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Abstract. A quantum analogue of the simplest superalgebra osp(21 1) and its fimte-dimensional, 
irreducible representations are found. The corresponding constant solution to the Yang-Baxter equation 
is constructed and is used to formulate the Hopf superalgebra of functions on the quantum supergroup 
OSp( 2 I 1). 
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The development of the quantum inverse problem method [1] gives rise to the 
notions of the quantum group and quantum algebra [2-5]. This field is under active 
study and papers containing general [6, 7] and concrete results [8-10] on quantum 
groups have appeared. 

Taking into account the recent interest in 'supermathematics', in particular, in the 
theory of Lie superalgebras [ 11], in this Letter, we construct a quantum analogue 
[12] of the Lie superalgebra osp(2 I 1) [13, 14]. 

The Letter is organized as follows. In Section 1 we recall the main properties of 
the Lie superalgebra osp(2 I 1) and the corresponding group. Section 2 contains the 
definition of the quantum analogue of osp(211 ), the universal R-matix and the 
finite-dimensional representations. The algebra of functions A(R) on the quantum 
formal group is given in Section 3. 

1. The rank-one Lie superalgebra osp(2 I 1) plays a special role in the classification 
theory of Lie superalgebras [11]. This is due to the fact that many of its properties 
are analogous to those of sl(2) c osp(211). It contains the three even generators 
X_+, H of sl(2) and two odd generators v+_ which satisfy the (anti)commutation 
relations 

[n, X+] = +X_+, [X+, X_] = 2H, 
1, _ [ X + ,  t'+] = 0,  (1 )  [H, v+] = +~t+_, IX_+, c~_] = v + ,  
--~H, [v+, v_+]+ = [ r+ ,  l , ]  + ~ = _ -I- ~ X + ,  

where [ - ,  .]+ denotes the anticommutator. 
The centre of the corresponding universal enveloping superalgebra ql(osp(21 1)) 

is generated by the Casimir operator 
"~ 1 C2 = H- + 2[X+, X_l+ + [t'+, t,_]. (2) 
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There is a graded anti-involution *, 

(X+)* = XT_, H* = H, 

( X Y ) *  = ( - 1 ) ~ x ) P ( r ) Y * X * ,  
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(v_.+)* = ___(- 1)~v:r, e = O, 1, 

( x * ) *  = ( - l ) , ' ( x ) x ,  (3) 

where p ( X )  = 0, 1 is the parity of a homogeneous element, X ~ osp(2 ] 1). We shall 
use e = 0 later on. 

The irreducible, finite-dimensional representations V t with the highest weight 
vector are parametrized by the half-integer s = l / 2  or by the integer l e N. Their 
dimension is dim Vt = 21 + 1 and the corresponding value of  6'2 defined by formula 
(2) is s(s  + 1/2) = l ( l  + 1)/4 [13, 14]. With respect to the even subalgebra, sl(2), every 
representation is decomposed into the direct sum of two irreducible representations, 

Vz = D z ~ D + - I ,  

which correspond to the sl(2)-spin, s = l / 2  and s = (l - I ) / 2 .  Let us point out that, 
for any l, the matrix H has the eigenvalue zero and, in a basis of  eigenvectors, is 

H = �89 diag(l, l - 1 . . . . .  0, - 1 . . . . .  - l). (4) 

The decomposition of the tensor product of two irreducible representations is 
multiplicity free, 

l+p 
Vl (~ Vp "~" E Fro" (5) 

,~ = II- pl 

The corresponding Clebsch-Gordan coefficients are known [13, 14]. The action of 
the generators (1) in the tensor product (5) is defined by the coproduct A, 

A ( a ) = a | 1 7 4  a e o s p ( 2 [ 1 ) .  (6) 

As a result q/(osp(2 ] 1)) is a Hopf superalgebra [2]. 
To construct the supergroup associated with (1), one needs a linear space of 

parameters. In our case, it will be an infinite-dimensional complex Grassmann 
algebra A = Ao @ A~. Multiplying the generators of osp(2 [ 1) by the parameters of 
the corresponding parity (0 or 1) one obtains even elements and, after exponentiating 
them, group elements. In the representation V~ these elements of the supergroup 
OSp(2 I 1) are 3 x 3 matrices with five even and four odd entries which satisfy the 
relations 

g = e 7 = - a 6  + co~, 

,~ # =d~ -b~ .  

The latter relations follow from the equation 

g St jg = j ,  j = 1 , 

- 0 

a d  - bc  + ~6 = 1, (7) 

(8) 
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where st means supertransposition of the even matrix 

(gSt)a b = exp(inp(a)(p(a) + p(b)))gb~. 

2. The quantum superalgebra q/q(OSp(2 ] 1)) is generated as in the sl(2) case [15] by 
three elements, H and v+, with the commutation relations 

[H, v+] ' (9) 
_ = +~v+, [v+,v ] - - s i n h t / H  

sinh 2~/ 

The following formulae for co-multiplication, antipode and co-unit define on ~tq the 
structure of a Hopf superalgebra 

A(v+) = v+ |  "m2 + e-"m2 | (10) 

A(H) = H | 1 7 4  

S ( H )  = - H ,  S(v+_) = -exp(  -4-r//4)v_+, (11) 

5(1) = 1, e(H) = e(v_+) = 0. (12) 

The co-multiplication A is not cocommutative, it does not coincide with A' = a o A, 
where a is the permutation map 

a(a |  = ( - -  l)P~a)PCb)b |  

Due to this fact, the maps A' and S' = S l define on q/q another Hopf-superalge- 
bra structure. It follows from the theory of the quantum double [2, 9] that there 
exists a canonical element R ~ Ok'q @ ~//q which defines a similarity transformation of 
A into A', 

R 6 ' (  �9 ) = 6 (  . ) R .  

In terms of 

e = X e-nH/2t~+, 

(13) 

relations 

(A | id)R = R 1 3 R 2 3  , ( 1 5 )  

(id | A)R = R13RI2, (16) 

(S | id)R = R - 1 (17) 

\1/2 
f = x e ~ m 2 v  , x =  4 s i n h ~ s i n h 2 ~ )  

it has the following form, similar to the sl(2) case [2, 9, 10] 

R = exp( - 2qH | H )  ~ a e ~ ~ ck k ~ J  ~ 

*=o (14) 
qk~k+l)/4 1 

ak = (q2_ 1)k [k]+!' [k]+ = ( ( - 1 )  k Jqk/2 + q-k/2) / (qJ/2+ q-~/2), 

where q = exp(-r/ /2).  
The canonical element R is also called the universal R-matrix. It satisfies the 
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where the indices show the embedding of R into the graded tensor product, 
q/q | q/q | q/q. Formulae (15, 16) imply the Yang-Baxter equation 

R12RlaR23 = R23Rl3R12 , (18) 

where the graded tensor product law must be taken into account, 

(a @ b)(c | d) --- ( - l)~b)~C)(ac | bd). (19) 

The R-matrix (14) commutes with exp(2H)|  This property is used in 
the theory of link invariants [9, 10]. 

The q-analogue of the central element (2) is given by 

c2(q) = cosh 2q(H + �88 - q -1/2 cosh rl(H + �89 - 
2 

- ( 2 q ) - ' ( c o s h ~ / s i n h - ~ ) f 2 e  2. (20) 

The finite-dimensional representations of q/q as a superalgebra with commutation 
relations (9) and highest weight vector, have the same structure as in the classical 
case of osp(211). In the basis e~ ), one gets 

m__ e( 0 ~eO) (21) = = m)em ~_ 1, Pt(H)e~) 2 " p t (v•  N• (1, " (l)l 

( N2+ (l, m) = sinh 20 cosh x 

• fsinh~(l+m+n 1) cosh~( l -m) ,n  l - l - m = 2 n  

~s inh  4 ( l -  m)cosh 4 ( l  + m + 1), 1 - m  = 2n 

m = l - 1 ,  l - 2  . . . .  , - l ;  N _ ( l , m ) = ( - 1 ) t - ' - l N + ( l , m - l )  

The value of the central element (20) in this representation is 

c2(q) Iv, = cosh r/(l + l) = ~q2t+ 1 + q -2 t -  ,). (22) 

The evaluation of the Clebsch-Gordan coefficients for the decomposition of the 
tensor product Vt | Vp in this case can be done using the projector P on the highest 
weight vector: 

P ( H )  = ~ Cn(H)v"_v"+, Pv_  = v + P  = O, 
n = O  

p2 = p, Co(H) = 1, 

gk(H) = (sinh 2r/cosh 4 )  -1 

C,,(H) = H + -~ , 
k = l  

• sinh k(~/2 + in)~2 cosh(q(H + (1 - k)/4) - iTtk/2). 

(23) 

(24) 
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The Clebsch-Gordan coefficients are given by the formula 

[ 1~121 ]=N2,(l ,m)/~(, , )c~, .( ,2)  Nt=m I ~ r"m 2, A( v / -  ")A(P(I))e~J,')| e~2[ t,). 
Lmlmzmj  

The universal R-matrix (14) can be represented in the space V l | Vp, 

Rt'P = (Pt | pp)R. 

In particular, for l = p = 1, one gets 

q 
1 

R TM ~ R (+) = 

q 1 
a 

b 
l 

1 
1 
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(25) 

a = d = q  _ q - 2 ,  

c b = c = - a / q  1/2, (26) 

q--1 

1 
q 

e =a(1  + q- l ) .  

The matrix R = R(+)~, where ~ is the permutation operator in V1 | V1, satisfies 
the relation 

(R - q)(/~ + q- ' ) ( /~ + q-2) = 0 (27) 

which follows from the general decomposition 

l + m  

k TM = ~ ( - 1) v~j) exp(r/(c(/) + c(m) -- e(j)))P:, v(j) = l + m - .L  (28) 
J = I1- -,I 

where c(l) is the value of the Casimir operator (2) in V~, and v(j) is the parity of 
Vj in the Clebsch-Gordan decomposition. One can define matrices L (+), the entries 
of which belong to ://q, 

\ o / e  ,m U Z ) 
U + ' = ( p , |  0 1 W , (29) 

0 e "~ 

Z =(1  + q ) b - l U  2_ e 'a-/, W = - - q l / 2 U _ e ' t H ,  

(30) 

U ~ x e -qH/21)  ~ 

[ e "n 0 0 \ 

L~-) = (Pl |  = {W+ 1 0 ),  
\ Z+ U+ e -n"  

Z+ - (1 + q)b-1 e, nUZ+, W+ = ql/2 e~ZU+, U+ = X e--'tH/2v+. 

The action of the antipode anti-automorphism on these matrices is as follows 

S(LC+_)) = C(L<+_))stC-1 = (Lr (31) 
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0 0 qi/2) 
C = J exp(rlpl(H)/2) = 0 1 . 

_q-1/2 0 

When q e R the anti-involution �9 for 0~q is the same as (3) 

(32) 

H* = H, (v+)* = v_, (v_)* = - v + .  (33) 

3. Now we describe A(R), the dual object to qlq, which is interpreted as the algebra 
of functions on the quantum formal group, using the approach [4, 5]. The genera- 
tors t,j, i , j  = 1, 2, 3 of A(R) are defined by the relations 

(1, T, 7"2"" Tk) = I  | 

(L(+), T1 T2""Tk)  = --to(+)~,(• R~ • (34) 

where, for the 3 x 3 matrix 

T={t, j},  T I = T | 1 7 4 1 7 4  T 2 = I | 1 7 4 1 7 4  

and so on. It follows from these relations that (R = R(+)~) 

RTIT: = TIT2R, (35) 

and from the crossing property (31) and (34), that 

TstCtT = ~)C t, ~ = flit33 - qt31t13 - ql/2t21t23 , (36) 

(L(+)S(T) > = (S(L(+-)), T> = C l l R (  + )sqc 1 

- 2  -2/13 ~ 
/ t33 2-1t23 2_1112 ~, 2 . 

S(T) = C -  1TSt C = [ _ 2t32 t22 _ . _  q i/2 (37) 

\--z2t31 -zt21 tll / 

The comultiplication A: A(R) ~ A(R) | A(R) 

3 
A(t,) = ~ t,k | tkj. (38) 

k=l 

the co-unit e: A(R) ~ C, e(to) = 60 and the antipode map S (37) define the structure 
of a Hopf  superalgebra on A(R). The anti-involution �9 on the superalgebra A(R) 
can be obtained by the same method, using (33) for the generators H, v• of ~'q, the 
duality relations (34), and q e R, (z = qm) 

/ t33 zt32 --Z2131\ 
Z * =  / 2 1t23 /22 --g/21/ .  (39) 

\ - z - 2 h 3  - z - l q 2  tll / 

A left- (or right-) co-module of A(R) gives rise to a corepresentation of A(R), and, 
due to the duality relation (34), to a representation of the quantum algebra 
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J//q(OSp(211)). The superalgebra A(R) is useful for the description of global 
properties, e.g., quantum homogeneous spaces such as the quantum analogue of the 
supersphere for OSp(2 I 1). 
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