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Abstract. The main aim of the present paper is to explain a nature of relationships exist 
between Nelson and Heyting algebras. In the realization, a topological duality theory of Heyting 
and Nelson algebras based on the topological duality theory of Priestley ([15], [16]) for bounded 
distributive lattices are applied. The general method of construction of spaces dual to Nelson 
algebras from 'a given dual space to Heyting algebra is descrJ~bed (Thm 2.3). The algebraic 
counterpart of this construction being a generalization of the Fidel-Vakarelov construction ([6], 
[25]) is also given (Thm 3.6). These results are applied to compare the equational category N of 
Nelson algebras and some its subcategories (and their duals) with the equational category H of 
Heyting algebras (and its dual). It is proved (Thm 4.1) that the category N is topological over the 
category H. 

A Nelson algebra is an algebra (A, v ,  ^ ,  -~, 7 ,  ,~, 0, 1) of the type 
(2, 2, 2, i, 1, 0, 0) satisfying some appriopriate axioms (for details see Section 
0). Nelson algebras under the name N-lattices have been introduced by H. Ra- 
siowa 1-19] as an algebraic semantic of the constructive logic with strong 
negation of Nelson [14] and Markov [11]. This logic being a conservative 
extension of the intuitionistic logic arises naturally as a research to omitting the, 
non-constructivity of the intuitionistic negation. So, to study this logic and its 
extensions the detail explanation of relationships appearing between Nelson 
algebras and Heyting ones being an algebraic semantic of the intuitionistic 
logic seems to be indispensable. The great number of solved problems 
concerning the theory of Heyting algebras supplies an additional motivation 
for such investigations. 

In this paper, the starting point to explain mentioned relationships stands 
the following fact: for any Nelson algebra 9~ = (A, v ,  ^ ,  -~, -q, ~ ,  0, 1) the 
relation ~ on A defined by the rule a ~ b  iff a - ~ b = l  and b ~ a = l  is 
a congruence relation on the algebra (A, v ,  ^ ,  -~, -q, 0, 1) and the quotient 
algebra, denote it by ~*, is a Heyting algebra. It is known that each Heyting 
algebra ~3 can be represented up to isomorphism as 9.I* for some Nelson 
algebra 9.I. The Fidel-Vakarelov construction of Nelson algebra N(~) (see e.g. 
[25]) yields an example of such an algebra. This also follows from the topological 
representation of Nelson algebras developed in 1-19]. On the other hand, it is 

1 The main results of this article are a part of theses of the author's doctoral dissertation at 
the Nicholas Copernicus University in 1984 (comp. [24]). 
Research partially supported by Polish Government Grant CPBP 08-15. 
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easy to find non-isomorphic Nelson algebras such that their "star" algebras are 
isomorphic. Thus to explain in detail relationships between Nelson and 
Heyting algebras it is natural to pointed out the following 

PROBLEM 1. F ind  a usefull and possible simple description (construction) 
of all up to isomorphism Nelson algebras 9 /whose  ~ Heyting algebras 9/.I* are 
isomorphic to a given Heyting algebra ~.  

With this problem arises the following one which is very important  from 
algebraic and logical points of view 

PROBLEM 2. IS it possible to apply the obtained description to state 
connections between varieties (quasivarieties) of Nelson and Heyting algebras? 

In this paper we solve positively these two problems. The presented part I 
deals with the first problem (for the second problem we refer to part  II). 

To obtain a solution we apply the known topological duality theory for 
Heyting algebras and a stated (in Section 1) one for Nelson algebras, both 
based on the topological duality theory of H. A. Priestley ([15], [16]) for 
distributive lattices. In Section 2 the construction of all up to isomorphism dual 
spaces of Nelson algebras 9.1 from a given dual space of Heyting algebra ~ such 
that 9/.I* are isomorphic to ~3 is given. Hence, up to duality, the all Nelson 
algebras 9/ with 9/* isomorphic to a given ~ are described. From this 
description follows that  these algebras are determined" by ~ and only one 
parameter  associated with ~3, namely a Boolean congruence on ~3. In Section 3 
we presente the construction of all Nelson algebras 9.I with 9/.I* isomorphic to 
~3 being an algebraic realization of this observation. This construction is 
a generalization of the Fidel-Vakarelov one. 

These results lead us to state in Section 4 that the investigated connection 
has a topological nature. More precisely, we prove that the functor * from the 
category N of Nelson algebras to the category H of Heyting algebras is 
topological; and hence the category N is topological over the category H. This 
means that  every Nelson algebra 9 / w i t h  9/* isomorphic to a given ~ can be 
treated as ~B equipped with some additional structure, and among these 
structures there are distinguished two, namely "discrete" and "indiscrete" ones. 
So we get functors _N and ~ from H to N being left and right adjoint to the the 
functor *, respectively. These functors allow us to presente the interplaies 
between categories N (and some its subcategories), H and categories of spaces 
dually equivalent to them in a elegant mathematical  fashion. 

0. Preliminaries 
An algebra (A, v ,  ^ ,  ~ ,  -3, --~, 0, 1) of type (2, 2, 2, 1, 1, 0, 0) is said to be 

a Nelson algebra if the following hold: 
(I) (A, v ,  ^ ,  ,~, 0, 1) is a Kleene algebra i.e. it is a De Morgan algebra 

satisfying for all a, b e .4 the inequality a/x ~ a ~< b v ~ b (~< denotes 
the lattice order), 
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(II) The relation ~( on A defined by the rule a~,b  iff a ~ b  = 1 is reflexive 
and transitive, 

(III) The equivalence relation ~ on A induced by ~( is a congruence relation on 
(A, v ,  ^ ,  -~, --1, 0, 1) and the quotient algebra is a Heyting algebra: 

(IV) For  all a, b e A there hold: ..~ (a ~ b) ~ a ^ ~ b, a a ,.~ a ~ O, ~ a = a ~ O, 
and a ~< b iff a -< b a n d  ~ b -< .-~ a, 

where by Heyting algebra we mean any algebra (B, v ,  A, ~ ,  --, 0, 1) of type 
(2, 2, 2, 1, 0, 0) such that  (B, v ,  A, 0, 1) is bounded lattice, a ~ b is the greatest 
element in the set {cEA; a a ?, ~< b} and - a  = a ~ 0  

The above definition of Nelson algebra is adopted from the one presented 
in [19]. 

The operations =% ~ ,  - and -1 are called relative pseudocomplementation, 
weak relative pseudocomplementation, pseudocomplementation and weak pseudo- 
complementation, respectively. Both, the class H of Heyting algebras and the 
class N of Nelson algebras (in presented types) are varieties of algebras. For 
more information on Heyting and Nelson algebras, as well as another bounded 
lattices with additional operations we refer to [20] and [21]. 

An ordered topological space (for short ordered space) (X, 9-, ~ )  is a poset 
(i.e. partially ordered set) (X, ~<) endowed with a topology ~--. A poset (X, ~)  
as well as an ordered space (X, J--, ~<) will be denoted by the same symbol ~. 
A subset U of a poset or an ordered space 3E is increasing (decreasing) if x <~ y, 
x e U (ye U) imply y E U  ( x e  U). The smallest increasing (decreasing) set 
containing a given subset U of X we denote by TU (~U); instead of T{x} (~{x}) 
we write ]'x (.~x). An ordered space X is totally order disconnected if for x, y E X 
with x ~ y there exists a clopen increasing set U such that  x e U and y $ U. 

Denote the category of compact  totally order disconnected spaces (Priestley 
spaces) with continuous and order-preserving maps by P; and the category of 
bounded distributive lattices with bounded lattice homomorphisms  by Do1. 
The set (9(X) of all clopen increasing subsets of an ob jec t~  of P is closed under 
the set union and intersection, so (9(3E) = ((9(X), w, n ,  O, X) is an object of 
Din; the setN(A) of all prime filters of an object 9.I of Do1 ordered by inclusion 
and topologised by  taking the family of sets #(a) = {F ~ N(A); a ~ F}, for a e A, 
and their complements as a subbas.e, denote it by ~(9.I), is an object of P. 
Furthermore,  setting ~(h) = h-1: ~(B)--, r for every morphism h: 92[ ~ 
of Do1, and (9(f) = f - l :  (9 ( Y) ~ (9 (X), for every m o r p h i s m f :  3 ; ~  of P we 
obtain contravariant functors N: Do~---,P and (9: P--*Do~. Priestley in 1-15] 
and [16] proved that  these functors establish a dual equivalence between 
categories Dot and P. 

Priestley's duality has been applied to obtain a description of dually 
equivalent categories to various equational subcategories of Do~ (the list of 
examples may be found in [18]). To our considerations will be indispensable 
descriptions two of them, namely, the category dually equivalent to the 
category H of Heyting algebras and to K! of Kleene algebras. 

The specialization of the Priestley duality to the case of Heyting algebras is 
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essentially a part of the folklore of Duality Theory (see [18]). A H-space is an 
object 2E of P such that for every open subset Y of X, ,LY is open (or 
equivalently, for all U, V6 @(X), J.(U\ V) is open). Let P-H be a category whose 
objects are H-spaces and whose morphisms from the H-space .~ to the H-space 
~) are all morphisrnsf: ~---, r in the category P such thatf('rx) = ~f(x), for all 
x~X.  For any H-space ~ and U, V~(9(X) define: 

U ~ V =  X\)~(U\V) and - U  = X\+U. 

Then the algebra (gn(3E) = {(9(X), u,  c~, = ~ , - ,  0,  X) is a Heyting algebra. 
Furthermore, for any morphism f :  X ~ ~ in P-H, On(f) = (9(f) is a Heyting 
algebra homomorphisrn from @n(~) into On(X ). On the other hand, for each 
Heyting algebra !B, ~H(!B) = ~(!B) is a H-space; and for each Heyting algebra 
homomorphism h: ~B --+ ~D, ~rI(h) = ~(h) is a morphism in P-H from ~H(~) to 
~n(!B). Therefore we have two contravariant functors ~n:  H ~ P - H  and 
On: P-H ~H.  These functors establish a dual equivalence between the catego- 
ries H and P-H. 

The extension of the Priestley duality to the case of Kleene .algebras is due 
to Cornish and Fowler [5]. A Kl-space is an object 3s of P with a homeomor- 
phism g on 2E, that is, a pair (iE, 9) such that for any x, y~X: 

( k j  if x ~< y then g(y) <~ g(x), 
(k2) o(g(x) )  = x,  
(k3) x g (x )  or g(x) x. 

Let P-KI be a category whose objects are Kl-spaces and whose morphisms 
from the Kl-space (X, 9x) to the Kl-space (~, gi,) are all morphismsf: ~ in 
the category P such that fox = gYf- For any Kl-space (~, g) and U~(_9(X) 
define 

~ u = x \ g ( u ) .  

Then the algebra (fiKl(3E, 6)=  ((9(X), u ,  c~, ,~, O, X) is a Kleene algebra. 
Moreover, for any morphism f :  (~, gx)-+(O, gy) in P-Ki, @Kl(f)= (9(f) is 
a Kleene algebra horffomorphism from (fire(0, gy) to (9K1(3r gX)" On the other 
hand, ~ l ( ~ t ) = ( ~ ( 9 i ) ,  g), where the map g: ~(A)-+~(A) is-defined by 
g(F) = ~(A)k(,~a; a~F}, is a Kl-space; and for each Kleene algebra homo- 
morphism h: 9.I~E, ~Ki(h)= ~(h) is a morphism in P-K! from -~KI(E) to 
~m(~).  Therefore we have two contravariant functors ~KI: KI--~PoKI and 
(gin: P-KI-~ Kl. These functors establish a dual equivalence, of the categories KI 
and P-KI. 

The notation concerning the theory of universal algebras and the theory of 
categories i s  in accordance with [8] and [9], respectively; where all the 
necessary definitions and results may be found. We only pay the reader 
attention to one covention, namely, for any class K of algebras of the same 
similarity type by the same symbol K it is denoted the category whose objects 
are algebras from th!s class and whose morphisms are homomorphism between 
them. 
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1. Topological duality 

In this section we describe a category dually equivalent to the equational 
category N of Nelson algebras. This category is found as a suitablesubcategory 
of the category P-K! 2. 

If 3s is an ordered space and Yis a subset of X then Y with the restricted 
order and the induced topology is an order space. This order space, denote it 
by ~, we refer to call an order subspace of 3s 

For any poset 3s and function g: X--, X satysfying conditions (k0, (k2) and 
(k3) define 

and 

x + = {x X; <<. g(x)} 

x -  = {x x; g(x) 

Clearly, X = X + w X - ,  9(X~-) = X -  and g(X-) = X+; X + is decreasing and 
X -  is increasing in 3s 

1.1 LEMMA. For any Kl-space (3s g) the following hold 
(1) The Order subspaces 3s and 3s are closed. 

(ii) Each subset Y o f  X is closed (open, cIopen) in 3s if and only if  Y n  X + and 
Y n  X -  are closed (open, clopen) in 3s and 3s respectively. 
(iii) Each subset U o of  X + is closed (open, clopen) increasing in 3s if and only if 
U o = U c~ X +, for some closed (open, cIopen) increasing set U in 3s 

PROOF. (i) is proved in [5], (Lemma 2.1 p. 216). (ii) follows from (i). And 
(iii) is an easy consequence of the fact that 3s is an order subspace in the sense 
of Priestley [16] (see w pp. 509-511). 

The following condition for posets 3s with a function g satisfying (k 0, (k2) 
and (k3) is essentiallythe so-called interpolation condition introduced by 
Monteiro in [12] 

(n) for every x, y ~ X  +, if x <<. g(Y) then there exists z E X  + such that 
x~<z~<g(x) and y<<.z<.g(y). 

The role of structures (3s g) satisfying (ks), (k2), (k3) and (n) for the theory of 
Nelson algebras has been investigated by Monteiro in the cited paper [12], 
nextly by Vakarelov in [25] (under the name M-spaces) and by the author in 
[22], where the term N-structure has been "used. We follow the terminology 
from [22]. 

1.2 LEMMA. For any increasing subsets U, Vand W o f  an N-structure (3s g) 
there hold 

2 The description of the subcategory of P-gl, dually equivalent to the equational category 
N of Nelson algebras was announced in abstract form in 1-23]. An analogous result was also 
independently obtained by Cignoli in 14]. 
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(i) U n g ( U ) n X  + = U n X  +, 
(ii) U c ~ g ( U ) n X -  = g ( U ) n X - ,  

(iii) U n g ( U )  ~_ Vc~g(V) iff U n X  + =_ V n X  +, 
(iv) +(U n g(U)\V) n X + = J,((U\V) n X +) n X +, 
(v) n o(v) \  v) n x -  = (o(v)\  v) x - ,  

(vi) V n V n X  + ~_ W n X  + iff ( V n X + ) n ~ ( ( V \ W ) n X + ) = O .  

PROOF. By an easy verification. 

1.3 PI~OPOSmON. Let (Y., g) be a Kl-space and let ((9(X), u ,  n ,  ~ ,  O, X) 
= (gm(~, g). For any U, V~(9(X) define: 

U ~ V =  X\+(U n g ( U ) \ V  ) and -]U = X ~ O  = X\~.(U ng(U)) .  

Then (9N(3~, g) = (6o(X), u,  c~, ~ ,  7 ,  ~ ,  0 ,  X) is a Nelson algebra if  and only if 
(3~, 9) satisfies the condition (n) and for every U, V~(9(X), +(U c~ g(U)\V) is 
clopen. 

PROOF. =~ It is proved in [12] (see also [25] and [22]) that for each 
Nelson algebra 92, the poset of prime filters of 92 ordered by inclusion with the 
function g: ~ ( A ) ~ ( A ) ,  defined b y  g(F)= ~ ( A ) \ { ~ a ;  a~F}  satisfies the 
condition (n). Therefore, since ~m((gm(~, g)) and (~, g) are isomorphic objects 
of the category P-KI, (Y,, g) has to satisfy the condition (n). To prov.e the second 
part of the assertion we use the following property of the weak relative 
pseudocomplementation operation stated in [12]. Namely, for any elements a, 
b of the Nelson algebra 92, a ~ b  is a pseudocomplement of a relative to 
,--a v b, that is, for any e t A  

(*)" c <~ a ~ b  iff a ^ c <~ ~ a  v b. 

Let U and V be clopen increasing in 3s Since U ~ V exists to prove 
$(U n g(U)\V) is clopen it sufficies to show U ~ V = X \ $ ( U  n g(U)\V). By (,) 
U n (U ~ V) _~ ,-~ U u V because U ~  V~_ U ~ V. This implies (U ~ V) n $(U 
n g(U)\V) = O. Hence U ~  V~_ X\,L(U n g(U)\V). For the reverse inclusion 
assume x r  So, for all y~Uc~g(U) \V ,  x 4~Y. Using total or- 
der-disconnectedness and compactness we can select a clopen increasing set W 
containing x and such that U n g ( U ) \ W ~  X \ W .  Then U n W E  X\ (g(U) \V)  
= ( X \ g ( U ) ) u  V =  ,,~Uw V; and hence, by (,), xEW~_ U ~ V .  This proves 
x \ $ ( v  n o (u) \v )  =_ v - +  v. 

Note that, if we define U ~ V = X \ ~ , ( U n g ( U ) \ V ) ,  for all clopen 
increasing sets U and V, then 

U-< Viff  U ng (U)  ~_ V n g ( V )  iff U n X  + ~_ V n X  + 

the last equivalence by 1.2 (iii) and so 

U ~ V i f f  U n g ( U ) = V c ~ g ( V )  iff U n X  + = V n X  +. 

Therefore < is a quasi-order on (9(X) and ~ is an equivalence relation on 
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C(X) which satisfies the substitution property with respect to w and n ,  also 
with respect to ~ and -1 by 1.2 (iv). Moreover, in the q u o t i e n t  algebra 
(•(x), -+, 7, 0, 

[U]~ ~<[Vl_- iff U n X  + ~ v n X  +. 

Then by Lemma 1.2 we have 

[ U n  V]-- ~< [W]_- iff U n  V n X  + ~ W n X  + 
iff (U n X +) n $((V\W) n X +) = 0 
iff U n X + ~_ X\($((V\W) n X +) n X +) 
iff U n X  + ~_(X\+(Vng(V) \W))nX + 
iff U n X  + ~ _ ( V ~ W ) n X  + 
iff [U]_- ~< [ V ~  W]_-. 

Hence the quotient algebra is a Heyting algebra. Using Lemma 1.2 it is easy to 
see the remaining conditions of the definition of Nelson algebra are also 
satisfied. 

In the sequal Kl-spaces satisfying the conditions of Proposit ion 1.3 will be 
called N-spaces. 

1.4 PROPOSITION. Let (3E, gx) and (29, gy) be N-spaces and let f:  (~, gx) 
~(29, gv) be a morphism in P-Kl. Then the map (9(f): (9(Y)-ocg(x) is 
a homomorphism from the Nelson algebra (9N(29, gy) tO the Nelson algebra 
(~N(3C gx) if and only if for every x e X  +, f (~ (xnX+)= Tf(x)c~ r+ .  

PROOF. Obviously, O(f) is a homomorphism between considered Nelson 
algebras iff (_9(f) is --+-preserving. But, by the definition of ~ and since 
f o g  x = grof,  it is equivalent to the following 

(.) f - l (~(Ungr(U)~V))= ~ f - l (Ungr (U) \V) ,  for all U, V~(9(Y). 

Assume (,) is satisfied. Let x ~ X  + and u~Tx n X +. Thenf(x)  <.f(u) and 
f(u) <.f(gx(U)) = or(f@), which showf(~'x n X § _ T f (x )n  Y+. To the reverse 
inclusion assume yET f ( x )n  Y+. Suppose y # f(z) for all z ~ x n X  +. Since 
~'x n X + is closed in 3~ by total order-disconnectedness and compactness there 
exist clopen increasing sets U and V such that f(~x n X +) n (U c~ gr(U)\V) 
= O and )1~ U n gy(U)\V. Becausef(x) ~< y,f(x)E $(U n gy(U)\V). Then by (,), 
x ~ f - l ( U n g r ( U ) \ V ) .  Thus, for some u in X, x ~< u and f (u)eUngr(U) \V.  
If u ~ X  + then u ~ x n X  +. Hence f (u )s f (TxnK+) ,  which is impossible. 
If uq~X + then by (n) there exists wE X + such that x<. w<.gx(X ) and 
gx(U) <~ w <~ u. This implies f(w)~f(~x n X +) n (U n gr(U)\V), which is also 
impossible. 

S ince f  preserves an order .! f - l (U Q gr(U)\ V) ~ f -  ~ ( ~ (U n gr(U)\ V)). 
For  the inverse inclusion assume x~f-~l+(Ungr(U)\V)) .  So, f(x)<~ y for 
some y E U n gr(U)\V. 

Case 1. x ~ X - .  Then gY(Y) ~< gr(f(x)) = f(gx(X)) <~f(x) <~ y. Since both 
y and at(Y) are in the convex set U c~gr(U), f (x)~Uc~gr(U ). Moreover, 
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because V is increasing, f(x) r V. This shows x ~ f -  1 (U n or(U)\ V) _ J ,f-  1 (U 
gy(U) \  V). 

Case 2. x(~X-.  If y e Y  + then y e T f ( x ) n  Y +. By hypothesis y=f(u) ,  
ue Tx c~ X +. Consequently x <. u e f - ' ( U  c~ gr(U)\V), which proves xe  [ f - l ( U  
(~ gr(U)\Y). If y~ Y+ then f(x) <.J(gx(X)) = gr(f(x)) and gy(y) <. y. So, by (n), 
there exists z e Y+ such that f(x) <. z ~ gr(f(x)) and gr(Y) <- z <~ y. Then 
ze  Tf(x) c~ Y+ and ze  U c~ gy(U)\V..Thus as in the case y e  Y+ (here the role of 
y plaies z) we obtain x e S f - l ( V t n g r ( U ) \ V ) .  

The composition of morphisms in P-KI between N-spaces satisfying the 
condition of Proposition 1.4 also satisfies this condition. Hence the class of all 
N-spaces with such morphisms forms a subcategory P-N of P-Kl. By 
Proposition 1.3 and 1.4 it follows that the category P-N is dually equivalent to 
the equational category N of Nelson algebras. This dual equivalence is 
established by the contravariant functors ~N: N-~P-N and ON: P-N~N,  
where for each Nelson algebra ~,  ~ N ( ~ ) =  ~KI(92) and for each Nelson 
algebra homomorphism h, ~N(h)= ~(h); while, for each N-space (~, g), 
(9N(3s g) is a Nelson algebra defined in Proposition 1.3, and for each morphism 
f in P-N, (PN(f)= O(f). ' 

1.5 PROPOSITION. (i) Each Kl-space (3~, g) satisfying the condition (n) is an 
N-space if and only if the order subspace Y.+ is a H-space. 

(ii) I f  (Y., gx) and (g), gy) are N-spaces, then each morphism f: (~, gx) 
-*(~, gy) in P-K! is a morphism in P-N if and only i f f  + = f i X  +. Y.+ -~0 + is 
a morphism in P-H. 

PROOF. Throughout the proof'the symbol J, + Z (T + Z) denotes the smallest 
decreasing (increasing) set in the order subspace 3~ + containing a given set 
Z ~ X  +. 

(i) ~ Clearly, 3s a Priestley space. So, it sufficies to show 3E + satisfies 
the defining property to be a H-space. Let U o and V o be clopen increasing in 
~+. By 1.1 (iii) there exist clopen increasing U and V in 3E such that 
U o = U c~ X + and V o = Vc~ X+. Therefore 

~+(Uo\Vo) = ~(Vo\Vo)  c~ x + 
= ~((v n x+) \ (vn  x+)) n x + 
= ~(u  ~ g (U) \V)  n x + 

(the last equation by 1.2 (iv)). Thus ++(Uo\Vo) is clopen in X + because by 
hypothesis $(U c~g(U)\V) is clopen in X. 

Let U and V be clopen increasing in :~. Then by 1.2 (iv) 

~(v  n g(V)\V)  n x +  = ~((v n x + ) \ ( V n  x+)) n x + 
= ~ + ( ( v  n x + ) \ ( y n  x +)) 

and by 1.2 (v) 

~ ( v  ~ g ( V ) \ y )  ~ x -  = ( g ( V ) \ v )  ~ x - .  
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Thus the restriction of ,~(U c~ g(U)\V) to X + is clopen in 3;+ and to X -  is 
clopen in 3;- which, by 1.1 (ii), shows this set is clopen in 3;. 

(ii) Since the o{der in 3;§ is a restriction of the order on X to X § 
]'§ x = Tx ,~ x § for all x E X +. Then the assertion follows immediately from the 
definitions. 

1.6 COROLLARY. For each N-space (3s g), Heyting algebras (C(X), u, 
c~ ~ ,  -], O, X)/~ and (C(X+), u ,  c% ~ ,  - ,  O, X +) are isomorphic. 

PROOF. As we have seen in the proof  of 1.3, for all U, VeC(X), 
[U]_- ~< I V ] ,  iff U c ~ X  § ~_ Vc~X § Then the map [U]-_~--~Uc~X + is a lat- 
tice isomorphism (onto b y  1.1 (iii)). It by 1.2 (iv) also preserves relative 
pseudocomplements.  * 

2. Topological construction 

If (3, g) is a dual N-space of the Nelson algebra 9~, then by Corollary 1.6 
the order subspace 3 § is up to isomorphism in P-H a dual H-space of the 
Heyting algebra 9.I*. Therefore, to find all Nelson algebras ~ 9A whose 9d* 
algebras are isomorphic to a given Heyting algebra ~;, it sufficies to find all 
N-spaces (3, g) such that their order subspaces 3 § are isomorphic in P-H with 
a dual H-space of an algebra ~.  In this section we give a method of 
construction all N-spaces (3, g) whose order subspaces 3 § coincide with 
a given H-space 3[. 

2.1. LEMMA. Let (3;, g) be an N-structure such that each x in X § is 
majorized by at least one y maximal in X § Then for every U increasing 
in 3;+ and V increasing in 3;-, g(U n Max(X+)) ~ V implies U w V increasing 
in 3;. 

PROOF. Let x~<y and x e U w V  
Case I. x e U .  Since U is increasing in 3;+, if y ~ X  § then y e U .  So, let 

y ~ X - .  Then by (n) there exists z e X § such that x <~ z <% g(x) and g(y) <~ z ~ y. 
By hypothesis z<~u, for some ueMax(X+) .  This implies g(u)sg(U 
c~ Max(X+)) _c V Thus y~ V, because g(u) <~ g(z) <~ g(g(y)) = y and V is in- 
creasing in 3;-. 

Case 2. x r  So x 6 E  If y 6 X  + then g(x )<, . x~  y<.g(y); and hence 
y = g(g(y)) ~< g(y) % g(x) <~ g(x)) = x. So y = x e  V I f  y ~ X -  then y e  V since 
V is increasing in 3;-. 

2.2 LEMMA. For any H-space 3; there hoM 
O) The set Max(X) of all maximal elements in 3; is closed in 3;. 

(ii) For every clopen set U in the subspace Max(X), ~U is clopen in 3s 

PROOF. Since every Heyting algebra is a pseudocomplemented distributive 
lattice, it immediately follows from Lemma 1 p. 216 and Corollary 6 p. 218 of 
1-171. 
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Let 3s = (X, 9--x, ~< x) and 29 = (Y, J - r ,  ~< r) be disjoint homeomorphic  and 
dually order isomorphic ordered spaces; and let the map  f :  X ~ Yestablish the 
required order-reversing homeomorphism.  Furthermore,  let S be an arbitrary 
subset of the set Max(X) of all maximal elements in (X, <~ x). Define a topology 
J-,  a relation ~< and a functio n g s  on X u f ( X \ S )  as follows 

(1) Z e ~ "  iff j - i ( z ) e g - x  and k - l ( Z ) e f r ,  where the maps j: X ~ X  
w f ( X \ S )  and k: Y ~ X u f ( X \ S )  are defined by 

~ / - l ( y ) ;  if ye f (S )  
j(x) = x and k (y )=  [Y; otherwise 

(2) <~ = <<-x w <~ ktr)W (<~ x ooo <~ ktr)), where ~< k~Y) is a partial order on k(Y) 

induced from Y by k, and 0 = {(x, k(f(x))); x e X }  

(3) gs(x) = ~k(f(x)); if x e X 
~f- 1 (x); otherwise. 

Clearly, Y- is a well-defined topology on the set X wf (X \S) ,  This 
topological space is homeomorphic  to a quotient space of the topological sum 
of (X, ~-'x) and (Y, J r )  by an equivalence relation corresponding to the 
parti t ion of the set X w Yinto sets {z, f(z)}, for z e S and singletons {z}, for z 6 S. 
On  the order hand, by Proposit ion 3 .1  [22], ( X u f ( X \ S ) ,  <~, gs) is an 
N-structure. Therefore (X wf (X \S ) ,  Y-, <~) is an ordered space. Obviously, for 
a given ordered space 3C, the ordered space 29 homeomorphic  and dually 
order-isomorphic to 3s with X n Y =  O, as  well as the order-reversing 
homeomorph ism f :  3s ~ 29 can be easily constructed. F rom now on, it will be 
assumed that  they are constructed in some fixed canonical way, uniform for all 
ordered spaces 3s the set X w f ( X \ S )  will be denoted by X/~ S and the ordered 
space (X wf (X \S ) ,  ~--, <~) by 3s 

2.3 THEOREM. (i) I f  3s is a H-space and the subset S of Max(X) is closed in 
3s (or equivalently closed in the subspace Max(X)) then (3s ,z S, gs) is an N-space 
such ihat the order subspaces (3s + and (3s ~S) + n(3s - coincide with 
3s and ~, respectively. 

(ii) For each N-space (29, gr) there exist a H-space 3s and closed subset S of 
Max(X) such that N-spaces (29, gt) and (3s S, ~ts) are isomorphic as objects of 
P-N. 

PROOF. (1) Note  that  (X,~S)+ = X, (X,~S) - = k(Y), ~ n ( X x X )  = ~<x 
and-~< c~ (k(Y)x k(Y)) = <~k(r). The maps j and k are continuous and closed 
since S is closed in 3s It follows from these observations that  the order 
subspaces (3s S) + and (3s S) + c~ (3s ,~ S)- coincide with 3s and ~,  respectively. 
Therefore by Proposi t ion 1.5 (i) it sufficies to show that  3s ,~ S is compact  totally 
order disconnected and the map  Os is a homeomorphism on 3s ,~ S. 

First observe that  for every subset Z of X s S j -  l(gs(Z) ) = f - l (k-  i(Z)) and 
k-~(Os(Z))=f( j - l (Z)) .  Then gs is a homeomorphism because it is an 
involution. 
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To show 3s S is totally order disconnected assume x, y e X/~ S and x `% y. 
Case I. x, y ~ X. Then x `% xY. By total order disconnectedness of 3s there 

exists a clopen increasing subset U of X such that x ~ U and y ~ U. Then by 
Lemma 2.2 (ii) ~ , (UnMax(X) )  is clopen in 3s Consider the set 
Z =  Uwgs( ,~ (U~Max(X) )  ). Clearly, x ~ Z ,  y C Z  and Z is clopen in 3s 
because j - I ( Z ) =  U and k - ~ ( Z ) = f ( $ ( U  n Max(X))). It is also increas ingby 
Lemma 2.1. 

Case 2. x, y ~ k(Y). Then gs(X), gs(Y) ~ X and gs(Y) -% x gs(X) �9 Therefore, as in 
Case 1, there exists Z clopen increasing in 3s such that gs(y)~Z and 
gs(X) C Z. Thus the set (X ,7 S)\gs(Z) is clopen increasing in 3s S; it contains 
x but not y. 

Case 3. x ~ X k S  and ye f (XkS) .  Then, for all z ~ X ,  x `%x z or gs(Y) `% x z. 
Compactness and total order disconnectedness of 3s yield clopen increasing 
Ua, . . . ,  U, in 3s such that X = ( X \ U  0 w . . .  w (XkU,) ~md for all i, i = 1 . . . . .  n, 
x ~ U ,  or gs(Y)~U,. Define U =  ~ { U , ;  x~U, ,  1 <~i<~n} and V= ~ { U , ;  
xq~Ur 1 <~ i <~ n}. Obviously, x is in U and gs(Y) in K Since x and gs(Y) are in 
X, both families used to define U and V are non-empty. Hence U and V are 
disjoint. Consider the set Z = U W gs(+(U n Max(X))). x ~ Z  and Z is clopen 
increasing by the same arguments as .in Case 1. Since U n V =  O and V is 
increasing in 3s ,L(U c~ Max(X)) _ ,~U _~ X \ K  Therefore ,L(U n Max(X)) n V 
= O .  This implies gs(J , (Uc~Max(X)) )ngs(V)=O.  Hence y C Z  because 
y~gs(V) and by hypothesis yCU. 

Case 4. x Ef(XkS) and y ~ (XkS). Then for all z ~ S, z `% x gs(X). Since S is 
closed in 3s by compactness and total order disconnectedness of 3s there exists 
U clopen increasing in 3s such that S _  U and gs(X)r U. Therefore the set 
gs(XkU) is clopen increasing in 3~,~S; it contains x but not y. 

For compactness of 3s observe that the function I defined by 

l(X) = ~ j (x) ;  if x E X  

/k(x); if x ~ Y 

is a continuous mapping of the topological sum 3s @ ~ onto 3s S. Hence 3s ,~ S 
is compact  because 3s @ ~ is compact and 3s ,7 S as a totally order disconnected 
space is Hausdorff. 

(ii) Take 3s = ~+ ,  S = Y + n  Y-  and observe that the map  I: Y ~ X , ~ S  
defined by 

~y; if y e  Y+ 
l(y)-- [gs(gr(y));  otherwis e 

and its inverse are morphisms in P-N. 

By dualities, immediately from Theorem 2.3 and Corollary 1.6 we have 

2.4 COROLLARY. Each Nelson algebra 9.I can be represented (up to isomor- 
phism) as an algebra (9N(3s I S , ~Ts), where 3s is a dual H-space of an algebra 9.1" 
and S is some closed subset of Max(X). 
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2.5 COROLLARY. For each Heyting algebra ~ with a dual H-space 3s the all 
(up to isomorphism) Nelson algebras 91 whose 91" algebras are isomorphic to 
fB there are among algebras r .~ S, gs), where S is closed Subset of  Max(X), I f  
fB is non-trivial then at least two of  them are non-isomorphic, namely 
CN(Y..~ O, go) and (9N(~/~ Max(X), gMa~(x)). 

3. Algebraic counterpart 

If 3E is a H-space of a Heyting algebra ~3 then every closed subset S of 
Max(X) is increasing in 3L Then the order  subspace ~ of 3; is up to 
isomorphism in P-H a H-space of the quotient algebra ~B/O, for some 
congruence relation O on ~ .  Moreover, since the order in ~ is discrete (x ~< y 
iff x = y) the congruence relation O is Boolean, that means ~3/O is a Boolean 
algebra. Hence, accordar~ce with results of the preceding section every Nelson 
algebra 9.1 is determined by its Heyting algebra 91" and some its Boolean 
congruence relation. In this section we presente a method of construction of 
Nelson algebras being a n  algebraic realization Of this observation. The precise 
formulation and the proof of the main result need some additional definitions 
and facts. 

Let 9.I be a Nelsor/algebra. Let us denote by a* the element ,-~ -q a, for 
aeA;  and the set of all elements of this form i.e. the set {a*; a e A }  by A*. Then 
almost immediately from definitions we have 

3.1 LEMMA. For all a, b ~ A there hold 
(i) a M b  / f f a * ~ b * ,  

(ii) a ~ b iff a* = b*, 
(iii) a* is the least element in the class [a] = with respectto the lattice ordering 

in 91, 
(iv) a * = 0  and 1 " = 1 ,  
(v) a * = l  i f f a = l ,  

(vi) a * * = a * ~ a ,  
(vii) (a* v b * ) * = ( a v b ) * = a *  vb* ,  

(viii) (a*/x b*)* = (a A b)* ~< a*/x b*, 
(ix) (a* ~ b*)* = (a ~ b)*, 
(x) (~a*)* = (Ta)* .  

3.2 LEMMA. For every a ~ A  the following are equivalent: 
(i) a s A * ,  

(ii) a = a*, 
(iii) 7 a = ~-, a, 
(iv) 7 a -< ,-~ a. 

Let us define in the set A* operations v *, A *, o *  and - *  by formulas 

a v * b = ,if (a v b)*, 

a ^ *  b = df  (a h b)*, 
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a ~ * b  = df (a --> b)* and 

- - * a  = d f ( - ] a ) * ,  for all a, b e A * .  

3.3 LEIVIMA. Algebra (A*, v * ,  ^ * ,  = ~ * , - * ,  0, 1) is isomorphic to the 
quotient algebra (A, v ,  ^ ,  ~ ,  7 ,  0, 1)/~; and hence it is a Heyting algebra. 
The lattice order in this algebra is a restriction of  the lattice order in 9.[ to the 
subset A*. 

PROOF. Using Lemma 3.1 one can easily verify that  the assignment 
[a ]~  ~ a*, for all a s  A, is well-defined and establishes the required isomor- 
phism. The second statement  holds since the lattice order and the quasi-order  
-< on 93[ restricted to the subset  A* coincide. 

REMARK. F r o m  now on the symbol  9/* previously used to denote  the 
quot ient  algebra (A, v ,  ^ ,  ~ ,  7 ,  0, 1)/~ will be reserved to denote  the 
algebra (A*, v *, ^ *, , * ,  0, 1). 

For  every Nelson algebra 9/.I the relation ~ is an equivalence relation on 
the set A (point (III) of the definition)..Then the relation ,~ on A defined by 
a ~ b iff ~ a  ~ ,~b is also equivalence relation. Let flu be a join of ~ and ~ in 
the lattice of  all equivalence relations on the set A. 

3.4 LEMMA. flu is a congruence relation on the Nelson algebra 9/.1 generated 
by the set {(--]a, ~a ) ;  a e A } .  

PROOF. Since ~ and ~ have the substi tut ion proper ty  with respect to the 
lattice operat ions,  flu also has this proper ty  with respect to them. The 
subti tut ion proper ty  of flu with respect to ,-~ immediately follows by defini- 
tions. FUrthermore,  if ari a b and cfl~ d, then ~(a--+ c) ~ a /x  ~ cfl~ b ^ ,,~d 

--~ (b ~ d). Hence  -,~ (a ~ c) flu "~ (b ~ d) which implies a ~ cfl~ b ~ d. Therefore 
flu is a congruence on 9/. To show flu is generated by {(-]a ,  ~a ) ;  a e A }  notice 
that  ari a ~ --] a, for all a e A, since a ~ ,,- -1 a; and hence ,-~ ari a -1 a. So, to finish 
the p roof  it sufficies to show that every congruence relation O with this 
proper ty  cointains fla. But  it is clear that  such O cointains ~ and N, so it 
must  cointain fla. 

3.5 LEMMA. For any a, b e A *  the following are equivalent: 
(i) a ^ b ~ O  and a v bfl~ l, 

(ii) a <<. ~ b  and ari a-~ b, 
(iii) [a] _- c~ [--~ b] ~ ~ O, 
(iv) c a r d ( [ a ] ,  n [,,~b]_*) = 1. 

PROOF. (i) ~ (ii). Assume (i). Then by a y bfl~ 1 we have a v ( b / ,  ,,~b) 
= ( a v b ) ^ ( a v  ,-~b) f l ~ a v  ~ b  and a v ( b A  - -~b )~a  because b ^  ~ b ~ 0 .  
Hence  a ~ a v (b A ,-~ b)fl~ a v ~ b. On  the other  hand, by a A b ~ 0 we have  
( a v  ~ b ) ^ ( b v  ~ b ) = ( a A b ) v  ~ b ~ - ~ b a n d ( a v . - ~ b ) ^ ( b v  ~ b ) ~ a v  ~b ,  
because b v ~ b ~ 1. Hence a v -,~ b ~ (a v ,-~ b) ^ (b v ~ b) ~ ,-~ b. Therefore 
aftra v ,,,bfl~ ,,~b, which "proves ari a ,,,b. Moreover ,  by a ^ b ~ 0, a-<( N b 
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and b-<  7 a .  But  since a, b ~ A * ,  7 a  = ,,~a and 7 b  = ,~b. So, a ~ ,-,b and 
b-<  ~ a ;  which means  a ~< ,-~b. 

( i i )~(i i i ) .  Recall tha t  ari a ,,~b holds iff there are elements c 1 . . . .  , cn-1 in 
A such that  

(*) a O o c  1 0 i c 2 . . . C n -  1 O n -  1 ' ~ b  

where O i = ~ for i even and Oi = ~ for i odd. The  p ro o f  is by induct ion with 
respect to the number  n of  relat ional  symbols  in the sequence (,). 

If n = 1, then a ~ ,-~ b; and hence ,-~ b e [a]  ~ c7 [,--~ b]_~. If n = 2, then 
a ~ c 1 ~ L.b; hence c l e [ a ] ,  n [~b]_*.  Assume the assert ion holds for the 
numbers  of relational, symbols  less than  n. 

Case 1. n is even. Let  n = 2k. Then  by the definition of  ~ we have 

b o o  "" c n - I  (91 "~ C n - 2 " ' "  "~ Ck O k  "~ Ck-1  .... ~" cl O . - 1  "~ a. 

This and (,)  imply 

0 ,~ C k A "~Ck tgkek+  1 A " ~ r  " . ' C n - 1  A ~"s ~ ) n - I  ,~.,b A ,,~a. 

Hence  

a ~ a v (c k ^ ~ C k ) O k a  v (Ck+l ^ " ~ C k - O . . . a  v ( c . -1  ^ " ~ c l ) O , - ~ a  
v (,,~b ^ ,,~a). 

B u t  8 , _  1 = ~ and ,-~ b ~ ,-~ b ^ (a v --~ a) = a v (,-~ b ^ ,-~ a), since by assump- 
t ion a ~< ~-,b. So we finally have 

a ,~ a v (c k ^ ,-~Ck) O k a v  (Ck+l ^ "~Ck-1 ) . . . a  v (%-1  ^ " ~ c l ) O n : l  "-,b. 

Obvious ly  the number  of relat ional  symbols  in this sequence is less than  n. 
Thus  by the assumpt ion  the assert ion holds. 

Case 2. n is odd. Add to the sequence (,)  the word  ~ ~ b and repead the 
a rgumenta t ion  as in Case 1. 

(iii) ~ (i). Assume there exists c such that  a ~ c ~ ,~b. Then  a ^ b ~ c 
^ ,-~c ~ O, since b ~  ~c .  The second condi t ion  of (i) also holds beca.use 

a v b f l ~ j , , ~ b v b ~ l .  
(iii) ~ (iv). It  follows by  the fact that  the meet  of equivalences ~ and ~ is 

a d iagonal  in A • A. 

N o w  we are ready to formula te  and p roo f  the main  result of  this section. 
F o r  any Heyt ing  algebra ~ and Boolean congruence  relat ion O on ~ define 

(comp. [25] and [6]) 

N o ( B )  = a { ( a ,  b )eB2;  a ^ b = 0 and a v bO1}  

and for all (a, b), (c, d ) e N o ( B  ) 

(a ,b)  v ( e , d )  = d f ( a v c ,  b ^ d )  

(a, b) ^ (e, d) =,if (a ^ c, b v d) 

(a, b) ~ (c, d) = af (a ~ e, a ^ d) 

7 (a, b) = a ( -  a, a) 

",, (a, b) =,if (b, a). 
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3.6 THEOREM. (i) For each Heyting algebra ~B and Boolean congruence 
relation 6) on ~B, the set N o (B) is closed under the above defined operations and 
the algebra N o ( ~  ) = (No(B), v ,  A, 4 ,  7 ,  "-~, (0, 1), (1, 0)) is a Nelson algebra 
such that No(~)* is isomorphic to ~B. 

(ii) For each Nelson algebra 92 there is a Boolean congruence relation 6) on 
92* such that 92 is isomorphic to No(92" ). 

PROOF. (i) When 6) = B 2, No(~  ) is a Nelson algebra (Theorem 1 p. 111 in 
[25]), So to prove No(~B ) is a Nelson algebra for all Boolean congruences 6) it 
sufficies to show that  for any elements of No(B ) results with respect to each 
operat ion satisfy the second condit ion of the definition o f N o ( B  ). Let (a, b) and 
(c, d) belong to No(B). Then by  a v b6)1 and c6)c we obtain a v b v c6)1. 
Analogously, a v c v d O 1 .  Hence by ( a v c )  v ( b ^ d ) = ( a v b v c ) ^ ( a v c  
v d), (a v c) v (b ^ d)6)1. Similarly (a ^ c) v (b v d)6)1. For  the operat ion 

notice that  c v d v -a6)1  since c v dO1 and - a 6 ) - a .  Furthermore,  
a v - a  v c6)1 because a v - a 0 1  and c6)c. Hence (a v - a  v c) v (c v d 
v - a ) - - ( - a  v c ) v  (a ^ d)6)1. On the other hand,  since 6) is Boolean, 
a ~ cO - a v c; which implies (a ~ c) v (a A d) 6) ( - a v c) v (a ^ d). So finally 
(a=~c) V (a/x d)6)l. The proofs for the rest operations are trivial. 

Therefore i t  remains to show No(~B)* is isomorphic to ~B. But it is easy to 
see that  the map  b ~-~ (b, - b )  is a required isomorphism from ~B onto No(~B)*. 

(ii) One can prove using Lemma 3.1 that  the restriction of any congruence 
relation on 9I to A* is a congruence on 92*. So setting 6) = fl~ IA* in virtue 
of Lemma 4.3 we obtain a Boolean congruence relation on 92*. Define a map 
h: A - ~ N o ( A *  ) by h(a)=(a* , (~a)*) ,  for all a~A.  h is well-defined be- 
cause a* ^ * (,-~ a)* = (a* ^ (,,~ a)*)* = (a ^ ,-~ a)* -- 0* = 0 and a* v * ( ~  a)* 
= (a* v (,-~a)*)* -- (a v ,-~a)*fl~l. If h(a) = h(b) then a* = b* and (-~a)* 
= ( ~  b)*. This means a ~ b and ,-~ a g ,-~ b; hence a = b. Fur thermore,  if (a, b) 
is in No(A* ) then a, b~A*,  ( a ^ b ) * = a ^ * b - - 0  and a v b = a * v b *  
= (a v b)* fl~ 1. So a ^ b ,~ 0 and a v bfl~ 1. Therefore by Lemma 3.5 there 
exists c E A such that  a ~ c ~ ,,~ b. Hence a = a* = c* and b = b* =(,-~ c)*, 
which proves (a, b ) =  h(c). Thus h is a bijection. The verification that  
h preserves operations as an easy exercise is left to the reader. 

3.7 COROLLARY. If 6) and ~P are Boolean congruences on the Heytin9 
algebra ~B, then 

(i) The Nelson algebra N o ( ~  ) is a subalgebra of  the algebra N~,(~B) if  and only 

(ii) I f  a Nelson algebra 92 is a subalgebra of  N~,(~) and N o ( ~  ) is a subalgebra 
of  92, then there exists a Boolean congruence �9 on ~B such that 92 = No(~B). 

PROOF. (i) The sufficiency is obvious. The necessity follows by the fact that  
for any congruence �9 on ~B, a~b iff(a =~ b) ^ (b =~ a) ~1, for all a, beB .  Indeed, 
if a6)b then ( a ~ b )  /x ( b ~ a ) 6 ) l ;  and hence ( ( a ~ b )  ^ (b=,..a), O)~No(B ) 
~_ N~,(B). So (a ~ b) ^ (b =~ a) ~1,  which means a~Pb. 
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(ii) By the assumption A* = No(B)* = Nv,(B)* = {(a, - a ) ;  a~B}.  And by 
3.6 (ii) there is a Boolean congruence ~o on ~[* such the map A~(a, b) 
~->((a, - a), (b, - b)) ~ N~o(A* ) is a Nelson algebra isomorphism, Thus as �9 it 
sufficies to take the relation on B defined by a~b iff (a, -a )~o(b ,  -b) .  

Obviously the set of all Boolean congruences of any Heyting algebra ~3, 
denote it by ConB(~), is a sublattice of the lattice Con0B) of all congruence on 
~B. ConBOB ) is a complete lattice with the least element being an intersection of 
all Boolean congruence and with the greatest one equal B 2. The Nelson algebra 
N~(~3) when O is the least element in Conn0B ) will be denoted by P7(~3), and 
when O is the greatest one by N(~). 

From Theorem 3.6 and Corollary 3.7 immediately follows 

3.8 COROLLARY. The set {No(~3); OsConn(~3)} is a principal filter 
generated by N(~3) in the lattice of  all subalgebras of  ?~(~3); this filter treatdd as 
a sublattice of  the lattice of  subalgebras of  N(~B) is isomorphic to the lattice 
COns(~3). 

By the above Corollary and Theorem 3.6 we also have 

3.9 COROLLARY. The number of  all non-isomorphic Nelson algebras 
whose 9)(* algebras are isomorphic to a given non-trivial Heyting algebra ~B is not 
less than 2 and not greater than card(Conn(~3)); all such algebras can be found as 
subalgebras o f  N(~B) containing ~(~3). 

REMARKS. 1. The bounds of the number of Nelson algebras from Corol- 
lary 3.9 are the best as possible, that is, they are reached for some Heyting 
algebras. 

2. Congruence of any Heyting algebra can be represented by filters in this 
algebra, and filters corresponding to Boolean congruence are precisely those 
containing all dense elements i.e., elements a such that - a  = 0 (see [21]). This 
allows to replace the notion of a Boolean congruence by the notion of a filter 
containing dense elements. Therefore the underlying set of the algebra ~ ( ~ )  
can be defined as the set of all pairs (a, b) satisfying a one of the equivalent 
conditions: (i) a ^ b = 0 and a v b is dense, (ii) (a =~ b) ^ (b =~ a) = 0 and (iii) 
- - a  ~ -  - -  - b .  

4. Relationships in the categorical presentation 

In this section we look into results of proceding sections from the 
categorical point of view. This approach leads us to state that the relationship 
between Nelson and Heyting algebras has a topological nature. There are two 
approaches to categorical topology, namely the constructive one via topologi- 
cal theories and the axiomatic one. We recall basic definitions of the first 
one which is due to O. Wyler [26], and for the second one we refer to 
[10], where the axioms of a topological functor and necessary results may be 
found. 

A topological theory on a category C is a functor T: C~ POS, where 
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POS is a category of partially ordered sets as objects and order preserving 
maps as morphisms, such that 

(i) every T(A) is a complete lattice, 
(ii) every T(f)  preservs arbitrary meets. 

Each topological theory T on C defines a top-category C T over C. Objects of 
C T are pairs (A, a), where A is an object of C and a ~ T(A); while morphisms 
from (A, a) to (B, b) are morphisms f :  A-~B in C such that a <~ T(f)(b). 

4.1 THEOREM. The category N of Nelson algebras is equivalent to 
the top-category HC~ over the category H of Heyting algebras; where 
COnB: H~ is a functor with a morphism assignment defined by 
ConB(k ! = k -  1: CoriB(~B2) ~ Conn(~) , for  all Heyting algebra homomorphisms 
k: ~ 1  "-+ ~ 2  . 

PROOF. Clearly, Cona is a topological theory on H. To prove N and HC~ 
are equivalent define functors F: N-~HC~ and E: Hc~ as follows: 
F(92) = (9.I*, fl~IA*), for any Nelson algebra 9.I and F(h)= h IA~, for any 
Nelson algebra homomorph ism h: 9.I 1 ~ 922; while E(23, O) = No(m), for any 
Heyting algebra ~3 and E(k) = (k, k), for any morphism k: (~31, O1)~(~32, 02) 
of Hc~ where (k, k)(a, b)= (k(a), k(b)) for all (a, b)eNo,(B1). Then by 
Theorem 3.6 the functor E is equivalence of categories with equivalence- 
-inverse F. 

Let us extend the definition of * onto homomorph ism as follows: for any 
Nelson algebra homomorphism h: ~[~ --. 9.12 h* is a restriction of h to the set 
A*. Then we get a well-defined faithful functor *: N ~ H .  By Theorem 4.1 we 
have 

4.2 COROLLARY. The faithful functor *: N ~ H  is topological. 

By general results each topological functor has both a left adjoint functor 
and a right adjoint one. In our situation adjoint functors to * can be described 
as extensions of the operators 57 and 57. If k: ~ 3 1 ~ 3  2 is a Heyting al- 
gebra homomorph i sm then 57(k): 57(~3~)-~57(~32) defined by 57(k)(a,b) 
= (k(a), k(b)), for all (a, b)~57(~1) and ?r 57(k)I?'~(B1): ?~(~31)-~jY(~32) 
are Nelson algebra hornomorphisms. Then we have well-defined functors 
N, N: H ~ N .  

4.3 PROPOSITION. The functor IV is left adjoint, and the functor 57 is right 
adjoint to the functor * 

PROOF. For  any Nelson algebra 9.I define p~: 92~57(~*) by p~(a) 
= (a*, (,~ a)*), for all a e A. Then one can verify that for any Heyting algebra 
~3 and any Nelson algebra homomorph ism h: 924  57(~3) the homomorph ism 
/~: 92*-o ~3 defined by/~(a) = prl(h(a)), for all a E A* (where pr 1 is a projection 
on the first component)  is unique such that 57(~)pga = h. Thtis 57 is a right 
adjoint to *, and the natural transformation p-= (Pg~)' is a unit of this 
adjunction. 
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To prove 57 is left adjoint to *, for any Nelson algebra 92 define 
s~t: 57(91")~ 91 to be a composit ion of the inclusion 57(9I*)q No(91"), where 
O = fla IA* and the isomorphism Ne(91*)~ 91 being inverse to the isomor- 
phism defined in the proof  of 3.6 (ii). So, for any (a, b)e 57(A*), s~(a, b) is the 
unique element in the set [-a]~. n [,,~b]~ (see Lemma 3.5). By standart  
calculation one can verify that  for any Heyting algebra ~B and any Nelson 
algebra homomorph i sm k: 57(.~B)~9.I the homomorph i sm ~: ~B ~ 91" defined 
by/~(b) = k(b, -b)*,  for all b e B is unique such that s~t 57(/~') = k. Therefore 57 is 
a left adjoint functor to *, and the natural transformation s = (s~) is a counit of 
this adjunction. 

Components  of the natural transformations p and s are embeddings of 
Nelson algebras. Moreover,  since the functor * is faithful and the functor 57 is 
full they are bimorphisms in the category N. Now we describe Nelson algebras 
91 such that  the components  p~ and s~t are isomorphisms. 

4.4 PROPOSITION. For any Nelson algebra 91 the following are equivalent: 
(i) p~ is an isomorphism 

(ii) There exists element a ~ A  such that q = Ha 
(iii) For any dual N-space (3~, g) of  the algebra 91, X + n  X -  = O 
( iv )  fl~ is a full congruence relation on 91. 

Moreover, f 91 is non-trivial then each of the above conditions is equivalent to 
(v) N(2) is embeddable into 91, where 2 denotes two-element Boolean algebra. 

PROOF. (i) ~ (ii). For  the required element take p~a(0, 0). 
(ii) =*- (iii). If a = --~ a then for any prime filter F in 92, a is in F iff a is not in 

g(F) = A \  ,,~F. Thus there is no prime filter F such that  F = g(F). This proves 
(iii) since any dual N-space of the algebra 91 is isomorphic in P-N to the 
N-space of prime filters of 91. 

(iii) =~ (iv). One can prove that  if 91 = (gN(3E, g) for some N-space (3~, g), then 
the relation O defined by U~gViff  U n X + n X  7 = V n X + n X  -,  for all 
clopen increasing U and Vin 3E, is a congruence relation on 91. Moreover, it is 
the least congruence such that  91/O IF- -Ix = ~x .  Therefore by Lenlma 3.4 
fl~ = O. Thus, if X + n  X - =  O, then fl~ must-be  full. 

(iv)=~(i). Because fl~t IA* is a full congruence on 92*.. 
Finally, (v) implies (ii) in general, and the inverse holds if 91 is non-trivial. 

4.5 PROPOSITION. For any Nelson algebra 91 the following are equivalent: 
(i) sa is an isomorphism 

(ii) 911~ (x ~ ~ x) ^ ( ~  x--, x) = x ^ ~ x 
(i ii) 91 I~ (x ~ ~ x) ^ ( ~ x  ~ x) -< x 
(iv) For any dual N-space (X, g) of  an algebra 91, X + n X - =  Max(X +) 

(Min(X-))  
(v) N(2) is not a homomorphic image of  any subalgebra of  92. 

PROOF. If 91 is trivial then the assertion is true. So, assume 91 is 
non-trivial. 
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(i) => (ii). Since the Nelson algebra N(~)  for any Heyting algebra ~ satisfies 
an equation from (ii). 

(ii) => (i). If 9.1 satisfies an equation from (ii) then Ne(9.I* ), for O = / ~  tA*, 
satisfies it, as well. This implies No(A* ) ~ N(A*). Hence s~ is an isomorphism. 

(ii) => (v). Suppose there exists subalgebra E of 9.I and homomorphism 
h from E onto 1V(2). Let a be an element such that h(a) = (0, 0). Then, since 
h(a) = ,,~h(a) we have 

(1, O) = ((0, O)~  (0, 0)) ^ ((0, O)~  (0, 0)) 

= (h(a)--. ,.~h(a)) ^ (..~h(a)--. h(a)) 

= h((a ~ ..~ a) A (..~ a ~ a)) ", 

= h(a ^ ,,~ a) 

= h(a) A ,.~h(a) 

= (0, 0); which is impossible. 

(v)=~(iv). By Proposition 4.4 X + n X - # 0 .  In general X + n X -  
__. Max(X+). Suppose there exists x ~ M a x ( X  +) such that x # g(x). Then the 
relation O in (~(X) defined by U O V  iff U n { x ,  g(x)} = V n { x ,  g(x)} is 
a congruence on (_gN(3E, g) such that the quotient algebra is isomorphic to ~7(2). 
But it is in contradition with assumption, because (gN(3E, g) is isomorphic to 9.1. 

(iv) =~ (iii) Assume (iv). Since 9.I is isomorphic to (gN(~, g) it sufficies to show 
CN(~, g) satisfies the inequality from (iii). Let U be clopen increasing in ~. Then 

( v -+  ~ u) ~ (~ u-+ u) = ( x \ $ ( u  ~ o (v ) \  ~ v)) n ( x \ $ ( ~  u ~ g(~ u) \u))  

= x\(+(u ~g(v)\~u)~ +(~u ~g(~~\u)) 
= x \ ( $ ( u  ~ o ( u ) ) ~  ~ ( x \ ( v  ~ o(u)))). 

At first, note X + is contained in $(U n g(U)) u ~(X\ (U u g(U))). Indeed, if 
x e X  + then x ~< x o, for some x o maximal in ~+, So by (iv) x-%< x o = g(Xo) 

O(x). Hence, if x o e U  then x~.L(Ung(U)) ,  and if xoCU then x e + ( X \ ( U  
u g(U))); which proves the required inclusion. 

Therefore (U-+ ~ U) n (,.~ U ~ U) c~ X + = D ~ U n X +. However this 
means (U -~ .,~ U) n ( ~  U ~ U) < U (-see the proof of 1.3). 

(iii) =~ (ii). It is proved in 1-22] (comp. Lemma 4.3 p. 270). 

4.6 LEMMA. Let f :  Y. ~ ~ be a morphism in P-H, and let S and R be closed 
subsets of  Max(X) and Max(Y), respectively. Then the function fS.R: X / S  
--. y.z R defined by 

~f(x); if x E X" 
fs,R(x) = ~.gR(f(gs(X))); othervise 

is a morphism in P .N  if and only if f(S)~_ R. 

PROOF. By straightforward verification. 
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Let us define /~O and /~M setting / " O ( E ) = E / ~ O  and /~M(E) 
=E ,~Max(X) ,  for any H-space E; and / ~ O ( f ) = f o , o  and i ' m ( f )  
=fMax~X),M,x(r), for any morphism f :  E ~ ~: in P-H. By the above lemma./" O 
and ,~ M are well-defined functors from the category P-H to the category P-N. 
We also have the functor +: P-N ~ P-H which has appeared in natural way in 
Section 1. By Corollary 4.2, Propositions 4.3, 4.4 and 4.5 t he  following holds 

4.7 THEOREM. (i) In each of  the diagrams 

N 
N 

P - N  < 

OH 

-t- 

> H  H f t <  

~ - H  P - N  < > P-I:t 
+ 

both the inner and outer squares are (up to natural isomorphism) commutative. 
They remain commutative after rotating one or both columns. 

(ii) The functor + is topological with /~ 0 and /~ M as.left and right adjoint, 
respectively. 

A Nelson algebra is called symmetric if it has an element a. such that 
a = ,-~a (such element, if it exists, is unique). Let us denote by Nsym a full 
subcategory of N whose objects are symmetric Nelson algebras, and by N o the 
equational subcategory of N defined by the equation (x ~ ,-~ x) A (~  x ~ x) 
= x ^ --~x. Moreover, let P-N o and P-N u denote full subcategories of P-N 
whose objects satisfy X + c~ X -  = O and X + c~ X -  = Max(X+), respectively. 
Then by Propositions 4.3, 4.4 and 4.5 the following holds 

4.8 THEOREM. Each of  diagrams 

N O < 
N 

p - N  M < 

-,, H 

OH] PH 

P - H  

Nsym < 

P-N~ < 

N o ll 
P-H 

+ 

with the left column being the suitable restrictions o f  the functors ~N and (~N is 
(up to natural isomorphism) commutative. In both diagrams any  row settles an 
equivalence and any column a dual equivalence of  categories. 
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REMARKS. l. The functor's ~r, ~r (denoted by N, N +, respectively) and the 
functor P which is naturally isomorphic to our functor * have been also 
considered by Goranko in [7]. In that paper some special properties of these 
functors have been stated (for details see [7]). Using these properties the 
author, among others proved that up to isomorphism of algebras the class 
{]~T(~); ~ H } .  (algebras of the form N(~B) are called special N-lattices) 
coincides with the class Nsym (Theorem 15 p. 297), and the class {N(~3); ~ ~ H} 
(algebras of the form N (~) are called normal N-lattices) coincides with the class 
of all Nelson algebra~ which satisfy the equation 7 ((x ~ ~ x) A (,-~ x -~ x)) = 1 
(Theorem 37 p..303). From the first of these results it follows the equivalence of 
the conditions (i), (ii) and (v) in our Proposition 4.4, and from the second one 
that each condition in our Proposit ion 4.5 is equivalent to each condition of 
Lemma 30 in [7]. 

2. The functor N (denoted by N) and the functor H, in fact defined as the 
�9 �9 ~ N  + (gH composlhon N ~ P - N  ~ P - H  ~ H (hence naturally isomorphic to our 

functor *) appear also in the paper by Cignoli [4]�9 The author~ by th.e 
restriction of the more general adjoint situation exists between the category 
K l  and the category of bounded distributive lattices (Theorem 1.7 p. 269), has 
obtained that the functor H is the left adjoint to the functor N; and hence 
also that the categories Nsy~ (in [4], objects of this category are termed as 
centered Nelson algebras) and H are naturally equivalent (Theorem 3.14 
p. 278). 
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