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Does the mitochondrial D N A  play a role in the pathogenesis 
of diabetes? 
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Diabetes has, without doubt, a genetic background. 
However, despite extensive research worldwide we have 
until now been unable to define the genetic lesions and 
the mode of inheritance of the different forms of the dis- 
ease. In Type 1 (insulin-dependent) diabetes mellitus the 
high discordance for the disease in genetically identical 
twins indicates that the nuclear genetic component per se 
is not sufficient for full penetrance. Furthermore, the 
rapidly rising incidence of Type i diabetes [1] cannot be 
explained on a mendelian genetic basis, as the enrich- 
ment of the gene pool with a putative "diabetes gene", 
for example, by increased survival of young diabetic pa- 
tients, would require several hundred years for dominant 
and several thousand years for recessive inheritance [2]. 
The increasing incidence of the disease is therefore most 
likely due to changes in environmental exposures. Fur- 
thermore, the incidence of Type i diabetes is quite dif- 
ferent among various populations. Definite reasons for 
these extraordinary geographic differences remain un- 
known. Type 2 (non-insulin dependent) diabetes exhibits 
several features of a degenerative disorder and can thus 
possibly be attributed to a variety of degenerative pro- 
cesses associated with defects in oxidative phosphoryla- 
tion. 

In the following I will discuss the possibility that envi- 
ronmental factors could preferentially affect the second 
human genome, the mitochondrial DNA, thus leading to 
metabolic, immunologic, genetic and phylogenetic alter- 
ations. 

The mitochondrial  D N A  

Eukaryotic cells usually contain one nuclear genome and 
up to several thousand identical copies of the mitochon- 
drial DNA (mtDNA). The sequence of the human mt 
genome, 16,569 base pairs (bp) in length, was published 
in 1981 [3]. Unlike the nuclear DNA, which is linear, the 
double-stranded mtDNA is circular and has a highly 
compacted structure consisting almost entirely of coding 
regions. It is almost exclusively maternally inherited, uses 

its own genetic code and codes for 13 subunits of the 
respiratory chain complexes, 22 transfer RNAs (tRNA) 
and 2 ribosomal RNAs (rRNA). Mitochondria have their 
own transcription and translation apparatus. Besides 
their nuclear genetic diversity, populations differ in 
mtDNA types ("alleles, clusters"). During the last de- 
cade restriction analysis and sequencing revealed an 
extreme polymorphism of point and length mutations 
within the mt genome [4]. Obviously, non-random 
branching patterns occurred during the 300,000 years of 
evolution resulting in different mtDNA lineages [5, 6], of 
which certain types seem relatively specific for one popu- 
lation. 

The m t D N A  is vulnerable 

Although the mtDNA encodes highly conserved proteins 
it exhibits a very high mutation rate for the following rea- 
sons: The mt genome evolves 5-10 times faster than 
single copy nuclear DNA genes [7]. Its half-life is be- 
tween 6-10 days in rat heart, liver and kidney compared 
to the nuclear DNA, which has a half-life of about 
100 days in rat liver [7]. The mutability may also reflect 
the relatively high insertion error-rate of the mitochon- 
drial DNA polymerase- 7 of about 1/7000 bases, resulting 
in 2-3 mismatched nucleotides per round of replication 
of the 16.6 kilobases (kb) mt genome [8]. Furthermore, 
the mtDNA is more exposed to chemical attack than the 
nuclear DNA because it is not protected by histones. 
Mitochondria reduce about 90 % of the cell's oxygen; in 
man this equals about 2 x 102o molecules 02 per g of 
tissue per day [9]. Highly reactive oxygen species such as 
superoxide radicals, hydrogen peroxide and hydroxyl 
radicals are formed during aerobic metabolism along the 
mitochondrial respiratory chain. Even under normal con- 
ditions this oxidative stress leads to extensive damage 
especially of the mtDNA [10]. Since the mammalian 
mtDNA is highly organized and consists almost ex- 
clusively of coding regions, it is vulnerable. Thus, muta- 
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tions could have functional significance. The lack of suf- 
ficient repair mechanisms of the mt genome confirms this 
view. 

were also reported in brain sections from Alzheimer's pa- 
tients [13] (Fig. 1). 

Alterations of  m t D N A  are associated with disease 

During the last four years an increasing number  of publi- 
cations have shown that certain deletions, insertions or 
point mutations of the mtDNA are associated with dis- 
tinct diseases (Fig. 1). Large deletions or insertions are 
found in muscle m tDNA from patients with chronic pro- 
gressive external ophthalmoplegia (CPEO) or the 
Kearns-Sayre syndrome (KSS) [11], in the brain of pa- 
tients with Parkinson's disease, in dilatative and hyper- 
trophic cardiomyopathy, in haemopoetic  cells from pa- 
tients with Pearson's marrow-pancreas syndrome and as a 
general result of ageing in tissues of apparently healthy el- 
derly people [12]. Several point mutations were described 
in large pedigrees of the maternally inherited Leber's 
hereditary opticus neuropathy (LHON),  in myoclonus 
epilepsy with ragged red fibres (MERRF) ,  in myoence- 
phalopathy with lactic acidosis and stroke-like episodes 
(MELAS),  and in other clinically undefined disorders 
[12]. Most recently distinct point mutations of the mtD N A  

The action of  diabetogenic agents 

The action of various diabetogenic agents such as inter- 
leukin 113 (IL-113), interferon % tumour necrosis factor cq 
alloxan and streptozotocin (STZ) has been a subject of 
many excellent reviews during the last years. It is not the 
objective of this paper to repeat  all the results contributed 
in this field. Briefly, there are at least two lines of opera- 
ting mechanisms: i) the formation of free radicals such as 
nitric oxide (NO')  and the oxygen hydroxyl radical ( 'OH);  
ii) alkylation of D N A  and proteins (Fig. 2). Formation of 
NO" occurs via L-arginine-dependent NO-synthase [14]. 
The mechanism, induced by IL-t[3, also operates in Beta 
cells, as recently demonstrated by electron paramagnetic 
resonance spectroscopy [15]. Prolonged exposure to IL- 
113 of islets leads to a decrease of insulin secretion and an 
impairment of mitochondrial oxidation [16]. The mecha- 
nism is the liberation of iron from the iron-sulphur clusters 
within the catalytically active centres of the complexes I 
and II of the respiratory chain and the Krebs-cycle 
enzyme aconitase and the formation of iron-nitrosyl corn- 
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Fig.1. Major disease mutations within the human mitochondrial 
(mt)DNA. Black regions indicate genes on the heavy (outer circle) 
and the light (inner circle) strand; transfer RNA (tRNA) genes are 
marked by sofid lines with the respective amino acid abbreviations. 
OH, OL, PH, PL are the respective origins of replication and the promo- 
ters for the heavy and light strands. Disease mutation base substitu- 
tions are shown outside the double stranded mt genome with the re- 

spective nucleotide positions. Regions removed by deletions are in- 
dicated by internal solid arcs. The 4977 bp and the 7436 bp deletions 
are the most common, however several other deletions have been de- 
scribed [12]; the 10.4 kilobase (kb) deletion is unique as it is found 
only in the diabetic family described in [47]. CIPO, chronic intestinal 
pseudoobstruction with myopathy and ophthalmoplegia; NARP, 
neurogenic muscle weakness, ataxia and retinitis pigmentosa 
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Fig.2. Proposed mechanisms for the pathogenesis of diabetes 

plexes [15, 17]. NO'-generating compounds also inhibit 
DNA replication and stimulate ADP-ribosyltransferase 
[14]. NO', which is usually converted to N02- and NO3- 
can undergo another pathway [18]. The simultaneous 
generation of nitric oxide and superoxide produces hy- 
droxyl radicals via peroxynitrite. This could explain the 
partially protective effect of radical scavengers against IL- 
l[3 with respect to damage of Beta cells. STZ and alloxan 
generate H202 in isolated islets and lead to DNA fragmen- 
tation [19, 20]. Since superoxide and H202 do not per se 
undergo any chemical reactions with DNA the mecha- 
nism could either be the formation of "OH via reaction 
with metal ions or an acute rise in intracellular free Ca 2 +, 
which might fragment DNA by activating CaZ+-depen - 
dent endonucleases [21]. The hydroxyl radical "OH is 
extremely reactive attacking all components of the DNA. 
It can abstract hydrogen atoms from deoxyribose leading 
to direct release of purine and pyrimidine bases (abasic 
sites) or after incubation in alkaline solutions (alkali labile 
sites); it can add on to guanine and adenine, thus produc- 
ing radical adducts with different fates [21]. The action of 
alloxan, but not STZ, can be prevented by addition of 
scavenger enzymes such as superoxide dismutase, cata- 
lase and glutathione reductase [22]. Inhibitors of the 
poly(ADP-ribose) synthetase, such as nicotinamide, 
benzamide etc., however, can prevent the development of 
diabetes induced by various diabetogenic agents in animal 
models [23] as well in humans [24]. These observations 
have led Okamoto [25] to hypothesise that all dia- 
betogenic agents cause DNA strand breaks in islets result- 
ing in the activation of the poly(ADP-ribose) synthetase 
mechanism, followed by NAD depletion and ultimately 
by death of Beta cells. Because STZ causes permanent 

defects in Beta cells independent of the NAD concentra- 
tion, this hypothesis was recently questioned [26, 27]. 

Evidence the mtDNA of Beta cells is preferentially 
attacked by diabetogenic agents in vitro and in vivo 

Beta cells are known to contain very small amounts of 
scavenger enzymes, especially of mitochondrial Mn- 
superoxide dismutase [22, 28]. The naked, i.e. non-his- 
tone-protected mtDNA resembles a mutation rate, which 
is 10-20 fold higher than in the nuclear genome. For 
example, among the various oxidation products caused by 
radical attack, 8-hydroxy-2-deoxyguanosine is formed in 
mtDNA at 16 times the level of nuclear DNA after incu- 
bation with the prooxidant alloxan [10]. This compound 
might induce a G. A mispair during replication leading to 
a G. C to T- A transformation mutation. The highly reac- 
tive hydroxyl radical "OH is also able to alter mitochon- 
drial membrane lipids, a process which can be prevented 
by a-tocopherol, but not by scavenger enzymes [29]. STZ 
suppresses the mRNA of mtDNA encoded cytochrome b, 
but has no effect on the transcript of the nuclear encoded 
glyceraldehyde-3-P-dehydrogenase in adult rat islets [30]. 
In islets isolated from STZ-treated neonatal rats it selec- 
tively depresses the mtDNA as compared to nuclear 
DNA, and consequently lowers mitochondrial gene ex- 
pression [31]. 

Besides its ability to generate H202 and consequently 
hydroxyl radicals, STZ acts as an alkylating nitrosourea, 
which alkylates DNA at two main positions, the N 7- and 
the O6-position of guanine [26]. In the rat insulinoma cell 
line (RINr 38) STZ leads to the formation of alkali labile 
sites within the mtDNA [32]. The formation of methy- 
lated N7-guanine, which comprises about 70 % of the alky- 
lated adducts after exposure to STZ is about four-fold 
higher in the mtDNA compared to the nuclear DNA. This 
is consistent with former findings which have demon- 
strated, that the mtDNA is a preferential target of alkylat- 
ing agents [33]. In the RINr 38 cell line repair of the N 7- 
methylated sites seems to occur by an excision repair 
mechanism [32]. The efficiency of mitochondria in remov- 
ing O6-alkylated sites varies between different cell types. 
It is high in parenchymal tissues such as the liver and 
lowest in "APUD" cells such as brain cells [34]. Sequenc- 
ing of an approximately 200 bp segment surrounding the 
replication origin of the mtDNA of STZ-treated islets did 
not, however, lead to sequencial differences when com- 
pared to the published mtDNA [31]. From this study it 
seems likely that STZ induces an all-or-nothing injury of 
the mtDNA. However, since islets exposed to STZ in vitro 
can survive for several weeks with basal oxygen consump- 
tion but reduced insulin release, STZ may also lead to par- 
tial mtDNA damage under certain conditions [27, 35]. 

Are mutated mitochondrial gene products expressed 
and can they act as autoantigens? 

In KSS the so-called "common deletion", a 4,977 bp dele- 
tion flanked by a 13 bp repeat (Fig. 1), produces a frame 
shift in the mt genome with three new triplets and a mito- 
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chondrial stop codon [36, 37]. This artificial fusion gene is 
transcribed, but the translation product could not be 
found [36]. Most recently, however, it was shown [38] that 
the introduction of disease-related mtDNA deletions into 
HeLa cells results in transcription and translation of the 
artificial hybrid genes, in dysfunction of the respectively 
affected respiratory chain complexes and ultimately in 
cell death. In mice and rats it was demonstrated that mito- 
chondrially encoded peptides can serve as MHC-re- 
stricted antigens [39]. Mta, a maternally inherited murine 
minor histocompatibility antigen, is homologous to the 
mtDNA encoded NDl-subunit of complex I of the respi- 
ratory chain (NADH-ubiquinone oxidoreductase) and 
consists of four alleles differing in the amino acid compo- 
sition at position 6 of the NDl-subunit [39]. Oligopeptides 
with different amino acids at this position can serve as 
antigens for the development of highly specific T-cell 
clones, when inserted into the plasma membrane of target 
cells. Since islets isolated from in vivo STZ-treated mice 
can induce a specific T-cell response in culture [40], STZ- 
induced alterations on the surface of surviving Beta cells 
are likely. Although nothing is known about transport 
mechanisms of peptides from the mitochondrion to the 
endoplasmic reticulum and to the plasma membrane, the 
mouse and rat Mta-system prove that mitochondrially en- 
coded self-peptides are normally displayed on the surface 
of cells [41]. Alterations of mtDNA encoded peptides 
could therefore contribute to the diversity of antigens. 
Keeping in mind the high mutability of the mt genome and 
the insufficient repair and scavenger mechanisms - espe- 
cially in neuroendocrine cells - it seems reasonable that 
the mtDNA of Beta cells is one, if not the preferential tar- 
get of diabetogenic noxae. A mutational event, once it oc- 
curred in a single mtDNA molecule, could provide an ad- 
vantage for the mutated genome, for example by an 
enhanced replication of a shorter, i.e. deleted genome. If 
so, the number of mutated mtDNA molecules will in- 
crease. This may change the display of the mitochon- 
drially encoded self-determinants on the surface of the 
Beta cells, resulting in a break of T-cell tolerance and in 
autoreactivity (Fig. 2). 

Clinical evidence that the mtDNA may be involved in 
the pathogenesis of diabetes 

Patients with CPEO or KSS carrying large deletions of the 
mtDNA have an incidence rate for diabetes which seems 
several times higher than in the general population. In a 
group of 21 patients presented by Quade et al. [42], three 
had Type i diabetes, two Type 2 diabetes and three im- 
paired glucose tolerance. Association of mitochondrial 
encephalomyopathies with diabetes has already been 
mentioned by others [43, 44]. Of the 27 patients with both 
diseases, mitochondrial myopathy and diabetes, reported 
in the literature so far, at least 50 % are insulin-dependent. 
The earlier the onset of the mitochondrial myopathy the 
more frequent is its association with Type 1 diabetes [44]. 
Testing for islet cell antibodies was not performed, how- 
ever, in any of the reported cases. Although no detailed 
studies have been published, single cases reported in the 
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literature make it seem probable that also MELAS [45] 
and other mitochondrial cytopathies [46] are associated 
with diabetes. Since the mutation of the mt genome seems 
thus far to be the only genetic defect in these forms of dis- 
orders, the association of both diseases, mitochondrial 
myopathy and diabetes, makes it likely that alterations of 
the mtDNA of Beta cells to some degree contribute to the 
development of diabetes. Most recently [47] first direct 
evidence was given that alterations of the mtDNA can in 
fact cause diabetes. A systemic 10.4 kb mtDNA deletion 
was found in a family with maternally inherited insulin- 
dependent diabetes (Fig. 1). Maternal transmission was 
also reported in a large family with Type 2 diabetes car- 
rying a rare polymorphic mtDNA restriction site [48] 
(Fig. 1). 

Intergenomic interactions 

Replication and expression of the mtDNA depends on 
nuclear encoded proteins. Vice versa, the nucleus is a 
beneficiary of the energy currency within mitochondria 
[49]. Thus, alterations of the more vulnerable mtDNA 
might have dominant influences on the cross-talk between 
both genomes. For example, blocking the expression of 
mitochondrial gene products by ethidium bromide results 
in a failure for correct assembly and insertion into the 
inner mitochondrial membrane of most nuclear encoded 
respiratory chain subunits [50]. As noted recently by 
Avise [49], the exclusive maternal inheritance of the 
mtDNA can have negative influence on male fitness, a 
phenomenon demonstrated in a number of examples in 
the literature. With respect to Type i diabetes, several ex- 
perimental observations could be related to this puzzling 
fact. Administration of STZ to rats and mice and the in- 
take of the poison Vakor [51, 52] in man causes diabetes. 
mainly in males. Parental consumption of smoked/cured 
mutton, which is rich in N-nitroso compounds, leads to 
diabetes preferentially in the following male generation 
[53]. There are also several examples for protective mater- 
nal influence on penetrance and severity of a nuclear gene 
defect, for instance, in Huntington's disease and in 
myotonic dystrophy [54]. Also in Type 1 diabetes the 
prevalence is lower in children from affected mothers 
than fathers [55]. Since all children derive their mtDNA 
from their mothers, co-transmission of maternal genes 
might represent a relatively protective factors. In general. 
the penetrance of a disease allele in a genetically pro- 
grammed individual depends on its interaction with al- 
leles of additional unlinked loci, on environmental agents 
and random factors [56]. If environmental noxae alter 
mtDNA this can become not only a catastrophic event for 
an individual, but could also initiate changes in population 
genetics on a relatively rapidly evolving level. 

The mitochondrial oxidative phosphorylation as a 
matrix for ageing and degenerative disorders 

Wallace has recently summarized [57] the basic concepts 
in the oxidative phosphorylation (OXPHOS) paradigm 
for degenerative diseases. Highly oxidative tissues such as 
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brain, skeletal muscle, heart, kidney, liver and pancreatic 
islets depend on the capacity of the mitochondrial ATP 
generating system for their respectively specialized func- 
tions. Experimental inhibition of the respiratory chain 
and of oxidative phosphorylation results in an impairment 
of special tissue functions such as insulin production and 
secretion in Beta cells. The concept supposes that individ- 
uals normally start at the beginning of their lives with a 
high OXPHOS capacity. Due to defect accumulation of 
the m t D N A  or of the n D N A  or both, OXPHOS capacity 
declines with age. When the ATP production falls below a 
cell-specific energetic threshold the cell will be unable to 
function [38]. The maternally inherited m t D N A  poly- 
morphisms influence OXPHOS capacity, for example the 
maximal oxygen uptake and the response to endurance 
training [58]. Most of the random mutational events which 
underly the population specific m t D N A  lineages seem to 
be neutral. However, this only means that they do not alter 
the functionality of OXPHOS capacity to a degree which 
reaches disease quality. In addition, even phenotypically 
silent mutations could slightly alter the functionality of 
the energy producing apparatus of the mitochondrion. 
The result could be either lower or higher susceptibility 
for a disease in an otherwise programmed individual, in 
affected families or even in populations. 

mtDNA phylogenetics and disease 

Encephalomyopathies such as MELAS,  M E R R F  and 
L H O N  are characterized at the m t D N A  level by distinct 
mutations, while some degenerative disorders such as Par- 
kinson's disease, dilatative and hypertrophic cardio- 
myopathies are associated with deletions of the mt 
genome. Recently it has become evident that, in most 
cases, distinct mutations are not the only cause of a respec- 
tive mt disease. By sequencing the mt genome of patients 
with Parkinson's disease, cardiomyopathy, M E R R F  or 
MELAS,  Ozawa et al. [59] were able to demonstrate that 
these patients carry similar m t D N A  clusters. From these 
clusters a phylogenetic tree was constructed, indicating 
that the patients, although suffering from phenotypically 
quite different disorders, belong to the same mt gene fam- 
ily. It also turned out that not a particular mutation, but 
the type and total number of mutations are indispensible 
factors for the disease. Similar results were published re- 
cently for the maternally inherited L H O N  demonstrating 
that the accumulation of synergistically interacting muta- 
tions of the mt genome, i. e. the degree of polymorphism, 
is responsible for the manifestation of a mitochondrial dis- 
ease [601. 

Since respective studies are lacking, one can only 
speculate whether population specific m t D N A  lineages 
represent different possible targets for an environmental 
attack, thus possibly providing an explanation for the 
extraordinary geographic differences of the incidence 
rates of Type i diabetes. 
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