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AB ST R ACT. This paper is an investigation of certain mathematical properties of  the vacuum 

polarization function 2(s). We show that 2;(s) is a Herglotz function, has no complex zeroes, 

and belongs to the class of  functions called 'typically real'. In addition, we obtain upper bounds 

on the higher derivatives of  E(s), at s = 0, given that we know the value of the first derivative at 

that point. 

The vacuum polarization function E(s) may be written [1] 

:~(s):S ) d~ p(w) 
w ( w  - s )  ' ( 1 )  

4# 2 

where p is a positive weight function. (In the one photon approximation, p is related to the cross 

section for electron-positron going to hadrons [1, 2, 3] .) In this paper, we obtain a number of  

mathematical  properties of  the vacuum polarization function which follow from the integral 

representation given in Equation (1). 

In more detail, we make the following assumptions: (i) The real function p(s) exists for 

(s:s ~> 4 g2 } and is non-negative on that interval. (ii) The integral, as defined by Equation (1), 

exists. 

Let s = x + iy and define h(w) as, 

p(w) 
h(w) =- (2) 

7rw 

x and y are, respectively, the real and imaginary parts of  the variable s and h(w) is a non-negative 

function of w for w >~ 4~ 2 . With this change in notation, Equation (1) may be written, 

z ( x  + iy) = 
? [  x ( w x ) - y 2  ] 

4~,~ (w - x) 2 + y2 h(w) dw 

+0, 
wh(w) dw (3) 

4 . ,  ( w - x  2 ) + y 2 "  
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An immediate consequence of Equation (3) is the following result: 

Im N(s) > 0 if Im s > 0, 

lm 2(s) < 0 if Im s < 0. 

(4) 

Thus, it is easy to see that 2(s) is a Herglotz function [4, 5]. This class of functions admits a 

general well-known integral representation, along with well-defined asymptotic upper and lower 

bounds [4, 5]. 

Note that since Im N(s) v~ 0 for Ims 4: 0, then N(s) can have no complex zeroes. If 2(s) has 

any zeroes, other than the one at s = 0, then they must be real. 

It is easy to see that Y~(s) is real only for real s. This result follows from Equations (3) and (4). 

The function f ( z ) ,  analytic in Izl< 1, is called 'typically real' if it is real in the open interval 

-1 < z < 1 and if one of the following two sets of inequalities holds [6] : 

Im f ( z )  > 0 if Im z > 0, 

Im f ( z )  < 0 if Im z < 0, 

(sa) 

Imf(z)  > 0 i f I m z  < 0 ,  

Im f(z) < 0 i f l m z > 0 .  

(5b) 

Typically real functionsf(z) obey the following theorem: Let f ( z )  be analytic in Izl< 1 and have 

the representation, 

f ( z ) = Z  +a2 Z2 +.. .+an zn + .... (6) 

The coefficients an satisfy the following inequalities [7, 8], 

lan I <~ n. (7) 

The inequality in Equation (8) may be replaced by the equality only for the functions, 

z 

f ( z ) -  (1 •  2 " (8) 

Since the above theorem is probably well-known to only a small group of specialists and since 

the proof is rather straightforward, we give it in full below. We follow closely the proof in Refer- 

ence 8. 

Let  z = re i~ , where r is fixed (0 < r < 1) and 0 < 0 < 7r. Using the results given in Equations 

(5a) and (6), we obtain, 
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f(z)= :C artz " :  
r / : l  

a n r  n e i n  O , 

n = l  
(9) 

where al = 1. Now define p(O) as, 

p(O) - sin 0 lm f ( z )  = an/asin 0 sin (nO), 
/ / /=1 

0 < 0  <rr.  
(lO) 

The coefficients an are real, consequently, p(O) is real in the interval 0 < 0 < 7r. In addition, since 

sin 0 v ~ 0 for 0 < 0 < lr and p(O) is continuous, then p(O) does not vanish in this interval and is of  

constant sign throughout the interval. In addition, it easily follows from Equation (10) that 

p(O) = p( -O) .  This shows that either p(O) >~ 0 or p(O) <~ 0 for all values of  0. Using the addition 

theorem of the cosine function, we obtain, 

1 ~ an rn [cos(n - 1)0 - cos(n + 1)01 = r p(O) = ~ ~ [1 +a2rcosO] 
;' /=1 

_ a n - ~  r n + r_2 n=2~ ( an+ 1 t" 2 ) cosn0. 

(11) 

It follows easily that, 

2r r  

f p(O) dO =r 
0 

(12) 

and, therefore, p(O) ~ 0 for 0 ~< 0 < 2rr. Using the fact that (1 -+ cos nO) ~> 0, we obtain 

( ) an _ 1 
0 < ~ - - -  f p(O)[l +_cosnO] dO=2_+ an+ 1 r 2 r n, 

7rE 0 
(13) 

O r  

art -- 1 r n <~ "~ (14) 
8 n + l  /,2 ~"  

Since this relation must hold for all r between 0 and 1, we may take the limit as r ~ 1 and obtain, 

lan+ 1 - a n _ 11~< 2. (15) 

For n = 2, we obtain la2 I~< 2. Since al = 1 and the difference of  two terms whose subscripts 

differ by two is not larger than two, it follows that, 

lanl<~n, n = 2 , 3  . . . . .  
Q.E.D. 

(16) 
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We may now use the results given by Equations (7) and (16) to obtain upper bounds on the 

higher derivatives of E(s) at s = 0. From Equation (1), it follows that E(s) is analytic in Isl < 4g 2 ; 

consequently, E(s) may be expanded in a Taylor series about s = 0, 

1 ~ (2 )  s 2 1 s,(n ) sn ~(S)-- ~ ( 1 ) S +  ~ .  "1-.,. + -~ .  T -I- .... (17) 

where 

d n E(O) 
~ ( n ) -  n = 1,2, 3 . . . . .  (18) 

d s n , 

Let us transform to the variable z = s/(4/12) and construct the new function f(z) defined in 

Izl < 1, as, 

E(4/.zZz) + (  4/a2] [ E(2)l 
f ( z ) -  4p ~ E(a) =z \ ~ - .  ] [ ~ 5 3 - J  z= + .... 

(4~u2)n- 1 I 2](n) ] 

n! ~(i5-  z" + . . . .  

(19) 

Since Y. is 'typically real', so is the function f(z). Comparing Equations (6), (7) and (19), we 

obtain the following upper bounds on the higher derivatives of E(s) at s = 0, in terms of 2 (1), 

the first derivative, 

r,(n) I n(n!) (20) 
~< (4p2)n-1 �9 

The result given in Equation (20) is new and quite interesting, since, within the context of 

analytic S-matrix theory, Cauchy integrals of the type given by Equation (1) often occur. The 

bounds of Equation (20) may be useful in placing constraints on models of pion-pion interactions 

and electromagnetic form factors [9]. 

In summary, we have obtained a number of mathematical properties of the vacuum polarization 

function. These properties were obtained from the integral representation given in Equation (1). 

It is important to keep in mind that the obtained results are an essential consequence of the fact 

that h(w), as given in Equation (2), is a non-negative function of w for w ~> 4t~ 2 . 
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