is of the form C + ~E (r E A 2 (M) closed and 

E E A~oe, nc(N)); S ~ is a cocycle of the form p'q~r, where ~ r  is a cocycle of the Chevalley 
cohomology of the representation (A(M), X ~ L x )  of ~7(M). Further details may be found in [3, 5, 7]. 

PROPOSITION.'d .1. There exists a linear map r: A~oc, nc(N) ~ A~oc(Js N) such that U* o r = ~, 

T o p* = ~ on A2 (M), r(S~) = ( A, Cr ) and r o 0A~oc, nc(N ) C im ~' (11 denotes the appropriate 

identical map; ~' is the coboundary operator of  the cohomology o f  the representation (A(M), 

X-~ L x) of  ~C(M). ) 
Proof. It is easily seen that p*: Aloc(JC(M ), N) ~ A~oc, no(N) is surjective. Take then a decom- 

position 
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= �9 12*A (M). aE, 

where 

0A ~oc, nc(N) = 12"A 2 (M) ;3 OA ~oc, nc(N) �9 OE 1 . 

Observe that 12": A 2 (M) ~ A ~oc, nc(N) is injective. Choose then any right inverse of 12", ~'1 on E1 

a n d r 2 a n d E 2 a n d s e t T S ~ = ( A ,  ggrI, ro12*lA~(M ) 1, t o 0 = 0 '  = or~ onE~ a n d r  =r~ o n e  2. 

This defines a linear map r: A~oc, nc(N) ~ A ~oc(Jf(M'), N), which obviously verifies the first three 

required properties. 

For the last property, one notes that by [5, prop. 2.2], 12*A(M) n aAfoc, nc(N) = ~12"A 1 (3'/) 

and that on A 1 ( M ) ,  7" o ~ o 12 = r o 12" o b'  = 0 ' .  

In this paper, we fix once and for all a ~- such as in Proposition 1.1. 

LEMMA 1.2. L e t R  i EAloc, nc(N), si S i E A loc, n c ( N ) a n d  a closed f2 E A 2 (M) be given. Le t  also 
t t t . r , r , r 

Ri, Si, T EAIoc(3s be such that R i = 12 Ri, Si = t2 S i and ~i[Ri, Si] = 1 2 T .  There exists 

T EAIor no(A;) such that 

T t u  = 12*i(X)T' - Z (-1)si[12*i(X)R'i , Si] - Z [Ri, 12"i(X)S;] 
i i 

(1) 

whenever ~2 = di (X)F on an open subset U CM. 

Proof  If g21 U, = d i ( X ' ) F a n d  U (3 U'  4= 4, then X '  - Xis  a symplectic vector field on 

U n U'. It is, thus, locally of the form X u. Since 12*i(Xu) = i(u)12*, the right-hand side of (1) 

vanishes for X = Xu by the graded Jacobi identity. 

2. O N E - D I F F E R E N T I A B L E  DEFORMATIONS OF P 

Recall that a formal deformation o f  order k o f  P is an element Eft= ovk Ck 1 of A v, loc, nc(N) such 
that Ce = P and such that is s vanishes at order k (i.e., the components [s s l of  

[s s are vanishing for l ~< k). A formal deformation o f  P is an element s E A iv, lot, no(IV) such 

that Co = P and that [s s = 0. 

THEOREM 2.1. Let  s be a formal deformation o f  P and let ~2 C A 2 (M) be closed. 

(i) There exists a sequence IL~ (k E IN) o f  elements o f  A v, loc, no(N) such that I ~  = s and that 

= Z u*i(X)T(Lq)] (2) 
p + q = l - - 1  

whenever ~2 = di(YOF on the open subset U C M. 

(ii) ILav is a coeycle for  s and its f irst term is 12"g2. More generally, 
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0 o  

k = 0  

is a formal deformation in p of  s w 

(iii) In particular, for each t >i 1, 

k = O  

t 

is a formal deformation of  P such that s = s + vtP *~2 at order t. 

(iv) I f  s is one-differentiable at order s (i. e., C t is one-differentiable for I <~ s), then ILk (k E ~q) 

and s are one-differentiable at order s. 

(If it is needed to recall s and ~2, we sometimes will write IL k = ILk ~ (s ~2)). 

Proof. Assume the existence of solutions IL~ (l < k) of (2) such that 

Z [IL~, IL~] : o, Vl < k. (3) 
p+q=l 

From Lemma 1.2, we obtain the existence of a globally defined IL k verifying (2) for l = k. Then 

applying (2) and the graded Jacobi identity: 

k Z [IL~, IL~] 
p+q=k 

= Z ([IL p, p*i(X)T(IL~)], IL q] + [IL p, [iLq,/~*i(X)r(ILr)] ] ) 
p+q+r=k--1 

= Z ILe , [ [ . ,  ILq] ~*i(x)T(IL~)] = o 
p+q+r=k--1 

in view of (3). Hence, (i), (ii) and (iii). For (iv), one has simply to note that the Nijenhuis- 

Richardson bracket of one-differentiable cochains is one-differentiable. 

Let us say that a formal deformation s of order k is a driver of a formal deformation s if 
? 

s = s at order k. 

THEOREM 2.2. Every one-differentiable formal deformation o f  order k of  P is a driver o f  a one- 

differentiable formal deformation o f  P. In particular, there exist one-differen tiable formal 

deformations o f  P with driver P + v/l*~2, where ~2 is an arbitrary closed two-form of  M. 

Proof Let s be a one-dimensional formal deformation of order k of P. Let 0 ~< l < k be given. 

Suppose that there exists a one-differentiable formal deformation s of P such that C~ = C i for 

i ~< l. Then C]+ 1 - G+I is a one-differentiable cocycle. It is thus of the form/~*~2 for some closed 

two-form ~2. By theorem 2.1 

•l+ 1 = IL~l+l (s s2) 
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is a one-differentiable formal deformation of  P such that C~ +1 = C/for  i ~< I + 1. Taking s = p, the 

result follows by induction on l. 

3. FOR M AL DEFORMATIONS OF P WITH D R I V E R P  + prS~, 

Let U be open and suppose that F l u  = di(~)F for some ~ E Jr(U). It has been seen in [6] that 

LEMMA 3.1. 

(i) Lie=P, 
(ii) L~ o b = b o L~- - b, 

(iii) L~ o b' = b' o L~, 

(iv) L~ o p* = p* o L~ - p~ 

(v) L~ o/~' = /~ 'oL~ -p11 

on A p -  1 (~(m), N), 
on A P ( ~ ( M ) ,  A 2 (M)). 

In addition, one may state 

LE M M A 3.2. For p 4= 2, 3, L ~ + p 11 - b o p* o i(~) o r is a linear proofbi]ection from Z~oc, nc (N) 

into itself 

Proof  Recall that C E Z~c ' nc(N) admits a decomposition C = rS~ + p*~2 + bE where g2 E A 2 (34) 

is closed, r E IR. Moreover, C is exact if and only if r = 0 and ~2 is exact. 

By Proposition 1.1, C' = #*~2 + 3E = p*r(C') where r(C') is a cocycle for b'. Using Lemma 3.1, 

(L~ +p11 - O o po  i(~)o r)(rS~ + C ' )  =r(p - 3 ) S ~  +(p  - 2)C'. (4) 

Thus L~ + p l  - b o p* o i(~) o r is surjective. Moreover, if the right-hand side of  (4) is vanishing, 

r = 0 and C'  = 0. Hence, the injectivity. 

Let 11 E A ~  u)) be defined by 

pkuk = Z kpkuk 
k=O 

and set | = 211 - 11. As can easily be seen, for every T v ~ A v ( N ) ,  

k=0  k=0  

THEOREM 3.3. Let  r E IRo be given. There exists a unique formal deformation s o f  P o f  driver 

P + urS~ such that 

IL~(s F)  + o r b  = O. (s) 
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(Or is the coboundary operator associated to the ad]oint representation o f  (E(N, v), s 

Proof. (i) If Uis open and Fl U = di(~)F for some ~ E J((U), after its definition in Theorem 2.1, 

I1 v(s F) reads 

u k ~ [Cp, u*i(~)r(Cq)l. 
k = O  p+q=k 

Thus, the kth component of the left-hand side of (5) is 

[Cq, p*i(~)r(Cq)] - ( 2 k  + 1)C k. 
p+q=k 

Observe, moreover, that L~ = p*i(~)F = p*i(~)r(Co). Hence, the above expression can be written, 

for k > O, 

-L~Ck - (2k + 1)Ck + Op*i(~)r(Ck) + Z [cp, u*i(~)r(Cq)]. 
p+q=k 
p,q>O 

(ii) Let s and s have driver P + yrS,. and satisfy (5). Assume that k > 1 and that C~ = C i 

for i < k. Then 

(L~ + (2k + 1)1 - Ou*i(~)T)(C~ - Ca) = O. 

It follows from Lemma 3.2 that C~ = Ck on U. Thus C~ = Ca, hence, the uniqueness by induction 

on k. 

(iii) Observe that (5) means that for every open subset U on which F = di (~)F, ~ v  = P*i(~)r(s + | 

is a derivation of s Set Co = P, C1 - 3 a - rSr, s = Co + vC1 and @ ~ = L~ + p*i(~)'r(S~) + O. One has 

and 

[ # b ,  1 s =L~P+P= 0 

1 1 [ ~ or, s l ,  = r(L ~S~. + 3S~. - Ol~*i(~)r(S ~)) = 0 

by Lemma 3.1. 

Let now k > 1 and suppose that the Ci's EAr nc(N) (i < k) have been constructed such that 

,~kv--1 = Ei<kpiCi is a formal deformation of P of order k - 1 and that ~ k-lu - -  

Ni<kpil.t*i(~)T(Ci) + | is a derivation ofs -1 at order k - 1. Set 

Jk = ~ [Cp, Cq] and A ~ =  ~ [Cp, p*i(~)7"(Cq)]. 
p+q=k p+q=k 
p,q>O p,q>O 
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Then Jk is known to be a cocycle. As seen in [5], it has a decomposition, ark =/~'(I) + #*~I' when 

(I) and 'I' are three-cocycles of the cohomology of the representation (A(M), X-+ L x )  of Js 

SetJ~ = (A, (I))+ ~. By Lemma 1.2, there exists A EA~oc, nc(N ) such that 

A Iv = z a ~  - u*i(~)4.  

On the other hand, the coefficient of v e of the identity 

reads 

[ ~ k - 1  [ f , k - I  r k--1 
, = - 2 [ ~  , [~-~, ~ - '  , ~  , ~  , ]  ] ]  

(L~ + 2k + 2 ) 4  =2 OAk (6) 

so that, applying Lemma 3.1, 

( 2 k -  2)p'(I) + (2k - 1)/a*~ = 3(2Aku -- la*i(~)J~) = 3A. 

It follows that/~'~ and p*~  are coboundaries [5], prop. 2.3, and thus Jk = 2 3C for some 

C e Atoo, no(N). 
Substituting 23C to Jx in (6) and observing that 3L~ = L~3 + 3, ,we see that L~C + (2k + 1)C- A~ 

is a cocycle. It also reads, using I_emma 3.1 (iv), 

3p*i(~)r(C) + #*i(~) 3'r(C) - A ~  + (2k - 1)C. 

Therefore, B E Alloc, nc(N) defined by 

BI u = u*i(~) a ' r ( O - A ~  + (2k - 1)C. 

is a cocycle (of. I_emma 1.2) and 

L~C + (2k + 1 ) C -  Op*i(~)r(C) - a ~  - B = 0. (7) 

i 3 In view of the properties of r, the cocycle B has a decomposition B = r S r +/~*B' where 

B' = r(B - r 'S~) is a cocycle. Taking 

Ck = C + (2k - 1)- l#*B ' + (2k - 2)-1r'S•, 

we still have Jk = 23Ck and, moreover, (7) transforms into 

L~C k + (2k + 1)Ck -- Ou*i(~)r(Cx) - A ~  = O. 

This means that -v ek = ~veX-1 + ~'kCx is a formal deformation of P of order k and that @ ~ = @~-I  + 
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~l.t*i(~)'C(Ck) is a derivation of  order k o f s  . Hence, the existence Ofs by induction on k. 

Let T E Aloe, nc(JV) or T = rll(r E IR). Denote by ad T its adjoint action on A(E(N, u)). It is 

easily seen that, for t ~> 1, if s is a formal deformation of  P, then so is 

r vtk 
Ad(exp vtT)s = ~ -~. (ad T)ks . 

k = O  �9 

THEOREM 3.4. Every formal deformation of order k of P is a driver of  a formal deformation of P. 

Proof. (i)'Let s be a formal deformation of order k of P. Let us assume that s is one-differ- 

entiable at order t - 1, where t < k. As 

2  ct= [cp, cq] 
p+q=t 
p ,q>O 

is one-differentiable, we see that C t is of  the form OS~ + p'r1 + OT for some 0 E IR, some ~ E A 2 (M) 

and some T E A~oc, nc(N). If  0 --- 0, then Ad(exp vtT)s is a formal deformation of  order k of  P 

and is one-differentiable at order t. Moreover, s is a driver for s if and only if Ad(exp vtT)s 

truncated at order k, is a driver for Ad(exp t , p T)s Thus, replacing s by 

Ad(exp v k -  1 Tk_ 1 ) o - - -  o Ad (exp vT1 )s 

for suitable Ti's ~ A~oc, ,c(N) if necessary, we may assume that either s is one-differentiable or 

that there exists s ~< k such that C i is one-differentiable for i < s and that C s - rS~ is one- 

differentiable for some r E IRo. 

(ii) In the first case, we may conclude by Theorem 2.2. Let us now deal with the second case. 

Let s be a formal deformation of  P with driver P + vrS~ and define formal deformations 

s ..... s of  P inductively by s176 v - s and, for i > 0, 

s  = i - - 1 .  ILvi(s v , T(C i - C [ -  1 )). 

It is easily seen that s s = s at order s. I f  s = k, the proof is achieved. Suppose then that s < k 
! 

and that we have found a formal deformation s of  P such that s =s at order l, with s < I < k. 
, t 3 Then the cocycle Ci+ 1 - CI+ 1 is of  the form rS  r + p*~2 + OTfor some r E IR, some closed 

~2 E A2(M) and some E EA~oc, no(N). Replacing s by Ad(exp v l+1T)s we may assume that 

T = 0. On the other hand, set 

s = Ad(exp pl--s+l ( r ' )  

Then, Ci"-  Ci is one-differentiable for i ~< l + 1 and vanishes for i ~< I - s. Define formal 
l s + l  " �9 deformations s b- , ..., ~ t+v 1 of  P inductively by/}l u- s+ 1 = s and for 1 1> l - s, 

= m . 2J-1 , ,  ; r ( c j  - c j  
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^_ 9l+1 Then ~-v is a formal deformation of P which coincides with s at order l + 1. Hence, the result 

by induction on I < k. 

It follows from Theorem 3.4 that [C, C] is exact for each two-cocycle C. Moreover, 

H1 - dill, nc(N)  denoting the cohomology of one-differentiable nc cochains, it can be shown that 

T H E O R E M  3.5. 

(i) [Hloc, nc(N),  H1 - dief, nc (N)]  = 0. 

(ii) [oi<2n~oc,  nc(N),  ei<<.2H~oc, nc(N)] = O. 

4. S T A R - P R O D U C T S  

Recall that a star-product of (M, F) is a formal deformation ~gx = ~ = o  XkCk of the associative 

algebra (N, #/) ,  with driver 1///+ XP, where for k > 0, the C~'s are local, vanishing on the con- 

stants and such that Ck(v, u) = (--1)kCk(u, v) for all u, v EAr. 

THEOREM 4.1. Every star-product o f  order 2k is a driver of  a star-product. In particular, every 

symplectic manifold admits a star-product. 

= ~i<2kX Ci be a star-product of order 2k (k > 0). Then Proof. Let ~/x i 

s = ~ ptC2i+l 
i<k 

(8) 

is a formal deformation of order k - 1 of P. 

In the proof of the Neroslavsky-Vlassov theorem [8], which asserts the existence of a star- 

product when the third De Rham cohomology space of M vanishes, the key steps are the 

following. 
1 P (i) There exists C2k+ 1 EAloc, nc(N) such that Jgx = ~/x + v2k+lc2k+l is a star-product of 

order 2k + 1 ; C2~+ 1 is determined up to an arbitrary one-differentiable element OfAlloc, nc(N). 

(ii) Jg~ extends to a star-product of order 2k + 2 if and only if s + vkC2k+ 1 is a 

formal deformation of order k of P. 

(iii) ,~  [C2p+ 1, C2q+l  ] (9) 
p+q = k 

is a one-differentiable ChevaUey cocycle. 

By Theorem 3.5, (8) is a driver for a formal deformation of P. If vkC is its kth component, 

then ~(C2k+1 _ C)is one-differentiable. Thus C2k+1 - C-/~*~2 is a Chevalley cocycle for a 

suitable ~2 E A2(M). Then replacing C2k+1 by C2k+ 1 -/a'g2, (9) vanishes and ~/x extends to a 

star-product of order 2k + 2. Hence, the existence of a star-product with driver ~ 'x  by induction 

on k. 

To conclude, observe now that each symplectic manifold admits a star-product of order 2 [8]. 
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