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Summary The insulin storage granule of the pancre- 
atic beta cell is assembled within the trans Golgi net- 
work from around 50 or so gene products many of 
which are synthesized coordinately with the major 
component,  proinsulin. An important contribution 
to our understanding of the regulation of this process 
has come from studies of the post-translational pro- 
cessing of proinsulin and of other proteins which are 
stored in the granule, particularly the processing en- 

zymes themselves. The present review focusses on re- 
cent insights into the molecular nature of the proces- 
sing machinery, and the granule Ca2+-dependent sub- 
tilisin-related endopeptidases which catalyse the ini- 
tial rate-limiting step in the enzymic conversion of 
proinsulin. [Diabetologia (1994) 37 [Suppl 2]: $48- 
$56] 
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The cellular biology of the regulated pathway of 
secretion 

Formation of the insulin secretory granule is conven- 
tionally perceived as a singular vesiculation step oc- 
curring at the trans Golgi network (TGN) by which 
a condensed secretory product is enveloped in a sim- 
ple phospholipid bilayer [1-4] Figure 1. Subsequent 
maturation is characterized by loss of the partial 
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Fig. 1. Secretory granule maturation and 
pathways of membrane traffic in the beta 
cell. The formation of dense core secre- 
tory granules in the cell (upper pathway) 
is preceded by condensation of the secre- 
tory product in the TGN and is often as- 
sociated with membranes with a partial 
clathrin coat. Proteins not sorted at this 
stage appear to be secreted constitutively 
in smaller vesicles with electronlucent 
cores (lower pathway). The initial sorting 
event may be followed by granule-granule 
fusion and vesicular budding from the 
maturing granule. Such vesicles may serve 
as a mechanism of retrieval (A), disposal 
(B) of granule membrane components 
and contribute to a secondary constitutive 
release process (C) distinct from the ma- 
jor regulated exocytotic pathway (D). 
Membrane proteins associated with either 
regulated or constitutive exocytosis are 
presumably recycled (E) to the TGN or 
degraded 

clathrin coat of the granule membrane and further 
physical changes in the granule core which lead to 
the characteristic morphological features of the ma- 
ture secretory granule [5]. The proteolytic conver- 
sion of proinsulin to insulin occurs during the matura- 
tion process and is initiated by changes in the ionic 
composition of the newly-formed "immature" or 
"nascent" granule [6, 7]. However it is evident that 
there are other changes occurring in the maturation 
process particularly at the level of the granule mem- 
brane [8, 9]. The existence of these events has been 
postulated on the basis of biochemical studies which 
show that the stoichiometry of insulin to C-peptide, 
which are released constitutively soon after granule 
formation, deviates from the theoretical 1:1 ratio ex- 
pected. There is as yet no morphological correlate of 
this process, probably because the intermediate com- 
partments involved are transitory and not easily dis- 
tinguishable morphologically from immature gran- 
ules and other vesicular structures (Fig. 1). The types 
of maturation processes envisaged include a homo- 
typic fusion of nascent granules, heterotypic fusion 
between nascent granules and other vesicular ele- 
ments and retrieval of membrane and possibly gran- 
ule contents through a clathrin-mediated process. 
Such processes could function as secondary sorting 
events, serve the purpose of salvaging granule mem- 
brane-associated components for re-use in the Golgi, 
or provide a means of redirecting granule constitu- 
ents to lysosomes after they have fulfilled their func- 
tion in the granule. 

The initial sorting of the major granule lumenal 
proteins into the regulated pathway coincides with 
the formation of aggregates of secretory products in 
the TGN [3, 4]. Mutational analysis and transfection 
experiments indicate that the amino acid sequence of 

a sorted molecule is an important determinant of its 
entry into the regulated pathway [10, 11] but there is 
little clear evidence of a consensus sequence or sort- 
ing domain in proinsulin [12-15]. The mechanism of 
sorting is generally conceived as either an association 
of the sorted protein with a membrane receptor [16, 
17] or spontaneous self-association of the secreted 
product in response to changes in the TGN environ- 
ment, in particular pH and Ca 2+ concentration [18]. 
Neither model of sorting, however, provides an ade- 
quate account of how proteins other than the quanti- 
tatively major constituents are packaged in the gran- 
ule. It is clear that at least six other soluble proteins 
are co-packaged with insulin in the mature granule 
[19, 20]. Although most of these proteins are subject 
to translational control in the same way as proinsulin 
[21, 22], it seems unlikely that their inclusion into the 
granule is simply the consequence of their presence 
in the TGN at the moment  when proinsulin conden- 
ses. Indeed there is clear evidence that at least two 
proteins are actively sorted into the regulated path- 
way [23, 24]. It might be that the granule proteins 
have common physical properties which permit them 
to co-aggregate or interact with the TGN membrane. 
The fact that many have relatively acidic isoelectric 
points which correspond to the pH of the granule 
compartment and that they bind Ca ions may be im- 
portant in this regard. A number of granule proteins 
also interact with membranes at acidic pH values, a 
phenomenon which might serve to promote sorting 
and which could be reversed after sorting by proteo- 
lytic cleavage of the molecules [24, 25]. 

The movements of proteins which are intrinsic to 
the granule membrane proteins in the cell with a 
regulated secretory pathway are very poorly under- 
stood. Among these there are proteins which are rela- 
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Table 1. Typical proproteins and the recognition sequence for convertases processing 
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Protein Sequence Cellular site Consequence 

Proinsulin TPKTRR.EA Storage granules Bioactivity 
Proalbumin RGVFRR.DA Golgi Chelation activity 
Nerve growth factor THRSKR.SS Golgi Bioactivity 
yon Willebrand factor SHRSKR.SL Golgi Bioactivity 
Renin SQPMKR.ST Storage granules Enzyme activity 
HIV glycoprotein 160 VQREKR.AV Golgi Fusigenicity 
Anthrax toxin PA NSRKKR.ST Plasma membrane Internalization 

Examples are given of a number of proteins which are pro- 
cessed in post Golgi compartments involved in the secretion 
or internalisation of proteins. Cleavage occurs in every case 
on the carboxy-terminal side of an Arg residue which is 
preceded by another basic amino acid. A basic amino acid at 

position P4 or P6 appears to be an additional requirement for 
substrates processed in the constitutive but not the regulated 
secretory pathway. Precursor forms in every case show low bio- 
logical activity 

Table 2. The principal mammalian subtilisin-related proprotein convertases 

Enzyme Tissue Location Specificity pH M 2+ 

Furin Broad trans Golgi R X (K/R) R 6-9 Ca 
Type 1 (PC1) Neuroendocrine Dense core granule RR (KR) 4-6 Ca 
Type 2 (PC2) Neuroendocrine Dense core granule RR (KR) 4-6 Ca 
PC4 Testis ? ? ? ? 
PACE 4 Broad ? Golgi RR ? Ca 
PC6/6A Gastrointestinal ? ? ? ? 

The wide tissue distribution, and Golgi localisation and neutral 
pH optimum of enzymes like furin indicate a ubiquitous func- 
tion in the processing of membrane receptors and constitutive- 
ly-secreted proteins in all cells. Other members by contrast 

show very specific tissue and cellular localisation and unique 
catalytic properties which are more consistent with specia- 
lised function and regulatory properties 

tively organelle- and tissue specific, e.g. dopamine 
hydroxylase in the chromaffin cell [26, 27], those 
which are specific to secretory tissues but occur in a 
variety of organelles e.g. SCAMP proteins [28], and 
those which are widely distributed in post-Golgi com- 
partments of all cells such as the vacuolar proton 
translocator [29]. Two potential membrane  markers 
have been identified in the insulin granule [30, 31] 
but at present little is known about  their targetting 
to granule membranes  or their movements  during 
the process of granule formation, maturation and 
exocytosis. Their synthesis, like proinsulin, responds 
to stimulation of the cell with glucose, a hallmark of 
proteins of the granule lumen. This finding raises 
questions concerning the concept that the majority 
of granule membrane  constituents recycle back to 
the T G N  after exocytosis to be incorporated into nas- 
cent vesicles. 

Post-translational processing at sites marked by basic 
amino acids 

Post-translational proteolysis at sites marked by basic 
amino acids is ancient in evolutionary terms and ap- 
pears to serve a similar physiological role in all eu- 
karyotes in the activation of biological function of 
proteins (Tables i and 2). Other  molecular, cellular 
and physiological functions are also affected by pro- 
cessing and roles can be envisaged also in folding, in- 

tracellular movement,  sorting, and regulation of the 
solubility of the product. 

Polypeptide neurotransmitters and hormones 
which are secreted via the regulated secretory path- 
way in neuroendocrine tissues are generally pro- 
cessed at pairs of basic amino acids, typically Lys 
Arg and Arg Arg and much less frequently at Lys 
Lys or Arg Lys sites. Plasma membrane receptor mo- 
lecules, viral glycoproteins and proteins which are se- 
creted constitutively are usually processed at sites 
marked by a more complex array of basic amino 
acids, typically a dibasic site with a further basic ami- 
no acid in the P4, 5 or 6 position (Table 2). The reac- 
tion sequence has been deduced from structural anal- 
ysis of the products for a number of small peptides 
and is well illustrated by the pathway of proinsulin 
to insulin conversion (Fig. 2) which involves the ac- 
tion of two separate endopeptidases in conjunction 
with a carboxypeptidase H (E) (CPH) which re- 
moves the basic amino acids exposed at the C-termi- 
ni after endoproteolytic cleavage. The endopeptida- 
ses of the insulin granule appear directed towards 
either Arg Arg or Lys Arg in the substrate although 
it should be pointed out that additional basic amino 
acids appear in the P4 position in the case of the B-C 
and C-A junction of a number of species. This ar- 
rangement is similar to the processing sites of consti- 
tutively secreted proteins and it seems likely that the 
presence of a basic amino acid in the P4 position iski- 
netically favourable though not essential in this case. 
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Fig. 2. Reaction pathway for proinsulin conversion. The initial 
endoproteolytic cleavage of proinsulin at the sites marked by 
paired basic amino acids is followed by the rapid removal of the 
basic amino acids exposed at the new carboxy terminil by car- 
boxypeptidase H. A second round of endoproteolytic cleavage 
and carboxypeptidase H cleavage produces the mature products 
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C-peptide ~ A-chain ~ B-chain 

Fig. 3. A model of proinsulin structure (reproduced with per- 
mission from Snell and Smythe (1975) J Biol Chem 
250 : 6291). The Arg31 Arg32 and Lys64 Arg65 processing sites 
are in close proximity (4-8A) and on the surface of the 
molecule. Their location on the face opposing those involved 
in dimer (left-hand side) and hexamer (right hand side) forma- 
tion indicates that they would be accessible to the solvent and 
thus proteases even after hexamerisation of the prohormone 

An  additional feature of the recognition of proin- 
sulin by the endopeptidases is the secondary struc- 
ture around the proinsulin processing sites. Proinsu- 
lin residues 19-31 and 53-66 are predicted to form 
/3-turns, and residues 46-54 and 69-76 to form ome- 
ga loops. NMR data point to a close conformational 
relationship of the A and B chains in proinsulin to 
that in insulin and although the three dimensional 
structure of proinsulin is not documented a number 
of useful predictions can be made based upon mole- 
cular modelling (Fig. 3). Within this model it is nota- 
ble that the two processing sites lie in close proximity 
and thus cleavage at one site may produce conforma- 
tional changes around the other. 

Enzymological studies of proinsulin endopeptidases 

Two soluble, Ca2+-dependent, acidic endopeptidase 
activities capable of correctly processing human 
proinsulin in vitro to give insulin [32] have been iden- 

tiffed. The activity designated type i cleaves exclu- 
sively on the C-terminal side of the Arg31 Arg32 se- 
quence of proinsulin whereas the type 2 activity 
cleaves predominantly on the C-terminal side of the 
Lys64 Arg65 sequence (Fig. 2). The two activities dif- 
fer in their sensitivity to Ca 2+, with the type 1 half- 
maximally activated at around 2.5 mmol/1 and the 
type 2 at 100 ~mol/1. The optimum pH for both 
type 1 and type 2 endopeptidase activity is 5.5 At  
pH 7.4 both enzymes show little activity and at pH 
values of 8.0 or above both enzymes are irreversibly 
inactivated. The pH profile and Ca 2+ responses of 
the two enzymes are thus consistent with their being 
active in the secretory granule and has led to the hy- 
pothesis that the ionic environment of the various 
compartments of the secretory pathway may be a 
key factor in regulating processing. 

Studies with active site-directed tripeptide sulpho- 
nium salt inhibitors have shown that the precise se- 
quence at the dibasic site is an important determi- 
nant of the specificity of these two endopeptidase ac- 
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Fig.4. Structural relationships between the subtilisin-related 
family of proprotein processing enzymes. Each family mem- 
ber shows the presence of a conserved catalytic domain incor- 
porating the amino acids of the catalytic triad (D, H and S) 
and oxy-anion hole (N except for PC2). This is preceded by a 
pro-domain and signal peptide of variant structure and fol- 
lowed by a weakly conserved P-domain that is important for 
catalytic activity. The P-domain in mammalian members con- 
tains a fibronectin-binding concensus sequence (RGD). Other 
features showing varying degrees on conservation include the 
presence of Cys-rich domain [], Thr/Ser-rich domain [~, trans- 
membrane anchor l ,  and a C-terminal amphipathic helical se- 
quence [], and sites of N-linked glycosylation �9 

tivities [33]. Studies with mutant  proinsulins in vitro 
and in vivo have confirmed the specificity of the two 
activities for dibasic sequences and have shown that  
the structural context of the cleavage site is crucial 
in determining whether  or not it is subject to proteo- 
lysis [34]. That  the conformat ion of the pept ide back- 
bone around the dibasic sites affects their susceptibil- 
ity to proteolytic attack is further borne out by the 
finding that  the type 2 activity preferentially cleaves 
the intermediate  des-31, 32-proinsulin over intact 
proinsulin whereas the type 1 activity recognises the 
des-64, 65-proinsulin intermediate  and proinsulin to 
a similar extent [35]. It has been argued [35] that  this 
effectively results in sequential  processing of proinsu- 
lin via the des-31, 32-proinsulin intermediate,  how- 
ever further kinetic data and cell biological studies 
are needed  to support  this conclusion. 
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Molecular cloning of the proprotein endopeptidases 

The key to the molecular cloning of the enzymes re- 
sponsible for the endoproteolytic  conversion of 
proinsulin came from genetic studies in conjugation- 
deficient yeast strains. These resulted in the cloning 
of a defective serine protease KEX2 [36] and were 
followed by the serendipitous discovery of a mamma-  
lian homologue,  furin [37], and the subsequent  sys- 
tematic search for other family members  (Table 2; 
Fig. 4). The list of subtilisin-related protease family 
members  is expanding and now includes at least nine 
distinct eukaryote genes together  with a number  of 
splice variants. The properties of the currently-docu- 
men ted  members  is outl ined below. 

Furin is a Golgi-localised, Ca2+-dependent (K1/2 = 
200 ~tmol/1), neutral  (pH op t imum 6.0-8.5) serine en- 
doprotease of broad tissue distribution [38]. Cell 
transfection studies have shown that it recognises 
the consensus mot i f  Arg X X Arg and is capable of 
processing a variety of proproteins including pro-von 
Willebrand factor [39], mouse  pro-fl-nerve growth 
factor [40], complement  pro-C3 and proalbumin 
[41]. Its processing-site specificity and proprote in  
substrate specificity indicate a role in the processing 
of proprote in  precursors as they pass through the 
trans-Golgi, rather than in the conversion of prohor- 
mones  and other peptides secreted by the regulated 
pathway. Nevertheless it is capable of converting the 
human  proinsulin molecule at the B-chain/C-peptide 
(Lys Thr Arg Arg) but  not the C-peptide/A-chain 
junct ion (Leu Gln Lys Arg) in vitro (Bailyes, Tho- 
mas and Hutton;  personal  communication).  This rai- 
ses the question of whether  the actual levels of furin 
activity in the pancreatic beta cell are sufficient to 
contribute to insulin processing and whether  its loca- 
lisation overlaps with the compar tment  involved in 
sorting of the prohormone.  

PC1 and PC2 [42, 43], unlike furin, appear  to be 
soluble proteins. There is no apparent  t ransmem- 
brane domain and the C-terminal domain is similar 
to that  of furin and KEX2 only in as much as it is 
rich in acidic amino acids. However,  both sequences 
contain a potential  C-terminal amphipathic  helical 
segment  similar to the putative membrane  anchor of 
carboxypeptidase H [44]. The subtilisin-related do- 
mains of PC1 and PC2 exhibit 45-65 % amino acid 
identity with other members  of the subtilisin-related 
family and the Asp-His-Ser catalytic triad is placed 
in an equivalent position. 

PC1 and PC2 m R N A s  are associated with neu- 
roendocr ine  tissues suggesting that they are likely 
candidates for endopeptidases associated with the 
regulated pathway of secretion. In situ hybridisation 
studies have demonst ra ted  a distinct localisation of 
the PC1 and PC2 transcripts in pituitary and brain 
and it is clear in several endocrine tissues that  the re- 
lative proport ions of the enzymes vary. Such varia- 
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Fig. 5. The dynamics of granule biogenesis deduced from stu- 
dies of the biosynthesis and post-translational modification of 
insulin granule proteins. Individual secretory granule proteins 
show marked differences in the response of their rates of bio- 
_syr~thesis in islets to stimulation by glucose 16.7 mmol/1. Some 
(PC-I and CP-H) exit the endoplasmic reticulum more rapid- 
ly than insulin and are incorporated into nascent granules with- 
in 20 rain, whereas others (PC2) do not reach this destination 
until some 60 rain later. A consequence of these variations is 
that the protein composition of nascent granules is likely to 
vary according to the intensity and duration of the glycaemic 
stimulus 

tion is thought to account for region-specific differen- 
ces of post-translational processing of proproteins 
which contain multiple bioactive sequences within 
their structure. 

Cell transfection studies have shown that PC1 and 
PC2 process proproteins such as POMC, proinsulin 
and prorenin at dibasic amino acid sites [45, 46]. The 
prorenin cleavage site mutant Arg Arg is cleaved 
but not the cleavage site mutants, Lys Lys, Arg Lys, 
Gln Arg, Arg Gln or Lys Arg Pro [47]. PC3 is also 
capable of cleaving mutant mouse prorenins in 
GH4C 1 cells at the monobasic Arg X X Arg site. The 
enzymes expressed in Xenopus oocytes show a de- 
pendence on millimolar concentrations of Ca 2+ ions 
and acidic pH (optimum 5.5) [48, 49]. 

PC2 immunoreactivity is localised to insulin secre- 
tory granules and coincides with type 2 activity on 
ion-exchange chromatography of insulinoma secre- 
tory granule proteins [50]. The identity of PC2 with 
the type 2 activity is further supported by the ability 
of PC2 antisera to immunoprecipitate type 2 (but 
not type 1) activity from extracts of insulinoma secre- 
tory granules. Cell transfection studies show that PC2 
selectively cleaves rat proinsulin I at the C-peptide/ 
A-chain (Lys Arg) junction while PC1 generates ma- 
ture insulin but cleaves preferentially at the B-chain/ 
C-peptide (Arg Arg) junction [51]. This is consistent 
with them being the type 2 and type 1 proinsulin en- 
dopeptidases, respectively. The ability of PC1/type 1 
to cleave at the C-peptide/A-chain junction in this 
study may be due to the presence of an Arg residue 
at the P4 position relative to the cleavage site (Arg 
Gln Lys Arg) in the rat proinsulin sequence com- 
pared to the human cleavage site (Leu Gln Lys Arg) 
(see article by Halban in this issue). 
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PACE 4 [e~atures an extended signal peptide, a re- 
latively large C-terminal cysteine rich region and no 
obvious transmembrane domain or C-terminal am- 
phipathic a-helix [~2], The m R N A  of PACE 4 has a 
widespread tissue distribution with the highest levels 
found in liver. 

PC4 is also soluble but restricted to the germ cells 
of the testis where it is developmentally regulated 
[53, 54]. The nature of its native substrate or cleav- 
age specificity remains elusive. It is not able to 
cleave prorenin at its Lys Arg processing site or a pro- 
renin mutant with an Arg X Lys Arg sequence in cell 
transfection studies. 

PC5 demonstrates a ubiquitous pattern of tissue 
distribution similar to that of furin m R N A  [55] with 
the highest levels being found in the adrenal cortex 
and gut with lower levels in many other peripheral 
tissues and tissues of the central nervous system. 
PC5 is an alternatively spliced form of PC6. PC6 it- 
self is most abundant in the intestine but also present 
in many other tissues and cell lines. Its cleavage pro- 
file is similar to that of PC3 and it is conceivable that 
it plays a role in the processing of propeptides in en- 
terochromaffin cells with substrates such as entero- 
glucagon. 

Biosynthesis and post-translational processing of the 
proinsulin convertases 

The structures of PC1 and PC2, indeed all the eu- 
karyote subtilisin members, contain sites upstream 
of the conserved catalytic domain which bear a con- 
sensus motif for furin processing and are clearly 
cleaved at these sites during the process of intracellu- 
lar maturation in Xenopus oocytes [48], bovine adre- 
nal [56], anglerfish islets [57] and rat insulinoma tis- 
sue [48]. 

PC2 is synthesised in isolated rat islets of Langer- 
hans initially as 75kDa precursor which undergoes 
limited proteolytic processing to a 65kDa form by re- 
moval of an 84 amino acid prosequence at a site 
marked by the sequence Arg Lys Lys Arg 1~ [58, 59]. 
Other minor forms which are cleaved at an upstream 
Lys Arg Arg Arg 81 site and a downstream Arg Gly 
Tyr Arg 111 have also been found. The processing of 
proPC2 in rat islets (tla = 140 rain) (Fig. 5) is signifi- 
cantly slower than that of proinsulin (tl/2 = 40 min). 
By contrast PC1 is rapidly converted to an 80kDa 
protein by removal of the 83 amino acid prosegment 
presumably at a site marked by the sequence Arg 
Ser Lys Arg 11~ [43]. PC1 also undergoes C-terminal 
processing [60] with slower kinetics, possibly at one 
of several pairs of basic residues that occur in the mo- 
lecule. The truncated 66kDa protein produced is the 
major form found in the islets of Langerhans. Both 
PC1 and PC2 are co-released with insulin in re- 
sponse to glucose and there is little evidence for s e -  
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cretion via the constitutive pathway thus suggesting 
that they are efficiently sorted into the regulated 
pathway of secretion. The initial processing of PC2 
and PC3 which probably occurs in the endoplasmic 
reticulum is possibly autocatalytic and perhaps intra- 
molecular (see [61]). The formation of the C-termi- 
nally truncated forms may, in contrast, occur after 
sorting to the secretory granule. At  the present time 
it is not known if the pro-forms, intermediate forms 
and truncated forms of the enzymes have intrinsic ac- 
tivity, and if so, whether they differ in kinetic proper- 
ties. 

Insulin m R N A  translation undergoes rapid and 
marked changes in the beta cell in response to ambi- 
ent glucose concentrations (Fig. 5). Chromogranin A 
and PC1 biosynthesis respond in a similar manner  
whereas PC2 and carboxypeptidase H usually 
change no more than a few fold [21, 62]. As a conse- 
quence the ratio of PC2 to proinsulin in nascent gran- 
ules would be expected to vary with stimulus whereas 
PC1 to insulin would remain constant. The trend to 
relat ive depletion of PC2 would be further exacerba- 
ted by the fact that delivery of PC2 to the site of gran- 
ule assembly in the TGN is delayed relative to that of 
proinsulin and PC1. This might result in a net de- 
crease in the rate of conversion of proinsulin to insu- 
lin since PC2 will determine the flux through des 64, 
65 proinsulin (Fig. 2), and a relative increase in the 
concentration of des 31, 32 proinsulin at steady state 
during the conversion process. This in turn would be 
reflected in the composition of the insulin peptides 
secreted, since the newly-formed granules in which 
most of the processing occurs are competent for exo- 
cytosis. Such phenomena might account for the rela- 
tive rise of proinsulin and des 31, 32 proinsulin with 
impaired glucose tolerance in humans (see article by 
Hales in this issue). There is a danger here however 
of oversimplification since there are many other fac- 
tors which control the rate of processing and release 
of intermediates, including the relative size of the ma- 
ture and nascent granule pool, the total islet tissue 
mass, the functional islet mass and the proportion of 
pancreatic beta cell in the population which are bio- 
synthetically active (see article by Pipeleers in this is- 
sue). 
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