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0. Introduction

We continue here the investigation initiated in [11] concerning the solvability
of the Cauchy problem and the existence of initial traces for non-negative weak
solutions of the non-linear evolution equation

u,— div([Dul"?Du) =0 in S;=R"X(0,T), 0<T<oo, N=1.(0.1)
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We study here the case 1 << p << 2, consider only non-negative solutions and
investigate the solvability of the Cauchy problem when (0.1) is associated with an
initial datum

U € LiooRY),  up = 0. 0.2)

It turns out that the Cauchy problem is solvable whenever (0.2) holds, regard-
less of the growth of x — ug(x) as |x|—>oo. The weak solutions are shown to
be unique whenever the initial datum is taken in the sense of L, (RY). We also
prove that every non-negative weak solution of (0.1) possesses, as initial trace,
a o-finite Borel measure u = 0.

The case 1 < p < 2 is noticeably different from the case p > 2, both in
terms of results and techniques. The main difference stems from the fact that,
unlike solutions in the case p > 2, solutions of (0.1) are not, in general, locally
bounded.

Specifically, if

2
u €Ly (RY), r=1 and p>——o, 0.3)

then the solution u of (0.1)—(0.2) belongs to Li,(S7), Y t> 0, whereas if either

one of (0.3) is violated, then u< L,.(S;) (see TheoremIII.6.1 and § IIL.7).

Moreover if u,4 Li,(RY), VY r> 1, then the solution u(?)4 Lj,.(RY), Vr> 1.
This in turn implies the lack of an estimate of the type

| Du|€ LE(ST). (0.4)

We have spoken of solutions of (0.1). However, if (0.4) fails, one of the main
problems of the theory is to make precise what it is meant by solution.

Questions of solvability of the Cauchy problem and existence of initial traces
for the porous medium equation

w=0M", m>1, u=0

have been studied by ARONSON & CAFFARELLI [2], BENILAN, CRANDALL & PIERRE
[6] and DauLBERG & KEnNIG [9]. Results for the case 0<<m <1 are due to
HerRERO & PIERRE [17] and PIERRE [26].

The porous medium equation can be interpreted in a rather obvious way in
the sense of distributions. In fact since the principal part is linear in ™, one can
use a variety of “linear” techniques [6, 9, 26, 27).

In our case, as a starting point, a precise meaning has to be given to Du to
make sense out of (0.1).

When p > 2 this is resolved by CL%(Sy)-type estimates [12, 14]. If p is ““close
" to 17 (see (0.3)), such estimates fail and a different approach has to be used.

We have given a new formulation of non-negative weak solutions. Such solu-
tions are “regular” in the sense that the truncations

Vk>0, w =minf{y k}, 0.5)
satisfy

7
l Duk l € ngc(ST): 5‘; Uy € LIIOC(ST) . (06)
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Then (0.1) can be interpreted weakly against testing functions that vanish whenever
“u is large”. A suitable choice of such testing functions is

(p —w,.=max{(p —u);0}, ¢ CO(Sy).

The notion is introduced and discussed in Chapter I. We prove that our
solutions coincide with the distributional ones if (0.4) holds (Lemma I.1.2) and that
the truncations u;, V k > 0, are distributional super-solutions of (0.1) (Lemma
1.1.3).

We derive a spectrum of properties of such “local” weak solutions, regardless
of their initial datum. For example, they satisfy (Lemma 1.2.2)

—1—a

P2

lDu p

€LiSr), VYae(0,p—1). 0.7

Since estimates of the type of (0.7) “deteriorate” as « \, 0, we investigate the
p—1

behaviour of IDuTl (i.e., «=0) onthesets [u> k], Vk>0 (Lemmal.2.3
and Corollaries 1.2.4, 1.2.5).
A relevant fact is the estimate

VOi<s<t<oo, VO<r<R<oco, VYeg>0,
t
| Du|?~! dx dr -
s {lxl<r}

t— s E e Ly Zip-1)
g?(l—[—m) » f f (t'—'T)p (u—I—E)p dx dr

s [x|<R
(0.8)

where y is a constant depending only upon N and p (Lemma 1.4.1).
We remark that in [11], when p > 2, an estimate of the local integral-norm
of |Du|?~" was the crucial fact to derive a local L™ estimate for the solutions.
In the present case, it is precisely (0.8) that permits us to prove a local L!
estimate for u and a weak global Harnack-type inequality. Specifically,

Estimate in L**(R™) (Lemma ITL.3.1)

VOi<s<t<oo, Vo>0, x=Np-—2)+p,

sup [ ux,mde=<y {( [ ulx,s)dx + (t — S)Z_L;}. 0.9)

ve(s,) {Ix1<e} Ix1 < 2¢} o
Harnack-type estimate (Theorem 1.4.1)
V0<S<f<00, VQ>07 ”:N(P_z)‘l‘ﬂp

f— s 1_
sup u(x, ) dx < { u(x, t) dx ( )2_"}. 0.10
TE(s,t){!xlie} () 7 {!xl<f2@} (o ) o+ o 0.10

In (0.9)+0.10), y is a constant depending only upon N and p.
The gradient estimate (0.8) and the Harnack inequality (0.10) permit us to
develop a theory of (unique) initial traces (see Theorem 1.4.1), whereas the
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LI°(R™) estimate (0.9) permits us to establish existence of solutions to the Cauchy
problem (0.1)-(0.2) (see Chapter III).

The solutions are constructed by using an increasing sequence {u ,} of approx-
imations to the initial datum u,. This, the comparison principle, and (0.9) yield
the L},.(Sy) convergence of the approximating solutions {u,}. A one-sided bound
on u, (and hence on u) is crucial to this process.

Further, the non-negativity of u, is essential in proving some sort of compact-
ness in the z-variable for {u,}, via the BENILAN & CRANDALL [5] regularizing effect.
This result requires in an essential way the positivity of u, and the homogeneous
structure of the equation in (0.1).

We prove uniqueness of weak solutions if they take their initial datum in the
sense of L, (RM) (see Chapter II). Namely if « and v solve (0.1) weakly and if
t—w—0) ()0 in LL(RY) as ¢\, 0, then the difference w=u — v sa-
tisfies Vg>1, V>0, V>0,

N(p—2)+pq)_£1._

[ i =yl ), ©.11)
{Ix|<e}

where ¥ depends only upon N, p, g (see § I1.4). The theorem follows by letting
o —oc after we choose ¢ so large that N(p — 2) + pg > 0.

The proof of (0.11) is rather delicate (i.e., to prove that we L{,(S7)), since
the class of available testing functions is rather small (indeed (¢ — ), are, uni-
formly in ¢, only in Li,(Sy)).

2N

If in (0.3), r=1 and p> N1 all the arguments remain valid if
o € LL(RY) with no restriction of sign. The strong L},.(S7) convergence of the
approximating solutions {u,} is realized by the fact that (see [13])

u, € C&(Sy), uniformly in n, for some « € (0, 1).

In fact, 4, could be a o-finite Borel measure u, since the estimates discussed re-
main valid. In particular, if > 0 the approximating solutions are equi-bounded
(Theorem II1.6.1) and hence equi-Holder continuous ([13]).

It would be of interest to study the question of existence of solutions to the
Cauchy problem if the initial datum is a measure y and if

p=2N/(N 4 1).

In view of the results of PIERRE [26] and BarAs & PIERRE [3, 4], it seems that
some sort of capacitary restriction has to be placed on u (see also BREZIS & FRIED-
MAN [8]). The methods of [3, 4, 26] do not apply to this situation since the operator
is not linear in the principal part. We intend to discuss the matter by a different
approach in a forthcoming paper.

If u,€L'(RY), r=1, existence and uniqueness of the Cauchy problem is
known through the semigroup theory [5, 15]. However, if p = 2N/(N -+ 1), it
is not clear to us what is the a.e. S; meaning of Du.

For further comments on the connection between our solution and the semi-
group solution we refer to § IIL.1.
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Finally, we notice that all the results of this note hold true for equations of the
type (see Lions [21])

N
U, — 21 (]uXilP'z ux,-)xi =0 in ST'
iz
Besides their intrinsic mathematical interest, equations of the type of (0.1) have

a connection to physical problems (see MARTINSON & Paviov [22, 23], ANTONSEV
[1], LADYZHENSKAYA [20] and, for the stationary case, PAYNE & PHILIPPIN [25]).

Chapter I. Weak Solutions and Initial Traces

I.1. Non-negative local weak solutions. Let 0 << T << oo, Sy =R"x(0,7),
k>0 and VfcLL(Sy) set '

f oiff<k
Je= { k iff=k.
Define
X10d(ST) == Lisc(0, Ts WiZR™) N Lis(Sy), (LLD)

X1odS1) =1{p € XiodSp) [ 37> 0:9 € LEO, T; W) (x| < P} (L1.2)
Consider the parabolic equation
u, — div(|Dul? > Du) =0 in Sy
(1.1.3)
u=0, 1<p<2,

A measurable function u:Sy->R¥ is a local weak solution of (I.1.3) in Sy if

ue C(0, T: LL(R™)), (1.1.4)
[Dug|€ LSy,  Yk> 0, (1.1.5)
% u € Lio(Sy), Vk> 0, (1.1.6)

Y o< C(Sy) €.1.7)

[[{uly — )y + |Du|"~? Du D(p — u),} dx dr = 0.
ST :
By density arguments this implies V g€ X, 10c(S7), YO s<t=T,

J R[V {uly — w) -+ |DuP > DuDlp — w)}dxdr = 0.  (LL§)

We denote by X the set of all non-negative local weak solutions.
Here and in what follows, if u € X, the symbol Du denotes a measurable func-
tion from Sy into RY that coincides with Du;, on the set [u < k], Yk € R+.

LemmaL11. Let uc 3. Then ¥ p€ Xud(Sp), V1€ CE(Sp),
[ [{uy —win + |Dul?~? DuD[(y — u), )} dx dv = 0. 1.1.9)
St
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Proof. Let %" C " be compact subsets of S, such that dist (64", 6A4") =d> 0
and let (x,1)— {(x,1)e CF(A") be such that, 0. =<1, {=1 on X.

Choose p € X (Sy) and in (I.1.8) take

o=@ —win+ul
where

n€CHA), k= lplocx (I.1.10)
We have a.e. in 4\ A
(g—wi=y—wen+wul —u,= @l —u,=0.

Moreovera.e.in &, (¢ — ). = ((y — w.n + wp — u),, and in view of (I.1.10)
this vanishes unless u <C . In such a case u;, = u and

p—w,=@®—u,n ae X. (I.1.11)
We conclude that (I.1.11) holds a.e. Sy and (I.1.9) follows. []

Let B, denote the ball {{x|<C ¢} and denote by

x—{(x) a piecewise smooth cutoff function in B s, ¢ > 0 such that
() =1, x€B, {(x) =0, [x|=(+0)o 0=(=1 |DI|=(o0)™"

1.1.12)
By density arguments (1.1.9) implies V ¢ € Xjo(S7), Y0,0>0, YO<s<
t<T,

ft f{u,(tp — 1), P+ |Dul "> DuDl(y — w), ("} dx dv = 0. (L.1.13)
RN

s

Conversely, if v € C3(Sy), we may write (1.1.13) for s, ¢ such that supp o C RY
X (s, t). By taking ¢ as in (I.1.12) with ¢ > 2 - diam (supp ¢) we obtain (I.1.7)
We conclude that the formulations (1.1.7)—(1.1.9), (I.1.13) are equivalent.
Lemma I.1.2. Let ucX satisfy |Du|€ LE,(Sr), u€ Lio(St). Then

u, — div (|[Du|?"*Du) =0 in 2'(Sy).

Proof. In (1.1.9) take v = u, + 1€ X;o(Sr), n€ N. We obtain V5 € C5(St)

[[{um + |Du|P=2 DuDn} (4, — u + 1), dx dv = ff | Du|? ydx dv.
St StNIn<u<n+1]

Since |Du|€ L{,(Sr), the right-hand side tends to zero as n-—>co. The left-
hand side converges to

[[{uwm + |Dul?"? DuDy}dxdr =0. [
ST
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Lemmal.l.3. Let uc€Z. Then Vk>0, w, is a distributional super-solution
of (I.L1.3) in Sy. '

Proof. Let k>0, «,6,€(0,1) and in (I.1.9) take
v = + [(k — u); + €] € X1ooS7)-

From (I.1.9) we obtain V%€ Ci(Sp), =0

[[{um + |Dul?~ Du Dy} (p — u), dx dv

St

= ff |Dul?ndx dv + « ff]Duk[f’ [k —w), + e 'ndxde=0.
St

SpNk<u<y]

We let ¢—0 first as x€ (0, 1) remains fixed. Since

p—w,—k—w, ae. S
we deduce
[flum + |Dul?? DuDn}(k —w dxdr 20 Vac(O,1).
St

Now letting «— 0 gives

0
ff {—a—; ) + | Dug |P 7% Duy, Dn; dxdr =0 VYneCy(Sp), 7n=0. (LL14)
St
a

The next proposition permits a rather large class of testing functions in
(1.1.9).

If ko€ R* let #(ko) denote the set of all the Lipschitz-continuous functions
f:RT—R such that f(k) =0, Vk>k, and set

F =\ F k).

koeR*
Proposition I.1.4. Let ucl2. Then Y fc &, ¥y CQ(Sy),
[ [ {uf@yn + | Du|”* Du D(f(u) n)} dx dv = 0. (L.1.15)
St
Proof. Assume first that f€ C*(0, 00). Write (I.1.9) for ¢ = k, k€ R, multiply

by f“(k) and integrate over (0, o0) in dk. By interchanging the order of integration
with the aid of the Fubini theorem we obtain

If {u,n [ 1700 (k — wy k- | Du P~ Du D [n [ @& —uw dk] }dxdz— —0.
ST u u
Since

[ &)  — wy dk = 1),

the assertion follows for f€ C?(0, 00). The general case is proved by approxima-
tion. [
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1.2. Estimating [Du]. In the estimates to follow we denote by y = y(N, p)
a generic positive constant that can be determined a priori only in terms of N and
p. For a measurable set £ we let x(£2) denote the characteristic function of £.

Lemmal2.1 3y = y(N,p) such that Yk>0, Vp>0, VO<s<<t=T,
Yuclk

f f[Duk]”dxdr<yk”]BQ[ (

Proof. From (1.1.13) with y =k and { as in (1.1.12)

[ [1pulrraxar<p [ [ |Du]?~ 77" (k —u), | DE] dx de
s grN H rY

f f-(k—u)2 C? dx dr

é% f!Duk|”C”dxdr+2" 1pp ff(k—u)”|DC|"dxdr

s grN
+3 [ e—up 2 ax.

RN x{s}

From this the lemma follows readily. []

If A is a measurable subset of Sy, let

1

u=-— [u
fe=mad
denote the integral average of u over A. Define VO<s<t=T, V>0
M, (@) = sup {u(x,7)dx. 1€2.1

e(s, ) By,

Since u; are, ¥ k > 0, distributional supersolutions of (L13), VO<s<t<T,
\AIS XIOC(ST) =0, { asin (L1.12)

f f {%wcw1Duk|”-2DukD(wcp)}dxdrz.o. 122

Lemmal.2.2. Let ucX, Then Y€ (0,p—1)

p—i—«a

'Du p EL]%C(ST)
and 3y = y(N,p) such that VO<s<t=T, V¢>0,

S)'fi—f] T a2

f f]Du [ dx dv < 2 v [ 1(20) + (’;,
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Proof, Let k>0, 6€(0,1) be fixed and in (1.2.2) take

—&

uy%, u>e¢
L g% u=Ze,

to obtain

o [ [ 1Dulr u=*~teryle < u < k] dx dr
s gN
épf f[Dul"‘Iu‘“C"“ |DZ| gle < u << k] dx dr
o ) . (1.2.4)
o [ [1Dulr1 et D2 | s di

spN
T i x ftfz?;’f’l—“ 8 dx du + ftf—:—tuea‘“cp dx dr.
sgN VRN

By Young’s inequality, the first integral on the right-hand side of (1.2.4) is major-
ized by

4 2 p—1 t ’ :
% [ [ 1Dul?w~1¢7yle < u < k] dx dv + (——) p° [ [uP1=*|D¢|? dx de.
spN & S RN
By virtue of Lemma I.2.1 the second integral tends to zero as £-> 0 at the

rate of ¢*~1 % Combining these calculations and taking x—{(x) as the cutoff
function in B,, which equals 1 on B,, we deduce

t
o [ [|Dul? u=*""yle < u< k] dx dv
s BQ

4
P

+ (t ;p S) (sup [ u(x, ) dx)pﬁl—“ 20)"C —17+oc)}

76(s,1) By,

=0@E""'T)+

i { ( sup f u(x, T) dx)lﬁw(ZQ)"‘N

ze(s,f) B 2%

(1.2.5)

t—s

< e |ear =+ () w o =)o + o).

t—s
If (?—) < [M,(20)" 7, the quantity in braces in the member further right in

{t— s
Qp

(2.5) is majorized by [M, ,(20)]' . If ( ) > [M, (20))’~2, it is majorized by

M, Qo) -+ (’ ;S)i”:“
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In either case

t
[ [ | DulPu=@*Vyle < u < k] dx dv
K BQ

<0 p—(x+1) 14 N{M 2 t—Si_i_pl—[x 1.2.6
=0 )—f—&ye l 5,/(20) + e , (1.2.6)
and the lemma follows by letting ¢ 0 first and then k-—>oo. []

Estimate (I.2.3) deteriorates as o — 0. The next lemma gives some information
for the case o = 0.

Lemma 1.2.3. Let ucX. There exists y = y(N, p) such that VO <s<t=T,
V>0, Yr=1,

t p—1lip
[§lpu7
SBQ

xn<<u<<n-+4 1] dxdv

il
=18
Proof. In (1.2.2) we let x— {(x) be as in (I1.1.12) with o = 1, and take p =
n+1
In+ (——(,3—), where
U

§y1n<1 +%)[ “(29)+(

o {n, foO<u=mn
U = .
u, fu>n
and
Va>0, Inta=max{lna;0}.
We get

t
ff|Du(”u“x m<u<n+ 1]dxdv
s By

+
_ff—u,,Hln ( = )c drde - /B[}Dulp 11n+( - )dxdv:
s Ba,
— I(l) 4+ = ](2) a2.n

Setting for sunphclty of notation

A= B2Q><(S: t):

we have
1 =D @ 1)
N (T e S
nJ Anu<n+1]

p—(x+Dip

§y1n(1+—;—) (fAleu »

dxdr) » (ffu(““)(” D dx dr)—
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If «€(0,p— 1) is so small that (x4 1)(p — 1) = 1, both integrals in braces
are finite. Taking into account Lemma 1.2.2 in estimating the first integral, we
have

_1_7_(2)< N ( L)
QI,, = y0" In l—l—n

t—§ - a)(p D !
. [MS,,(2@) + ( o7 ) ] (91’ chu(oc+l)(p D gy d'r)

s BZQ

The last integral above is estimated by

(Lp ft § ue DD ) dx d,)';?g (
|
|

t—s\1 pl)

p )"* (M, (20))
<[ (e

1
",

(a+1E——

e sBze

Therefore

%1}? < 0" In (1 1

S ———

{MsstQ@) + (t_g_p_s)ﬁ]%

As for IV, we write

1
IV = f[ u,In (1+—) &P dxdr + f u,Int (n+ 1) £? dx dv
. n u
AN[u<n} AN[u>n]
— _ (n)
= ( ) fatué‘pdxdr+ﬂ 1+( )C"dxdr

1 0 n-+1
éyg”ln(l—i——n—)Ms,,(Zg)—l—[f@—t-(;f 1n+( 3 )d§)+5pdxdr.

The last integral is majorized by

n (1 + %) [ —m,@®dr =y (1 + %) M, 0.

Bzgx{t}
19 =y n 1+ 5) [a1,00 + (L=2)77
a =70 » 5,/(20) + o7 .

Substituting the estimates of I, i = 1,2, in (1.2.7) delivers the lemma. []

Therefore

Corollary 1.2.4, Let u< X and define
u(x,t)

1
)= z(x, )= [ (EIn'*™EPdx, &€(0,p— 1).

€

Then |Dz|€L{,(Sr), and there exists y = p(N,p) such that YVO<s<t<T,

Vo> 0,
S)TI—'] . (1.2.8)

t
f Bf | Dz |? dx dv < ye? {Ms’,(Zg) -+ (t o7
L")
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Proof. Divide both sides of the inequality of Lemma I.2.3 by In'**#, and add
overall n=2,3,.... O

Estimate (1.2.8) deteriorates as & —> 0. The following corollary gives some in-
formation in the case ¢ = 0.

Corollary 1.2.5. Let uc 2. Then VO<s<t=T, YC>1, Yog>0
hm ff]Du[”

Proof. Without loss of generality we may assume that &, Ck € N. Divide both sides
of the inequality of Lemmal.2.3 by lnn and add for n=%, k+ 1,...,Ck.
This gives

x[k< u<< Ckldx dv = 0.

t
[ [ |Du)? (uln wy ylk < u << Ck]dx dv
ng

1
<y(nln Ck — lnlnk)[ M0 + ( = s)z——p]

InC t— s\
=yln <1+1n—k_) [Ms,t(ZQ)—l—( o7 )2 ] O

L.3. An equivalent formulation of local solutions. Since in general |Du|4
LE(ST), (I.1.3) need not hold in 2'(S7). We give another formulation of local
weak solutions, equivalent to (L.1.7), that will be needed in the process of con-
structing weak solutions of the Cauchy problem. It says that a small power of u
satisfies an equation similar to (I.1.3) in 2'(Sy).
Let x€(0,p — 1) be fixed and define the numbers

1 -1 —1
5:@___'__)_(£__), Y= < ,p__1> (1.3.1)
p 4
o = 1 p—~1—ocp1“(1 8
1—396 p >
p
_ (1 — 1.3.2
=30~ (13.2)
op
domp—l—zx
Also let
p p—1—«
J— —_— P
U_p—l—zxu . 1.3.3)
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Proposition 1.3.1. 4 measurable function u:Sy— R* is a local weak solution of
(1.1.3) in St if and only if
]7

UE Lloc e (ST)
|Dv|e L2 (Sp), |Dov]? vt € Li(Sr), (1.3.4)

o
PN — 1=l (S), Yk>0,

7
i v* — div(|Dv|?"2 Dv) = d, |Dv|P v in 9'(St). @.3.5)

Remark 1.3.1. One could obtain (1.3.5) formally from (1.1.3) by multiplication
by u% and formal calculations.

Proof of Proposition 1.3.1. In (I.1.9) take p = —-(u(s))— where 4> 0 and
for e>0
® { u Hu>c¢e
U ==
e oS uzZe.
Set
&, ={x, €S| (p — wt> 0},
and observe that

u(x, 1) S A7VA+D a6 (x,1)€E;. (1.3.6)
We obtain from (1.1.9) V€ C3°(Sr) upon multiplication by 4,
£ [ {#,®)~% + | Du|?~? Du(®)~° Dy} dx dr 1.3.7)
i

=0 [[ |Dul?u™" " yylu> e dxdv+ A [ [uumdx dv + 2 [ [ |Du|?ydx dv.
&y &}, L)

We first let ¢— 0 and then 1— 0. By virtue of (1.3.6)

A [y dx de| < A [y dxdv|+ |2 [/ . uumdxde
&y fu<s] [€<u<l—1—+5]
1—-1_1\2
=¥ ff u? |n,| dx de|4- 34 [ (min [u@;z 1+5]) || dx
St

1
<3 [[|n|dxde + 327755 [[uly,|dxdr
Sr Sr

-0 as gA—->0.
By (1.3.6) and Lemma 1.2.2, if 4, € (o, 6), then
A [ [ |Du|Py dx dv = fo | Du |7 =040 1400y gy g
€5

<y'" T ff[z)u ?

I’n dx dv

—0 as Z—>O.
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We treat the first integral on the left hand side of (I.3.7) as follows

Ou,
ffu, U0y dx dv = ff U @)y dxdr—]—s“’ff al; n dx dv
&) 1 S

[ <, T3]
1 ©
TT1=35 ff (ul‘l_-lﬁ)l_‘s’?td'”_z?_a ffuemdxdr.
St S

Letting ¢ — 0 first and then 4 — 0 yields

1
Ju@) P ndedr — — i—ﬁff u' "%, dx dr.
&y — St

Next
[ [ | Du|?~? Du(u)~° Dy dx dv
€3

= [/ . | Du® [P~ DUy ~° Dy dx dv + &° [ [ | Du,|? > Du, Dy dx dv.
u(8)<l '_1_""’] ' St

As &0
[[|Dul?"? Du@®)~° Dydxdv —~  [[ 1 |Dv{?=2 Dv Dy dx dr.
2 [4<imT55]

1
Since x{u< 2_1“] increases to 1 a.e. Sy, letting A—0 we find

: [/ 1 ]]Dv["_2DUDndxd7: — Sff]Dv}”“zDandxdr.
u<}»_—1:E T

Finally by similar reasoning, as e—0 and A—0

o [[|Dul? uw ' Tpplu>eldxdv — dy [[|Dv|Pvtndxdr. (13.8)
é’l St

Letting e—> 0 and A— 0 in (1.3.7) yields V€ C5° (S7)
[ [ {—cov’n, + |Dv|?~> Do Dp}dxdv = do [ [ [Dv|”v=' 5 dx dr.
St

St
1.3.9)
Suppose now that v:Sy— Rt satisfies (I.3.4), (I.3.5) and set
—1— b
T (g‘p—‘ﬁ”>”‘l‘“, x€@©,p—1). (13.10)
It follows from (I.3.4) that V.A >0
7
uc Llloc(ST): IDu ’k € LII:)C(ST)a -7 Uk € Llloc(ST) . (I311)

ot
Let €€ (0, 1) and in (1.3.9) take the test function
n = (p — W+ u®)’,
where @€ CP(Sy), and 4 is defined in (1.3.1). Such a choice is admissible by a
standard approximation process.
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Treating separately the various parts of (I.3.9) with the indicated choice of
test function we obtain, by direct calculation

i
@) [ f {_covﬁ(u(e))6§(¢ — )y — 0o’ (@)’ g — w), Ydx dv
St
= [f”i( — W glu> €] dxdv — Lfful_"ea-a—(qﬂ—u) 2lu=sldxde
g ta T T8y T TS

—>ffu,(<p~—u)+dxdr as ¢ 0.
ST

®) [J1D0 [P~ 2Dy Dig — 1), dx de
B +9 [[ Do P2Do(u®)’ ! Du(p — u), dx dr
=/ ]DTu{”"zDu Dig — v, y[u = ] dx dr
J: & [[|Dv]P~2 Do Dlp — u), x[0 < u = &] dx dr

Sy

+do [[|Dv]? v " (p — u)* ylu> el dx dv
St
— [ [ |Dul?"2Du D(p — u), dx dv
St
+do [[|Dv]? v (9 — u); dx dr.
St

Combining these calculations in (I.3.9) and Ietting ¢ — 0 delivers the proposition.

O

L.4. Harnack inequality and initial traces. In the definition of local weak solu-
tions of (I.1.3) in S, no reference has been made to initial data. We will show that
each #€2 has a unique non-negative ¢-finite Borel measure u as initial trace.
Existence of such a trace will be a consequence of the following Harnack type
estimate.

Theorem 1.4.1. Let ucX. There exists y=y(N, p), such that V¥ > 0,
VO<s<t=T,

]

sup fu(x,t)dx§y<fu(x,t)dx—{—(t;S)z_—;), %= N({p—2) +p.

TE(s, 1) BQ BZQ
14.1)

The uniqueness of the initial trace u as well as the proof of (L.4.1) relies on
the next gradient estimates.
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Lemmal.4.1. Let uc’X. Iy =y(N,p) such that YO<s<<t=T, VO <r
<R, Ve>0

t 1 2
[ [@—)7 |Dul?(u+e) 7 dxc
s B,
__t - ! 71,“1 %(p—l)
= ”(1 TER = ,,)p) JJe-or @t Tdxd, 142

t
[ [|Du|?~!dx dv
s B,

2
gy(“rz——?tar—) f J (=07 w97 dede. (143)

Proof of Lemma I.4.1. Write (I.2.2) with x— {(x) a non-negative piecewise
smooth cutoff function in Bg which equals one on B, and is such that |D{|=
(R — r)~'. Take also, Vk>0,

1 _2
p=(t— 17 W+ ?E XS,

where &> 0 is arbitrary.

Treating the various terms separately, we have
Ly 2
O [ [Je-97gmram+e Trwdd
1 L £(p—l)
émj f(t—'l:)P (uy, +&)* C’(x)dxdr, Yk>0;

t 1 _2
@ [ [=7 Dul? DuD(u+ &) 7 £2(x)) dx dr
s R

t 1 2
g(z’_z)f [t — o7 |Dug|? (u+¢) ? LPdx dv

s Bp

: 1 _2
+p [ [G—o7 1Dl e+ 7 |DE| dxde
s R

2 4 € 2
é(p2 ) f f(t — )7 | Dug |? (wy +¢) * L% dx dv
P 5 By
2p \*! t L 2
T (2 ) [ [@—v7 (w+e 7 |DL|?dxdr.
—p s Bp

This last integral is estimated above by

— 26
wezfi(Rs),,)pf [0 et Y ax dr.
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Combining these calculations gives

t i _‘i
fo (t —©)7 | Dug|? (uy +6) 7 £7(x) dx d
R

s

14 t—s ! —-1 2@-1)
=Gy (1 t 7R _,)p) I BRf t—5" @+ef dede. (144

To prove (1.4.2) it suffices to let k—co. Indeed, since
2
| Dug |? (u + ) P € Lio(St)
uniformly in k, and since y[u << k] % 7 (7 as k-> oo, the term on the left of

(I.4.4) can be written as
2

t _1_ 2
[ Jt—o? | DulP(u+e ?ylu<kldxdr
s B,

t _1_ _i
- [ JC—=0)7|Dul?(u +o) ?LPdxdu
s Bpg

I3 1 2
= [ [(t—7)7 |Du|” (u+¢) ”dxdr.

To prove (1.4.3) note that VA >0

ff|Du |7t et dx dv

sBp
1 1 1 — 2 p—1
p—1 D p— _ p p p—1

- ff(t )7 P | D" (& 2:)_1 (u+e? ? P ldxde

sBp (u+e? 7

\ z-1 ! 1 2z L
(f (t— Z;ded'r) ? (ff(t — 7?7 (u —l—s)”(”_l)dxd'c>".
SBR (u—l—-&‘)P SBR

We estimate the first integral on the right-hand side by (I.4.4), and let k — oo
on the left-hand side. [

Proof of Theorem I.4.1. Let p > 0 be fixed. Define the sequences
O i - O T On
:(221)9’ Qn:_——'z——ﬂ:
i=0

B,=B,, ~ B,= B;,

and let x— £, (x) be the standard cutoff function in B, which equals one on B,
and is such that |D¢,| < 2°*%.
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Fix 0 <s<<t= T and write (I1.2.2) over the time interval (z, #), s = 7 < ¢,
with ¢ replaced by {, and with v = 1. We obtain by standard calculations

f w(@dx =

(14.5)

We set

H,= sup [ul(x,7)dx. (1.4.6)
re(s,t) B,

Then we let k— oo in (1.4.5) and estimate the Iast term by (1.4.3) of Lemma 1.4.1
with r =g, R=09,., (R— 7 =g/2""% We obtain from (1.4.5), V&> 0

—_ np t 2 _
H, = fu(t)dx—i— ted ( +@’f_) J f(f-'r)f’ (u—i—e);(p Y dx dv

n s Byiq

o 2,
< [, t)dx+y—(1+ — ) f f(t——'l:)” "wt-97" P dxds.
Bae e? S By
L4.7)
By the Holder inequality and (1.4.6)

1 NQ-—p)

f [t 0 D dede 2yt 70 7 s+ e

s Byii
By Young’s inequality, V€ (0, 1)

y2”
e

t— s\t ¢ L Z-1
(1+£2_pgp)p [ J@t—v? (@-+e? dxdo

s By

t— s\2=X ft— 5 (r—1)
<y2np(1+ 2~p9)p (9 ) (Hn+1+eeN)”p

o 2= t— s =1 4 e
<6(H,,+1+8QN)+7/22 ] T (1+ 2 ) ( Q )

) (o))

e (ft—
gaﬂn+1+y<a)22—1’{( = ) 4 g +(

This in (1.4.7) gives

H, < 8H,,  + b'Co(s), n=01,2.. VYe&>0, (14.8,)
where
b= 2"12=P Cyle, 0) = [u(x, 1) dx + Bo(e, 6) 1.4.9)
BZQ

By(z, 8) = 7(9) {(t ; S)ZL‘P + e + (t; S)z r ( tz_,,gp)g;l’;. (1.4.10)
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Iterating the inequalities (1.4.8,)

nt1
Ho < 8"H, + 6~'Cofc, 6) 3. (b6). (L4.11)
i=0

1
Choose 6 = % and let n-—>oc to conclude

2 2
Ho<— [u(x,t)dx + - Bo(s), Ve>0.
5 5, P}

We finally minimize the function &— By(s) given by (1.4.10). The minimum is
achieved for

and

—
G0 =7 ()7 y=wep. O

Theorem 1.4.2. Every uc 2 has a unique o-finite non-negative Borel measure u
as initial trace at t = 0.

Proof. From Theorem 1.4.1 it follows that V5 € Co(RY), the net

{ [ u(@)n dx

Ry } 7(0,0)

is equibounded, with bound depending only upon |5l g¥. A subnet indexed
with {z'} converges to a non-negative o-finite Borel measure y, in the sense of
measures, Z.e., as 7 \, 0

fu@)ndx — [ndu, Vgc Co(RY).
RN RN

Suppose now that there exist another subnet, indexed with {r"’} and a non-
negative o-finite Borel measure v, such that

fu@)ydx — [ndv, VneCyRY).
Ry : 0

We will prove that g =uo.
Let ¢€(0,1) and write (1.2.2) with =1 and { as in (I.1.12). Letting
k — oo, standard calculations give VO<s<<t=T

[udx< [ u@dx+— [ [ |Dul~ldrdr.  (412)

By B(1+0) 5 B(14o)
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We estimate the last term by us1ng (1.4.3) of Lemma I.4.1 with r = (1 4+ o) o,

t —
R=2(1+0)o and s=( S) 7. We obtain ¥ 6€(0,1)

QP

—f [ |Du|P~tdxdr
0@ 5" Btiay

i(p_ D NQ2—p)

O.st (I—T)P dr{(sup f u(x,z')dx)l’ 0 7

TE(S,1) B(l-i-ﬂ)g
t — \g=20-1
()
N\ r\L 2
< ()2 L — )7 (sup [ u(x,7)dx D
o o
2 e 76(5,2) B(1 +0)0

7 ¢ 7 \52 P L
( )p 2+( )2 Py 272 (7)2—p+ 5(sup f u(x,'r)dx).
o \p 0 7e(8,1) B(1 +-a)e

Finally, taking into account Theorem I.4.1, we deduce that V é€(0,1)
3y = y(N, p, ) such that

H/\

_ ) .
—f f]Dul"ldxd1:<6 f u(x,t)dx+y(a)a"2_—l’(gix)2_-3.

%€ 5 Bi1 oy Byt +oje

Substitute this estimate in ([.4.12) to obtain VO<s<t=T, Yo€(0,1),
V € (0, 1), we obtain

fudc< [ u®)ydc+ o f u(t) dx + = (6) (Q )H (L.4.13)
B .

o B1 1oy By(1+o) 0‘2—p

Let s\, 0 along {r'} by keeping ¢ fixed. Then let 7, 0 along {z'"}, to get

fd‘u< [ &+6 [ .

B, B(1 1% By(1+0)e

Since o, 8¢ (0, 1) are arbitrary we conclude that

fd,u_S_ fdv, Vo>0.
B B,

Interchanging the role of {z'} and {zr"’} proves that

[du= [dv, Vg>0
B B,

and p=v. [J
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Chapter II. Uniqueness

II.1. The uniqueness theorem. Let X* denote the subclass of X of those non-
negative local weak solutions of (I.1.3) in S;, satisfying

Pl . ;
T u(x, 1) = yux, t), ae. (x,1)€Sr
for some Y ZV(N,Pa t), VkE R+, (IIII)

— 1
lim fj | Du|? ™ dx dv =0, (IL.1.2)

k>0 rnE<u<Cr

for every compact subset " of Srand for all C = 1. In the next section we will
construct solutions of the Cauchy problem associated with (I.1.3) for initial data
Uy € LI (RY), 15 =0, that satisfy both (IL.1.1, 1.2); therefore X* is not empty.
Corollary 1.2.5 suggests that (IL.1.2) is almost satisfied by all solutions in X.
It would be of interest to know whether the inclusion

XrC X
is strict.
Theorem IL.1.1. Let uy, u, € X% satisfy
(uy —uw)(®)—0 in LLRY)Y as t—0.
Then u, = u, a.e. Sr.
IL.2. Preliminaries. Let ¢ >0, B,={|x| <<g}, 0<s<<t=<T andlet x—

{(x) be a non-negative piecewise smooth cutoff function in B (4, X (s, 1), 6 €
(0, 1), that equals one on B, and is such that

1
< — [
|D¢| = e (IL.2.1)

We assume for the moment that ¢¢ (0, 1) has been fixed.
Lemma IL.2.1. Let ucX™*. Forall 0<s<t=<T, YVo>0, VC>1,

t
im | [ w2k < u< Ckldxdr= 0.
BQ

1
k—~oos

Proof. Consider (I.1.14) written for u, replaced by uc,, C> 1, against test

functions
—_ Cl k
n=em (zwk,c) ’

where x— {(x) is as in (I1.2.1) with 6 =1 and YV C> 1:
1k, 0=u=1k,
Wie=\{u tk<u< Ck,
' Ck, u=Ck.
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It follows from these definitions that <0, a.e. Spand 5 =0, a.e. on the set
D<u<<ikl
Standard calculations give VO<s<t=T, Vg>0

fjé_”Ck’?dx“” fleul"—x Bk <u< Ckldxdr

—I—1n2Cf f!DuCk]”"‘x [u> % k]|DC|dxdv.

s B2Q

1r.2.2)

The first integral on the right-hand side of (I1.2.2) tends to zero as k—> o0
by virtue of (II.1.2) since u€ X'*.
As for the second integral, we estimate it above (formally) by

In 2C
0 f leuCklp Volu> Lkldx dr
ln 2C » _@+Dp-1) @+DE-D
f J1Ducel” ™ > R e
In 2C - t p—1—«lp p_.—_l
= ( . ) (f f’Du g dxdr)l’
¢ \p—1l—u S B3

‘ 1
X (f [uTVE=D yly > L k] dx d‘t:)".

s B2g

If we choose «€(0,p — 1) to be so small that
+D-D=1,

the estimate is rigorous and the rightmost side of (I1.2.3) tends to zero as k —> oo,
since u¢€ Li((Sy) and Lemma I.2.2 holds.
Combining these remarks, we see that (I[.2.2) implies

I fu,ln(

s BZQ

)CX[ut< Ol x[3 k< u< Ckldxdr

ln

ff”t

s BZQ

Cx[u,EO]x[u> Ykldxde+ O (llc)

In view of the definition of Wy, c this gives in turn

t ! 1
[ J otk < u< CRl dede=y [ [ uglr> O du> Ml dx de + 0 ().
5 B, s By,

The last integral is estimated by means of (II.1.1) and the lemma follows. []

Remark I1.2.1. The assertion of the lemma is trivial if #, € Li,«(S7).
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We give next a weak formulation for the difference of two solutions uy, u,.
First we recall that by Lemma I1.1.3, the truncated function

Cuy FO<u, <k
k= ifu, =k

is a distributional supersolution of (I.1.1) V k> 0. We write (1.1.14) for u,;
against the testing functions

n= ("P - u1)+ Cp, v L4 € Xloc(ST)

where £ is as in (I1.2.1). Such a choice is admissible in view of the definition of
Xi0(S7) and the regularity properties (I1.1.4)—(1.1.6) of u;, i = 1,2, modulo a
standard density argument. On the other hand the weak formulation of u; (I.1.13)
holds against the same testing functions. Therefore, setting

W=y — Uy, Wgy=u; — g, kKERT,

we obtain by difference the weak formulation

! 7
I} {5 Waop — u1)y §7 + JeD(y — uy)y Cp} dxdv

t
=—p i [ Ty —u) 7' Didxdr, Y 9 XpdSy) (11.2.4)
5 P +o)e

where

Ji = |Duy |”7? Duy — |Duy s |”~% Duyy,
'y
= of gg{lD(Eul + (=& ur ) P72 D(Euy + (1 — &) up )} d
1
= (of | D(uy + (A — &) upp) |72 df) Dwy,
1 ;
-2 (of [DEuy + (1 — &) )|~ D(§uy

+ (=) s+ (L — )y ds) Wit (12.5)

Here the summation convention is adopted. Set also
1

Ay Eof [DEuy 4 (1 — &) upy) [P dE.

2
Lemma IL2.2. A, < 7—1 | Dwgy P72

Proof. If |Du,;| = |Dwg,|, we have
[DEuy + (1 — &) uyy) |
= [Durp + & Dwgy| = [[Dune| — & [Dwgyl] = (1 — &) | Dwy|.
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Therefore .

Ao = (Ofl (-2 d‘f) [ Dwgy [P7% = p_l_‘I | Dwey |72
If [Duse| < [Dwgyl, |

1
of | Duta e -+ & Dwgey |72 d&

1
= [ |1 Duni] + & Dwee |72 e

1 &s d .
gm{~ of E(]Duz”‘[ + & [Dwgy )P 1 dé

1

d
+ [ (& |Dway| + [Duge )Pt d§},
6 dt
where &, €(0,1) is defined by

& = E(O 1)

By direct calculation 4, =

3 |Dway P72 [

From the definitions set forth and Lemma I1.2.1 we have
I Dwgy = (p — 1) 4o | Dwgy %,
4 B (11.2.6)
|Ji| = 4o | Dwiy | ép—_—lIDW(k)[” "
We will use these inequalities without specific mention.

I1.3. An auxiliary proposition.

Proposition I1.3.1. Let u,c X% i=1,2, satisfy
w(t) = (uy —u) #)—~0 in L (RY) as1—0.

Then we L™(0, T; LLRY)), V g€ [1,00). Moreover ¥ ¢ =1, 3y =y(N, p, 9),
such that

7 q+(p—2) 131
BQ‘{;) ’W(I)l dx = ((TQ)‘D f (1{—0‘)9 }W' dx dr, (1 )

for all >0 and for all ¢<(0,1).

The proof is based on an iteration procedure and uses recursive inequalities
obtained from (I1.2.4) with suitable choices of test functions y.

Testing functions in (I1.2.4). If % is any positive number let
0 if W) =0
W(.il_c),h = (ul - l,lz’k);.l'L = Wé];) if W) < h (II32)
ho i wg=h
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and in (I11.2.4) consider the test function

1 | .
Y= ut -t ": (‘VJ(),n -+ S)u (w()c),m T 8)’) € Xloc(*ST)a (1133)
where
e€@©, D, a,b>0, nmeN, n>mi1.
We obtain
[ Wy — ). S7dx — [ wely — ), $F dx
RNx{x} RN x (s}
£ 1% S
— [ S wao— (@ —uy), SPdxdr+ [ [ I Dy — ), 57 dx dv
s gV cT s R‘;"'
'
s—p [ [l —u) " DEdxde. (I1.3.4)
s grN

In using y as a test function in (11.3.4) we keep in mind that the truncated functions
Ui I = 1,2, ¥ > 0 are regular in the sense of (I.1.4)—(1.1.6). In particular the
first two integrals on the left-hand side of (11.3.4) are well defined VO<< s <<t = T.
We will eliminate the parameters ¢, k, s, n, m by letting ¢->0, k »o00, 50,
n, m—>oo in the indicated order.

The limit as ¢ — 0. We multiply both sides of (11.3.4) by ¢ and let ¢ — 0,
while &, s, n, m remain fixed. From the definition (I1.3.3) of v it follows that
V 1¢ (0, T] the net [wgy ey — euy),] (-, 7), is cquibounded in Ll o(R"), converges
to

[w(k)(w(—l-c),n)a (w(};),m)b] (" T) a.c. Bla

and is majorized a.e. RY by

W(k)(WJ(),” -+ ])a (w(;),m + l)b (’, T) € L]loc(R'\:).
Therefore for all 0 <v< T, as ¢-»0

f Weoylp —uy) 07 dx — J Was(Wion) Wiy 7 dx. (11.3.5)
RY < {1} RN « {1}
This determines the limit for the first two terms on the left-hand side of (I1.3.4).
To examine the remaining terms we let u;, i = 1, 2 be arbitrarily selected but fixed
representatives out of the cquivalence classes u;, define w, wy, accordingly,
and let

- :
élt -7 l(X, T) ‘ul(x, T) < -;L_}

[

l’a/—"r: - ‘l(X’T)E ST

l

| 1 — _ ,
- = ux, 1) = = i . (WeynlXs T) -1 &) Wy (X, T) + E)bj

G, - 6N F,. (11.3.6)
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Next

t

- 17
Le= —¢ j ‘I[w(k)gi_-(fp — uy), (P dx dv
R

8

t
_ 3
= —a f f wéic),n(wi}—c),n + e)a ! (w(—:’f_c),m + 8)b 5; wéc),n CPX(ge) dx dv
5 RN

t

o
—b f [ Wiy mWiom + O° Wiomt &' = Wiom 72(F.) dx dr
R.N ot

&

t
- f f Wao(l — eus); ((F o) 67 dx dv
rN

=L + LY + LY,
We claim that L& — 0 as ¢-> 0. Indeed

]LS)Iéf f8|w(k)!

5 B2Q -

0
gl 2(F ) dx dr.

On the set %, we have
¥

[+)

Therefore

Uy

L <7 e
X[—E‘:lﬁ:_g‘] X T’

and the assertion follows from Lemma IL.2.1.

Since k, n, m are fixed, the integrands in LY, i = 1, 2 are in L,.(S7) uniformly
in &, Moreover they have a.e. limits that are in L{,((S7) and their absolute value
is majorized a.e. Sy, uniformly in ¢, by functions in L},(S;). Therefore as ¢— 0

a

) 2 _
LY+ LY~ % = pa

4
a .
f f Z??(W(J’r‘)’")a M (wiym)® O dx dr
L aL3.7)

t
b 8
_— + a__.. -+ b+1 P
b+1 f Nf (Wao,n) P Wagm) " EP dx dr.
s R

)b-i—l b+1

0 0
(wéic),n)a a7 (WEILc),m = (W(i),m)a 7T (W(ch),m

b4+1 &

= a—:{_——m —&-; (W&),m)a+b+l > a.c. ST:
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we obtain from (I1.3.7)
a

£ =— I om® T Wi m)? & dx

a+ 1 RY < {1}

b
__ (w+ ,m)a-i-bJrl CI’ dx
@+D@+b+1 RNI{,} ©

a
a1

[ o)™ Wi &2 dx. (1L3.7)

R x{s}

+

-+ a-+-b+1 =p
+ @t+)@+b-+ 1)RN£{S} (Wdoy.m) &P dx

We combine this with (I1.3.5) and conclude that the sum of the first three terms
on the left-hand side of (I1.3.4) has a limit as ¢ — 0 that is minorized by

1 1
—_— . +ma+b+1 ? dx — + 4 Na+b ? dx.
a + b + 1 RN;{{t} (w(k), ) C X 7 + b + 1‘ RN;[{S} w(k)(w(k),n) C X
(11.3.8)

We turn to estimate below the lim-inf as ¢-> 0 of the last integral on the left-
hand side of (I1.3.4)

t
e [ [3.D@w —u), 7 dxdr
s RN
t
= | 3 DWion o+ 9 O+ 8 P2(8) dx de
5 R
t
b [ 3D+ O O + 0 () d

® (1L3.9)

+ [ [3 DA — eu)) Py F,) dx dv
5 RN

t
=a(p-D [ Rf Ao [ DWioal* Wig + &)~ Wiopm + 2)° E'3(90) dx de
s N

4 !
[ [ Ao |Dwgy| | Duy | &Py(F ) dx dv = H + HP.
D — ls rN

By weak lower semicontinuity
t
lim HY = a(p — 1) [ [ Ao | Dwiya|> W) Wk 0" &7 dx dr. (1L.3.10)
&->0 s RN

We claim that H® —0 as ¢— 0. Using Lemma I.2.2, we have

t

|HP| = eCW.p) | [|Duy — Duyy P~ | Duy| ((F ) dx de
Bae

5

t H
=c/ ; S 1Dus P ex(Fydx dv + Ce [ [ |Duyy|? y(F2) dxdv = HR + HSZ.
g 29

s By,
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Since 'Duy ;i€ L{,(S7) the second term tends to zero as ¢->0. As for H®
write

I 1
H(2’<ij[Du w—sm( Su < —:—)dxdr

s an
where ¥ = 1 — (n + 1)*(m + 1)°. This implies

HA= ) [ | o7

s BZg

1
”x(?gulé—:*) dxdr >0 as e~ 0,

since u;, € 2%,
We finally estimate above the lim-sup as ¢ — 0 of the integral on the right-
hand side of (11.3.4). Using the definition (I1.3.3) of y and (11.2.6), we sce that

p [ [y — u), &P DL dx dv

s RN

13
:<‘ Y f I!I.AO \Dw(kﬂ (WJ(),n + 8)0 (W(Tl;).m ’Jf_ e)b Cp i llDCk X(ge) dx dv
S R

L4
+y | [ Ao |Dwyy! ey (F) P D dx dr. (I1.3.11)
s RN
The last integral tends to zero as ¢ — 0. Indeed it can be majorized by

CR+n+ 17 m+ 1) [ [ |Dwylr ' yF ) dx de
5 820

t 4

- 1 - | 1p— l
éyf f{Dul}”_'x[ul gs—}dxdr-%-yf f[Duz_kl" ‘x[ul g?J dxdr.

i
s By, s By,

(I1.3.12)

The sccond integral on the right-hand side of (I1.3.12) tends to zero as ¢ — 0,
since u, € L{,(S7). As for the first integral, let oo € (0, p — 1) be so small that
{og + 1) (p — 1)< 1. Then

_r Ip—1 I
yj fDuli 1 u1>;- dx dv
s By,

t

o op oo Dp 1) (xo+Dp 1) i
—_-yj leullﬂ—lul » u P) x l:u1>_] dx dv
s BZQ &
= pol=3ep | (orDip—1) i
=y f leul r uy ° ¥ [u. > ~] dx dv
5 BZQ £
t
V,Dul szex(m(f fu‘*ﬂ?”\l’ 1, [u > }dxa’r) —0 as ¢->0.

5 829
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We cxamine the lim-sup as ¢ — 0 of the first integral on the right-hand side
of (I1.3.11). The numbers k€ R~, n€ N being fixed, if # is small enough

(X, 1) €S0 wyy(x,v) = mpC Y.
Moreover since, Wi, € L0, T; WIARY)),
[Dw(y,l == 0 a.e. on {(x,7)C Sy wix, 1) > n}.
We write

!
[ [ Ao iDway, (Wi =+ € Wi = )57 1 1DE (B dx de
s pN

t
= [ [ Ao 1 DWioyni 0960 + &) Wiy =€) 57 VDS, dx dr
K} R‘V

4
- [ Ao ' Dwgy | (n + &) (m &)L DS glwiy > n) (Fe) dx de
s RN

t
+ [ [ Ao |Dwgyiet? 27 IDE 4(%9,) dx de
s RN
= KD+ KD 4 gD, (11.3.13)
As for K" the integrand tends t0 Ao [DWeya! (Wi n)’ Wiym)’ S8 71 IDS| ac.
By X (s, 1) in a decreasing way. Therefore

t
Ke(l) - J _[AO 'Dw(;).n: (w(-’l\:),n)a (‘v(;c).rrz)h Cp ! ID;; dx dT-
S RN

The last integral tends to zero as ¢ — 0. Indeed

>V 4 Duyy” ydxde -~ 0 as ¢-»0.

s

The operation Dw, coincides with the weak derivative of w, only on the sets
P where wg, is bounded by a constant /, i.e.

DW(;k) Z(‘d(“) = DW(;)'U).

Since Dw, is not well defined a.e. in the whole strip, Sy, we estimate K above
as follows:

(2) < (m + l)b doy p-1,4a @
K¥® = */T | ) J 'Duy — Duy i ufyluy > 0o+ ugy) 1(9,) dx de
s B2
=y - 1 _] f [Duy P ufyluy, > n) y(%,) dx dv
(m + 1)" '

+7 j f [ Duy g (P~ uiglug > n -+ uy ) (%) dx dv.
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If 6oc(0,p— 1), write

4
f f [Duy |7~ wiyluy > n) (%) dx dr

(ot DE—D (xo+1)(p—1)+ap

——fleull”‘ 2y ? zlu > n} ((%.) dx dr

p—1—~oo(P
=y (f f Du; *»
Choose xy and ¢ > 0 so small that

(o +D(p—D+ap=1. (I1.3.14)
Then yetPe—Vtarcrl (§.) and Vee€ (0, 1)

p—1 t 1
dx dr) (f fu("“’“)(" D¥ar oy, > n] dx dw)

! 1
[ [ |Duy [P~ uigluy > n} (%) dx dv = O (—’;-)
s B2Q
Analogously

H
[ S Dol i gl > 1 - i 190 d i
s By,

p—1—o5|p

?’(sft f’Du 4
(sf f!Du rdxd'r) (sf fu(uo+1)(p D+ap o[, >n]dxdr)1

of2)

We conclude that

A

p—1 t p—1
dxd'r) » (f fu‘,”’ug’“’“)("”l)x[ul > 1+ Uy dx dr) p
5

\l/\

— 1
lim K?<ym-+1)0 (—n—) kER, (IL.3.15)

provided &, and a>> 0 are so chosen that (11.3.14) holds. Combining these
estimates and limiting processes as parts of (1I.3.4), we obtain

1
-+ at+b+1 Pd
a+b+1 .5 {{:} (¥t o
t
talp—1) [ 1{ Ao | DWio ] W)t (Wom)" CF dx dr
| ® (11.3.16)
< N
=a+b+1 RN{{S} Wi 8o, £7

1
+— p» f on | DWiis ] W) W) C7 " dx dr - y(m + 1)° O (n ) .
s gN
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1
Remark. We remark that the term involving O (—n—-) holds V k> 0,
VO<s<t=T

The limits as k—oco and s—0. If n€N and k> 0 are fixed, we let

Wiy and Dw(,,, be arbitrarily selected but fixed representatives of the equi-
valence classes w,, and Dwg,, and introduce the sets

-S—‘i‘—)'—gé'( ) | DWiioa| (s T)}

&y Ei(x, 7)€ Sy | Wyals 7) <
¢ o
a(p — Doal) " ©=5 'r)} ,

where C is the constant appearing in the last integral on the right-hand side of
(11.3. 16) This integral is estimated as follows:

&, E{(x, 7)€ Sy | | Dwionl| (6, 7) =

;é f f Ao [ DWion| W) Wipm) 771 dx dr

= —5 f on [ DWynl W) Wiy m) C8 ' 5(641) dx dv
s gN

2C

& 7—Dogy . f f \Dw(k)nlp L Wiom)® Wi £7 742 dx dr

alp—1)
== D) f f Ao | Dy a* Wiip)* ™' Wil m)” & dx de

47 c
a” i(p—1)?(00)” s

We carry this estimate in (I1.3.16), move the integral involving | Dwg, , | onto the
left-hand side and drop the resulting nonnegative term to obtain

1
Wi )P P dx
at+b+1 RNxf{t}( @) 4

1
[ wEwh ) dx
~a+b+1RN>{{s} Wiy &

1
Zg;)z’ f J 0o o m)’ dx dr 4 y(m + 1)) O (n )
B(1 +o)o
b (IL3.17)

We now let k—>oo while s> 0, n, m, € N remain fixed. Since w; \, w™,
we may pass to the limit under the integrals in (I1.3.17) and obtain the same
integral inequality written for w*. In particular the first integral on the right-
hand side takes the form

1
— + (e b 2 dx. 3.
a+b+IRN){{s}w Ow )7 87 dx (IL3.18)

f f Wio) 1% (Wioym)” dx dr.

+
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As s—0, the integral in (I1.3.18) tends to zero since it can be majorized
by . , JOT1:
na+b
—— +rp N
a+b+1RN£{s}w 2 dx—0 as; > 0.
These limiting processes yield
I (w’-}i;)a+b+lép dx
RV {1} '
MPCELED [ f uytre )t de

_ V4 !
(GQ) 0 B(I +ao)o

+ya+b+1)0m T1to (%) . (1L.3.19)

Proof of Proposition I1.3.1. We let n—oco in (IL3.19), while mc N remains
fixed. The integrand in the last integral tends to (wF)? 1 ™4(w};)? a.e. in By ;o) ¥
(0, ¢) in an increasing fashion. Moreover if @ is so small that

p—1+4+ac(0,1),. (11.3.20)
it is dominated, uniformly in n, by the function
wHPI e (w) € LiodSp).
The limit process gives _
at+b+1)

[ whytttierde < o) > [ [ whHr e wh) dx de.
RV {1} (o) 0 B(1ta)
. (I1.3.21)

This inequality holds ttue- Vm € N, Vb =0, Vo€ (0, 1), V.o > 0. The positive
number « is fixed and satisfies the restrictions (I1.3.14) and (11.3.20).

The sequence {w;;} increases to w* a.e. Sr. Therefore we may pass to the limit
as m—>oo under the integrals in (11.3.21) for those b = 0 for which

(wHP=1Harh € Lio(Sp).-
If ;=0 is one such b, letting m—>oo we find that
wh)etoitl e Lio(So),
which irhplies that
(wry—ttetbicie L (Sy), by =bit+2—p>b

Let 6, =0 be defined by p —1tatb,=1 Then the‘ previous. rema_rks
show that

(W+)p~1+a+ba+i(2~p) = (w+)1+i(2—p) € Llloc(ST)a i=0,1,2,....

Interchanging the role of u, and u, proves the Proposition. []
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II.4. Proof of Theorem II.1.1. From (II.3.1) by Holder’s inequality, since
re(,2)
g+@—2) NQ2—p)

flw(t)lqu_(Q)Pf( f |w(r)|"dx) R

B(1 +o)e

IA

: _2=2. N@-p)
lp(sup f |w('1:)|‘1a'x1 7 10" a L. (IL4.1)
% \o<r<r By gy

Let o> 0 be fixed and for n= 1,2, ..., define

= (Z 2_i) 0, Bn = Bgn, Op = 2~(n+1)p’

A, = sup f]w(v:)\qu

0<z=t B

and rewrite (I11.4.1) over B, and B, to obtain

N(p—2)+pq 2—p

azyelge 7)) 7 (IL4.2)
Let d,€(0,1). Then since 1<<p <2

nq N(P—ZH—PQ) q

Ay S o + 9N, 2, 00 @ P (e P, 143
and iteration of (I1.4.3) gives

Np—-2+pg\ 9 n+1 _Pg N\i
Ao = 04ys + 9,00 (e o )77 S (5,2777).

i=0
4
If §, is chosen so that 6,2%"7 = 4, the last sum is majorized by a convergent
series. Letting # — oo proves that for every g€ [1,o0) there exists a constant
y = (N, p, q), independent of g, such that for all r€(0,T)

No-2+pa\_q
Bf iw()[* dxéy(f/g a )2“1’. (I1.4.4)

4
To prove the theorem we choose ¢ so large that

N(p—2)+pq>0

and then, such a g€ [1,00) being fixed, we let ¢ —oco in (I1.4.4). [

Chapter III. The Cauchy Problem

II1.1. Introduction, We will construct a solution to the Cauchy problem
u,— div(|Du|P?Du)=0 in S;, 1<p<2

ILI.1
u(', 0) = uo() ( )
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under the assumptions
Uy =0, 1€ LL(RY). (II1.1.2)

In particular no growth condition is imposed on x— uo(x) as |x|—>oo.

The solution will be in the class 2 and it is meant in the weak sense made pre-
cise in Section I.1. In fact, it will be in 2* (see Section I1.1) and therefore it will
be unique.

If u,€ L'(RY), the existence of a unique semigroup solution is known (see
[5, 15]), even without sign restriction on u,. However it is not clear to us what is
the a.e. St meaning of Du, if any, for such semigroup solutions, nor how the
equation has to be interpreted. For this reason we have chosen a simple approach
based on a priori estimates in spaces of integrable functions.

Let {u,} be a sequence of sufficiently smooth approximating solutions. There
are two main difficulties in showing existence. The first is an a priori bound of the
type

u, € LL(Sy), uniformly in n;

and the second is to identify the weak limitin L],. (S7) of the sequence of nonlinear
terms {|Du,|? "2 Du,}.

The first is overcome by a Harnack type estimate whose proof requires that
uy = 0. To deal with the second we need some time-regularity of the approximat-
ing solutions, which is supplied by the Bénilan-Crandall regularizing effect [5]
if ug = 0.

It would be of interest to know whether solutions to (ITI.1.1) exist if u,€
LL(R™) with no restriction of sign, or even in the case of u, € L*(R") if the semi-
group solution can be given a concrete a.e. meaning. We establish existence of a
(unique) solution to (IIL.1.1) in Sections II1.2-4.

In the remaining sections we prove some properties of these solutions, such as
how u, € LL(RY), g > 1 reflects on the regularity of u (§ IIL.6-111.7).

I11.2. Existence of solutions (u,€ C3°(RY)). As a starting point we consider
solutions of (ITL.1.1) for smooth initial data.

Let no€ N be so large that supp u, C B,, ={|x|<n,}, and Vn=n,
consider the boundary value problems

o

Eun*div(lDunP_zDun):O, l<p<2,
in 0, = B,%(0, ),

uﬂ(XDt):OQ Ix‘:n’ tE(O:T)a
un('a O) = uO(.)'

Existence and uniqueness of a weak solution to (ITI.2.1) is established for ex-
ample in (Lions [21]) by means of Galerkin approximations (see also [19]).
The solutions u,, # = ng, #y - 1, ... satisfy

(I11.2.1)

u, € W0, T; L*(B,)) N L=(0, T; W(B,))
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with the a priori estimates

2

5;”" v

-+ ess sup | Du,ll5 5, < | Duo |5 rN
O 0<i<T (I11.2.2)

Hun”q,Qn g H.uOHq,RN: v q € [1: OO),
and the equation is interpreted in the following sense:

Vn=n,, VO<R=Z=n VO<I=T,
Vo€ W0, T; L3(Bp)) N L?(0, T; W'(By)),

t
[ux, ) o(x, t)dx 4 [ [{—u,p, + |Du,|?~* Du, Dy} dx dv
Bp ¢ Bp

= f up(x) p(x, 0) dx. (111.2.3)
Br

By the maximum principle V rn = n,

U, g 0: Hunnoo,Qn é Huo ”oo,RN- (11124)

By the comparison principle applied to the pair u,.;, u, over Q, we have

Upy1 =1, ae. Q,. (11.2.5)
We view the u, as defined in the whole strip S by extending them to be zero
on |x|=n, n=ny, no+1,.... It follows that
() S uc LA(SP)NLY(Sy), ae. S, (I1L.2.6)
and if Qg =Bxrx(0,T), YVR>0
Uy — Uy in L*(Qr), Du,— Du, in L7(Qp), (I1L.2.7)
|Du,|P~* Du,—~ 7 in L”_Ii—l Q. (ITL.2.8)

Letting n— oo in (111.2.3)

Jux)o@x, tydx+ [ [{—up.+ ¥ Dp}dxdv = [ uop(x,0) dx,
BR 0 By By

(I11.2.9)

for all R> 0 and V ¢ specified in (I11.2.3).
Fix R>0 and Vr> R in (IIL.2.3) choose

9= ud

where x->{(x) is a non-negative piecewise smooth function vanishing for
|x| = R. Standard calculations give

n—> 00

lim [ [|Du,|PCdxde=1% [(3—w2@®))ldx— [[(}¥DE)udxdr.
0 By Bg Qr
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On the other hand, by taking ¢ = #{ in (IIL.2.9) we obtain

r
2 [@— W) ldx— [[(F DD udcde= [ [(3Du)ldxdr.
.BR QR OBR

(111.2.10)
Therefore

H>ceo

lim [[|Du,|*¢dxde= [[ y Duldxdr. (111.2.11)
Or Or

If £=0, Ve=n, Y€ CPSy)
[ [ (|Pu,|?~* Du, — | Do |"* D) (Du, — Dg) { dx dv = 0.
Or

Expanding this expression, letting » —oco and using (I11.2.11), gives Vo<
Cy'(ST)

[f (Z — |Dg|”~? Dg) (Du ~ Do) £ dx dv = 0.
2r

Hence y = |Du|”"* Du by MinTY’s lemma [24]. We conclude that if
1o € C(RY) the problem (I11.1.1) has a solution « in the sense of the integral
identity (J11.2.10) satisfying

u, € L2(0, T; L*(RY)),
|Du| € L7(0, T; L’RY),
U 6 Lm(ST) N

Moreover by the results of [13], u¢ C"‘(:S:T) where o € (0, 1) depends only upon
N, p and the Holder norm [Ju, Hcﬂ@n y for some f¢ (0, 1.

This construction procedure was also used in SABININA [28] in the framework
of the porous-medium equation.

I1.3. A priori estimates. We let (x, 1) — u(x, #) be the unique solution of
(IL1.D) with 4, =0 and u,€ CPRY). In view of (I11.2.1) such a u satisfies the
equation in the sense of (IT1.2.10) with ¥ = |Du|?~ Du, or equivalently in the
sense of §1.1, so that the estimates of Chapter I are valid for it.

Lemma XIL. 3.1. 2 y depending only upon N and p suchthat VO <t =T, VR> 0,

L
sup [ u(x, ) dx <y {B [ ug dx + (?';;)Z—P}, (111.3.1)
2R

O<r <t BR
where

x = N(p—2)+p. (111.3.2)
Proof. For n=10,1,2,..., let

n _ R, R,
R—R327, Ry= TR 0 g x(,0)
i=0 '
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and let x — {,(x) be the standard non-negative piecewise smooth cutoff function
in By that equals one on By and such that

L(x)=0,|x|>R, |Di,|=2""¥R.

Choose £, =¢ in (IIL.2.9) to obtain by standard calculations

sup [ u(x,7)dx = fuo
O<r<t BR
Set
M, = sup [ u(x,7)dx,
0<r<t BR
and estimate the last integral by (1.4.3) of Lemma I.4.1, with s =0, r= R,
R=R,,;, and

We obtain
y onp t P 2p—1)
M, = fuodx—}— {f f (t_,,,)p ( )p(z )

Bar R 1

BRy 11
1

1 2
-+ 7 sup f u”(p 1)(x, T) dx}

0<z<t Bp i1

11 t__.
f%dx+y2”{(y)“P+( ) A@ﬁ‘}. (111.3.4)

Bzx

If 6,€(0,1), by Young’s inequality

7 2 ( x)p Mg—l-pl < 60 n+1 + V(N paéﬂ) 22_P (F)Z—p’

1
where (N, p, 0o) = [y? 3@ V]2,
Combining these calculations, we find the recursive inequalities

‘ 2 !
M,< 0o M, .+ 9N, p, §p) 2277 [ fuo dx + ( ) "”] , (IIL3.5)

Byr
n=20,1,2,....

The proof is concluded by means of an interpolation argument similar to that
in Theorem L.4.1. [J

Corollary IIL.3.1. Ay = (N, p) such that
VO<s<t=T, VR>0, (111.3.6)

r—s\L I3 1 (p— 1)
— y4 U, d — —p\p
R ) {Bﬂ{ 0 er(R) }

1 H
fffwwﬂwwgy(
8 BR
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Proof. Combine (I.4.3) of Lemma I.4.1 and Lemma IIL.3.1. [

From the results of § 1.2 and inequality (I11.3.1) we obtain gradient estimates
depending only upon the initial datum wu,. In particular Lemma 1.2.2 yields

Lemma I11.3.2. Ay =y(N,p) such that VO<t=T, VR>O0,
Vaé€ (Oa P — 1)3

p—1—x

13
f fDu 4
0 Bp

" ax de < = 1;}_ e [Bmf up dx + (th;)alrp]‘—“.
(11.3.7)

As remarked before, the estimate deteriorates as « \, 0. The next lemma
supplies some information on the case « = 0, and it will be needed later to show
that the solution of (IT.1.1) is in Z*.

Lemma ITL.3.3. Let x€ (0, p — 1) be so small that (x+ D(p — 1)< 1. Ty =
Y(N,p, ) such that YO<t=<T, Yk, R>0, YC>1,

t
[ [ 1DufPu=ylk < u < Ck) dx dv
o Bgr

(Do) sy L £\l y2ae= D)
o P e G

+InC [ uoxluo > kldx. (111.3.8)

Byr

The constant y(x) /oo as « \0 oras o /' p— 1.

Proof. If C > 1 is fixed, let
(b fo<u<<k
uf={u fk<u<Ck
Ck if u=Ck
and in (II1.2.9) take the test function

) '
(55 ¢ 0.

where x— {(x) is the standard cutoff function in B,z that equals one on Bkg.
Standard calculations give

ff[Du[” %x [k < u< Ckldxdr

0 Bp

’ t u . ’Ck
Z—fowufp-lx[u> k]dxdz—ffg;(f In—l—l—lﬂé———}df)é(x)dxdr
0 Byr 0 Bog

k

A

=GP + GP.
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Let « be any positive number satisfying « € (0,p — 1), (x+D(p— D <1
Then by virtue of Lemma II1.3.2

(@t DE-1) (+De-D

G(1)< yf le ‘p 1 p u 14 x[u>k]dxd’6
R Bor
p p—1 2}) t l p—1l—ap—1 (@+1DE-D
——_— — Du * u ? [u> k] dxdr
(p —-1- 0‘) R OfBzz{ ’
) e B 7
7 (f f lD ) dxdr) P (f fu(“+1)(p_l)x[u> k] dxd'r:)l’
0 Byg 0 ByR
Ll =
gy(olc; P [ fuods 4 (tk)z_p] = )[f [ DDy ] dxdr]p
Bar 0 Byr
@+Dp-1 1
_g_Y(lx’ p)[ [ uo dx + ( ) *1’] » [ sup [ u(x,7) dx} Pt
R B4R 0<z<t Byp

1—(x+Dp-1
)—————,,

-(sup fx[u> kldx

0<v<t Bygp

- con (o

1—(x+1)p—1)
] z

[ sup fx[u>k]dx

0<r<tByp

The last step follows by use of Lemma II1.3.1. Using it again, we obtain

sup fx[u>k]dx<k{ fuodx—{—( )1}

o<r<t Bz R
Therefore

_1=GDG-D
e

As for GP, it is estimated above by

f(flnwdé') dx=InC [uox[uo>k]dx.
k . .

Byp K Bor

1 t 1 yp—sp—1)
o (P
B

This proves the lemma. []

The next estimates concern regularity in the time variable. The proof of the
following lemma is known and is included here for completeness.

Lemma II1.3.4 (BEniLAN & CRANDALL [5]).

1 u
4 ae Sy. (111.3.9)

v
l
S
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Proof. The unique solution v of (III.1.1) with initial datum

x —v(x,0) = 271:5 ug(x), A>0,
is given by
x,t)—>v(x, t)= )L;’l:z u(x, At)
because of the homogeneity of (IIL1.1). If A =1, ov(x, 0) = ue(x) and o(:, t)
<u(-,t) inRY, V¢c(0,T). Choose 1= (1 + —i—tl—) for a small positive number 4.
Then

u(x, t + h) — u(x, t) = u(x, At) — u(x, t)

11

= A2P AP 2 y(x, At) — u(x, t)
1

= A2 0(x, t) — u(x, £)

= (PI_"P — 1) u(x, t).

By the mean value theorem,

h p-1
ulx,t+h) —ulx, 1) = T;_p(l 4+ &2"Pu(x,t) for some £€ (0, —}—;—) .
(I11.3.10)

If <0 (and |h| < 1), A<1, v(x,0) = uo(x) and (111.3.10) holds with the
inequality sign reversed. Divide by 4 and let 2#—0 in 2'(S;) to prove (IIL3.9).

O
Remark ITL.3.1. In Lemma II1.3.4 are essential

(i) the homogeneity of the operator in (IIL.1.1),
(ii) the positivity of the initial datum .

Lemma III.3.5. Let o€ (0, p — 1). There is a constant y = y(N, p) such that

VR>0, VO0<s<t<T VoO=a+1,

' 1 \2—
[ fu+D uwidedr=y (EZ’) 2=r RV (IIL.3.11)

s BRr
y A Y=
! s (7
TS —1 —o«)JP{Bﬂ{ RV
Proof. Let 0 <5< ¢ =T and R>0 be fixed. Consider the cylinders
QO EBRX(S’ t)’ Ql EB%RX(% 55 Z):

and let (x, 7) — &(x,7) be a non-negative, piecewise smooth cutoff function in
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O, which equals one on Q, and is such that
2 2
< — < -
}DZ]:R; O:Zt:—_—s .

At first we will proceed formally. The calculations below will be made rigorous
later. Multiply (III.1.1) by the testing function

uu +1)7° 2,
and integrate by parts over Q;. We obtain

ff(u + )2 dxdy = — ff | Du|?~2 Du D(uu + 1)~ £2) dx de
(e Q1

1 0
:_?fogt-|pu]l’(u+1)*" £2 dx dr
+ 6 ff]Du\"(u+ D1y, 2% dx dr
Q1

-2 [Du|?~2 Duuu + 1)~ ° ¢ DC dx dv
i
é%(p—— 1)Qf1f;Du|P(u+ 1)~0~1 u, 22 dx dv

—I———i—gj:leu]"(u—I— D)7 22, dx dr

4
) s
g ngf DulP™ @+ 1) (e D7 e de e

= a0 1 5D L g®.
By Lemma I111.3.4

6p—1) 1
AV < —— = Dul? (u+ 1)"° 2 dx dr.
2 —p) SQfxfl Pl 78
By Young’s inequality
8
AP =<L [[(u+ D2 dx dv + 11-gff | Due=Y (u + 1)~ dx dv.
Ql Ql
Since 1<Cp <2, this last integral is majorized by
1 t\_2_
< JJ 1Dl @ D77 v de 1 y(p) (F)Z‘PRN.
Combining these estimates, we find that
[ A
fo(u + D P wZdxdr <y (R—Z)Z“’ RY -+ ZS— [ 1Dul? -+ 1)~° dx dv.
o 5 0
(I11L.3.12)
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By Lemma IT1.3.2 if «& (0, p — 1), this is estimated by
% [ [ |DulP u=@+D (y 4 1)~ C+D gy gy
0Oy

1—uo|p

<L (o=t=) Jilo T

= Tt —= 0P {BM{ o dx -+ ( ; ) zip} -

and the lemma follows by formal caiculations.
To make the calculations rigorous it will suffice to show that

dx dv

Du, € LioSr) - (I11.3.13)
Indeed, if so, we may take in the weak formulation (II1.2.9) the testing function

u(t 4+ h) — u(?) 2
h
where 0 << A< 1ts and { is the cutoff function in @;. The limit as 4A— 0 is

justified and we may proceed as before.
To prove (II1.3.13) we refer back to the construction procedure of § IIL.2.

0
Let u, be the unique solution of (I11.2.1). By the results of [5], o is bounded

over B,x(s,t) with bounds depending only upon [uo ||, g~. Therefore

0
e —u,& Lin(Sy) uniformly in n.

Here, as before, we view u,, — u,,, Du, as defined in the whole strip Syby extend-

0
ot
ing them so as to be zero on |x|> n.

By the interior elliptic estimates of [10] and the boundary estimates of [14]

(see remarks on page 104)
| Du,| € Lis(Sy)  uniformly in #.
Next write the first of (II1.2.1) for the time levels ¢ + A and #, A€ (0, 1) and set

unt + k) — u,(t)
7 .

By difference
w, —h='divd,=0 in B,x(©,T— ), (111.3.14)
where

Ty = |Du(t + h) |72 Du(t + B) — | Du,(r)|? >Du,(2).
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Fix 0<Is<<t=T—h and in the weak formulation of (IIL.3.14) take the
test function w(¢ — % s), which vanishes on |x|=n and on 7= 4s. Standard
calculations give

T—h T—h
f [@—19, 4o, |Dw]? dxas gyof an

38 By

t+h

]
i f u,(x, v) dr

t

2

dx dv

(I11.3.15)
where

1
Aon= [ 1Dt + )+ (1~ u(0)]7~ df

(compare with (I1.2.4) and (I1.2.6)). By virtue of (II.2.2)
T—h
.

Since 1< p <2,

t+h

0
— u(x,7) dx
°

o 2
dxdr = vy||—u =y f{Duol”dx.
ot Tlho, Ry

Ao,n g [2 I]Dun”oo,RNx(—%s’T)]p_za

and it follows from (I11.3.15) that

)

s RrN

Du,(t + h) — Du,(t)P
u(—{—h) u()dxdr

14 _
= (1Du, | o v s s, ) > 77 W Dtto | 2 v | {supp 010}]. [
We record a simple consequence of Lemma I11.3.5.
If x— {(x) is the usual cutoff function in B, that equals one on Bg, we find
from the weak formulation (II1.2.9) with ¢ =¢, VO<s<t<T,

t

[ @y taxde — ft [ )¢ dxdr

5 Bar s ByR
4
=— [ Juldxde
s Byp
t
= [ [|Du|?"2Du D¢ dx dr.
s Bap
Therefore

J Jwydxde < | f(u,)+dxd7:+~1—ft S| DulP~dxdv. (I11.3.16)
s Bp R s Byp

5 Byp
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By II1.3.9 and 1IL3.1

[ [wytdxdr < f f u(x,t) dx dr

5 BZR (2 p) s BZR
t— £\ 5
g Y f Ug dx _]“ ( ) .
S \Bgr

We estimate the last integral on the right-hand side of (II1.3.16) by Corollary

II1.3.1 and obtain
s £\l \2e=D
) ( fuo dx + ( ) ) p
B4r

—f [ |Duj?~ Iafxd'r<y(
o e )

s By
Combining these estimates we deduce

Lemma I11.3.6. There exists a constant vy = y(N, p), independent of u,, such that

VO<s<t<T, VYR>O,
(I11.3.17)

f f]u,]dxdr<yt1’ (: )P( fuodx—{—(t)z—l_;),

B4r

III.4. Approximating problems. If u, € LL(RY), and u, =0 is given, we con-
struct the increasing sequence of functions
uo ifup<<n |x|{<n
upp=1n fuo=mn |x[<n (I11.4.1)
10 if x| =n

and consider the sequence of Cauchy problemé

u, — div (| Du, [P ?Du,) =0 in Sy, 1<p<2

ot (111.4.2,)
un(" O) = Up,y-
A solution of (II1.4.2), is a non-negative measurable function u, satisfying
u,€ C(0, T; Li,R™) N L7(0, T; WiE(RY)), (I11.4.3)
l1tllco,57 = litto,nll o, mNs (11L.4.4)

VO<I=ZT, VR>0, VgeW"0,T;Lh®RY)NL0,T; W"(Bp),

f u,(t) o(t) dx + f f {~up, + |Du, |’ =2 Du,, Do} dx dr = f o, ,p(0) dx.
RN 0 RN RN
(111.4.5)
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For each n€ N there is a unique solution u, of (I11.4.2),. Moreover, u,
satisfy the estimates of § II1.3 uniformly in #.

Uniqueness follows from Theorem II.1. For existence, if n¢ N is fixed, let
Vo = Uy, and let {vy,}, mEN be a sequence of C3°(R") functions such that

Vom—>Up, in LRV, V1I=Zg<oo
(I11.4.6)
lvomlleor¥N = n + 1.

If v, are the solutions of (III.1.1) with initial datum v, in the sense of (I11.2.2)—
(IIL.2.3), by standard energy estimate and the comparison principle

T
VR>0,  sup lon®) Ry + ID0mlEagniom < ¥ + 12 RY (1 + ~R—) :
O<z<T
(111.4.7)
vanoo,ST é h + 1 Vm € Na (III.4.8)
In particular, by the results of [13],
Um € Cloo(ST) (I11.4.9)

for some &€ (0, 1), uniformly in m.
By a diagonalization process we may extract a subsequence, relabelled m,
such that

Um—> v =u, in L*(0,T;L{(R")), and uniformly over compact subsets of Sy;
Dv,,—~ Dv=Du, weakly in L7(0, T; LL,(R™)).
Write (I11.2.3) for v,, and let m-—>oco to get
t
[@p) @D dx+ [ [{—vp,+ %, Dy}dxdv = [0vep(0)dx, (II1.4.10)
RN 0 RN RN

for all ¢ as in (II1.4.5).

The identification ¥, = |Dv d ~2 Dy is carried here as in §IIL.2 except for
identity (I11.2.10), obtained from (I11.2.9) by taking ¢ = ul, where x— ¢(x)
is a non-negative, piecewise smooth cutoff function vanishing for |x|= R. In
(I11.4.10) we cannot take ¢ = v{ since v,€ L{,«(Sy) (see Lemma II1.3.6 and [5]),
but

04 L0, T; Lb(R)).

Write (111.4.10) for the time levels ¢ and s and subtract. Using the fact that
0
E”"ELl(s’ t;L'(Br)), VYO<s<t<T, VR>O0,

by standard calculations and density arguments we obtain
SN
f j {—8_1‘ U + xn D(p} dxdv=0 Vegc A(}IOC(ST) (see §L.1), (IIL4.11)
8 RN

lim Ju,) p)dx = [ug,p0)dx ¥YR>0, VneN. (111.4.12)
T BR ‘BR
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We use (IL.4.11) to identify

#n = |Du,|"~* Du, in RV, T) YO0<s<T (I11.4.13)
and derive (IIL.4.5) by letting s — 0.

II1.5. The limit as n — co. By (I1l.4.1) u, . u a.e. Sy. In view of (II1.3.1)
and Lemma IIL3.6, u ¢ C(0, T; L{,(R")), and there exists a constant y = y(N, p)
such that VO<r=<7T, VR>0,

1
t\2->»
su ulx, 7y dx = Uy dx (——,,) .
ons Blj; () v <Bsz o+ R )
(IL.5.1)
p—1—a
By Lemma III.3.2 the sequence {u,, 4 }, «€ (0, p — 1) is equibounded in
LP(0, T; W'(Bg)), ¥ R> 0. Since the whole sequence u,—>u in Lj(R")
p—1—« p—1—u

u, » -~ u * weakly in L?(0, T; W'?(Bg)), Y R>0.

This implies that the sequences
Wi = U, Ak = min {u,, k}
are equibounded in L?(0, T; w'?(B,)), YR>0 and

Wien— Uk weakly in LP(0, T; W'*(Bg)) YR>0, Yk>0.

(111.5.2)
Analogously, by Lemma II1.3.5 the sequence

) 2=6;
— (u, 1) 2 )
(8t (u * ) neN
is equibounded in L1 (Sy), VO =& + 1, V&€ (0,p — 1), Therefore

VO<s<t<T, VR>0,

2—08 2—0
2

2

—g;(un + 1) — —g;(u + 1) weakly in L2(s, t; L*(Bg)). (IIL.5.3)

This implies that

1]
(’8_1 Wk,n) € leoc(S T)

uniformly in » and

0

8 t
o Wer ~ B (urk) weakly in Lh(Sy) VYk>0. (IIL53)

Choose o & X, wc(S7) and in (I11.4.14) consider the test function
o= (p— ). (II1.5.4)
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Fix 0<s<<t=T and let
k= ”w”voo,RNX(s,t)'

Then (y —u), = (p —unk),.€ A;IOC(ST) so that ¢ in (II1.5.4) is an admissible
test function in (I11.4.11) and we obtain

1
e}
f f:B_ up — )y + |Du,|?* Du, D(y — u)+} dx dv = 0. (I11.5.5)
s RN t
Since u,=<u, YneN, a.e. Sy

7 7
—é;un(“/) - u)—{- = 'b?tun('p —uh k)-l—

0
=§(u,, AkY(y—uw, ae Sq.

Therefore in view of (I11.5.3)

t

t
. 0
hmf‘[aun(’/’_‘”ﬁdx‘h:f{(“/\k)z(w-—u/\k)erxdz
s R R

n—>oK
8

Eft fut(ep—-u)+dxdr.

s RN
Analogously, since u, =< u a.e. Sy, YunEN
| Du,[7~% Du, D(p — u), = | Dty 7 k) "~ Dty 1 K) Dp — 1 A K), .
By virtue of (II1.5.2) the sequence
{| Dty 7 )P~ Doty A e

P _
is equibounded in L 1(S7) and

D(u ~ k)€ L?(0, T; L}, (RY)).
Let R> 0 be so large that
supp {x = p(x, )} C B, VO<t<T.
Then by possibly passing to a subsequence (depending upon s, R, k)

2 P _
| D(u, AE) P2 D(u, A k) —~ 5 (k, s, R)  weakly in L"“1<s, T; LP“I(BR)>.
Letting n—>oo in (ITIL4.11) with y, given by (I11.4.13), we find that

?

[ i J{uy — )y + 705, Dy — w), dxdr =0 V€ XiolSp).
5 R
(I11.5.6)
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To show that the function u so obtained is a weak solution of (III.1.1) we have
to prove that

VO<s=T, VR>0 Vypc j’}oc(ST) such that (A)
{suppx —>p(x, )} C Bz, YO<t<T, k= |9[wrNxen:
7k, s, R) D(y — ), = |D(unk)P>D(u k) D(yp — 1),
= |DulP~2 DuD(y — u),.
This will identify the nonlinear term in (IIL.5.6).
VR>0, }%Eglu(r)—uo[dx:O. (B)
This will specify the sense in which the initial datum is taken.
II1.5 (i). Identification of %(%, s, R). We refer back to the equivalent formulation
of weak solution in RVx(s,#) YO0 < s<<t =T, introduced in § I.3.

Let «€(0,p — 1) be fixed and let J, ¢o, f, dy be as in (1.3.1)-(1.3.2). For
n=12... let

p .
Un:p____l__ (un+1) r
Then
g 4 ) *2 1 . ,
Co 57 Un — div (| Dv,[?~? Dv,) = d, |Dvn]1’~v—— in 92'(Sr), VneN.
IL.5.7)
By the estimates of § II1.3 we have
Dv, equibounded in L{,(Sr), (I11.5.8)
P
v,€ L{c! ~%(S7), uniformly in n. (I11.5.9)
By the construction procedure the sequence {v,} is non-decreasing and
' p p—1—=x
Un/u=m(u+1) 7 a.e. Sy.

Therefore as n—oco for the whole sequence {v,}

Dv,— Dv  weakly in L{,(S7),

P

v,—~v in L' (Sy).
Tet 0<s<t=<T and R> 0 be fixed and set

O = BrX(s, 1).
Since

_r
|Dv,|P~2Dv, is equibounded in Lfx.'(St)
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by possibly passing to a subsequence (relabelled with n)

2
|Dv,P~2 Dv, ~ E weakly in L?~'~*(Qg).

We will identify Z as |Dv|?~2 Du.
If neN is fixed we have

v,€ L®(Sy) (depending on #)

7}
gt—vﬁELlfc(ST) (see [5], depending on ).

Therefore in the weak formulation of (II1.5.7) we may take the test function
v,. where x — {(x) € C3(Bg). (111.5.10)

By standard density arguments we obtain

T —~5ch : P2 Do, v, D dx dv
= (do — 1) sft3£;pv,,|f’5dx dr. | (ITL.5.11)
As n—>co
%B{{v ﬁ+1f‘“’(s)c:dx+ [ EDC dx du
= (5‘;1'11:—“) lim i Dol € (IL5.12)

Consider now (I11.4.11) with 7, given by (I11.4.13), and in its weak formula-
tion over Q, take the test function

(u+1D7%,, «€0p—1, ZL€Cy¥. (111.5.13)

Observe that by virtue of Lemma IT1.3.5 applied to u,, by weak lower semicon-
tinuity we have
2—0

0 2 ¢
@+ D ELidSy), YOza+1.

By the Holder inequality, if 27" is a compact subset of S,

11—«

ff(u—!—l)““i(u—l—l)tldxdr_ff(u+1) 2 |(u+1),|(u+1)2 dx dv

(ff(u—l—l) “*“)(u—kl);dxdr) (ff(u+1)‘ "‘dxd'r)<oo
Therefore

]
prlCRs D€ LL(SD). (I11.5.14)
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Using the test function (II1.5.13) in (II1.4.11), we obtain
ft Bf(u,, + D, (m+ 1) *Ldxdv + fth | Du, [P~ Du,(u + 1)"* D{ dx dr
5 By 5 Bp
= (xéf | D(u,, + 1P D, + 1) D + 1)"FD D(u + 1) { dx dr. (1IL5.15)
R
We transform the various terms in (IIL5.15) as follows:

(a,) jf—(u+1)(u+1)~ ¢ dx dv — f(u,,—}—l)(u—l—l)“"‘édx

Bp(t)

— f(u,,—l—l)(u—f—l)“"é‘dx—]—ocf f(u,,+1)£(u+1)(u+1)—“*1cdxdr
Br

BR( 5

u, 1+ 1
u-+1

R e R ff(

Br(®

)-—(u—{—l)1 *Cdx dr.

We let n—o0, Since

/’ 1 ae. Sy and ——(u + D'7%¢ LL(Sy)
by (IIL5.14), we obtain ~ “ T 1

ey
(a) SfB{Ez-(u,,—i—l)(u—l—l)‘“Cdxdr

~>—— f(u+1)1 "‘Cdx—————— f(u+1)‘_“5dx
BR(t) BR(S)
p— 1 — 0"[ 00}3 A1 Coﬁ B8+1 ]
= ) ¢dx — " Ti(s) £ dx].
P B+ 1y B+ 1y

Next

®  [[|Du, P2 Duu+ 1)"* D¢ dx dr
N _(+DEP-1)
= [[ D@, + DD+ D@+ D 7,
Or
(x+D@p—1)
(@, +1) 7 (u+1)"*Didxdr

(x+1D(p—1)
=ff | D, [P~2 Doy(u, + 1) ?  (u-+1)"*Dldxdr

~—10¢ 1

- [+ D7 DCdxdrE%—jfffDidxdr.
or
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Finally
© o f 1Dt 07D 1 Dk ) D ) e
+Dp-1)
-*zxfj | Dv,,|P~2 Dy (Z;"j__ll)__P__Ddexdr - (xffEDCdx dr.
Or

Letting n->oo in (II1.5.15). Multiplying by 1_1—1117——_&’ we obtain

0018 B8+1 cOﬂ B41 =
_— Cdx — vl dx 4 | | Bv DC dx dv
B -+ 1BRf(t)U g+ 181}[(;) (le{

— _1___ ffu Dv tdxdv. (II15.16)

We compare this with (I11.5.12) to conclude that
t ¢
lim [ [|Dv,JPtdxdv= [ [EDv(dxdr. (IIL.5.17)
n>®s Bp s Bp
Next VR >0, Ve X (Sp), YVZ€Cy, (=0, YreN
[[(Dv,[P* Dv, — | Dy|?~* Dn) (Dv, — Dn) { dx dv = 0.
or

Expanding the integrand and letting n-—> oo with the aid of (II1.5.17), we find
that

[[(E — |Dy|P~>Dn) (Dv — D) { dx dr = 0.
9OR
This and MinTY’s device [24], imply that
5= |Dv|[P~2 Dv.

Now that the limit = has been identified, we conclude that for the whole se-
quence

|Dv,[P"2Dv, —~ |Dv[""2Dv weakly in me 1(Sp).  (1IL.5.18)
We return to (II1.5.6) and identify 5. To this end we let #— oo in the non-
linear term of (I11.5.5) as follows:
t
[ [|Du,|P~2 Du, D(yp — u), dx dv
s gN

e+ )p—2) @+D@E~1)

—f L]D(u,,—l—l)tl’—ZD(un—l—1)(un+1) P 1) 2
5 R

X D(y — w), dx dr

# (+DE-1)
= f(IDUn P2 Dv,) (u, +1) » D(y — w) dxdr
s gpN

Vac (O:p _ 1): v "/JE jloc(ST)-
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Since u, /" u and since u A k€ LLL(ST), k = ||[9llcorNx(sn, We have

(@+DE—1) @+ p—-1)

w,+1) 2 Dy—w,=@u,rk+1) ? Dly—unk),

(x+D(p—1)
> @nrk+D) 7 Dy —unrk)y in Lb((Sp).

We let #— oo and use (II1.5.18) to obtain

t

[ [ |Du,|?~2 Du, D(y —u), dx dr
s gpiN
t (+DE-1
— [ [|Do)P2Dou+1) 7 D@ —unrk) dxdr
s RN

t
= [ [|Dul"2 DuD(y — u), dxd=.
5 RN

111.5 (ii). Continuity in L, (R™) at £=0. Let x— K(|x|) be a mollifying
kernel supported in the ball {|x|<<1} and for £€(0,1) and f€ L (R
let

x|

K=ok (). fi=Kees,
The kernel K(-) can be chosen so that
VfE Llloc(RN)’ YR> 09 Hf“ o, Bp g 8_N “f“l,BzRa
[Dflloop = Ce~ N2 |[fl1,3y0 (IIL5.7)

for a constant C depending only upon N. Let

1
ul = .
0 if mg;,

Uy = K, = uE)E) € CSQ(RN)a

define

and let », be the solutions of (I11.1.1) corresponding to the initial data u,,.€ CPRM).
We write (I1L.4.14) for u, (constructed in § I1L.4) and u, (constructed in I11.2),
subtract, and take the testing function

p = [, —u). +0I°¢

where o, € (0, 1) and x— £(x) is the usual cutoff function in Byg that equals
one on Bg. _

Such a choice is admissible by possibly approximating u, by the smooth solu-
tions v,, introduced in § I11.4.



Evolution p-Laplacian Equation 277

We perform an integration by parts and let § -0, s— 0, ¢ — 0, to obtain
2 t
[ (@) — ud))y dx < [ (o — tho)sdx+ = [ [ (| D=1+ | Dty P~V dx
BR BR R o B

We apply Corollary II1.3.1 with s = 0, interchange the role of u, and u, and for
t> 0 fixed let n—>oco to get

u(t) —u(t) | dx = Uy — Upe| dX (111.5.8)
f l | f l !

oo ) L s ()7

Now recall that since {1} are solutions of (IIL.1.1) with initial datum
Uy, € CO(RY), it follows from (I11.2.2) that

4

f -
t . 8 2

f floe

_(No+L+p ya
[ |ut) — o] dx < p(R) e 2 t( fl U a’x)2 .
B x| <—

2
dcdr < [ |Dug,|? dx. (IIL.5.9)
rN

By (IIL5.7)

. b2
dxdv < yaf'{N“)f’N( f Uy dx) ,
[xf<C

and

R

Combining this in (I11.5.8), we deduce that there exists a constant y depending
only upon R, N, f Uy dx and independent of £ such that
Bor

Bf}u(t)— uoldx_.é_ZBf |uo — upe] dx + y(R) ¢ f1 g dx>%t-}

R 2R b <—

T o

This proves the continuity of 7— u(t) in LL(R") near ¢=0.
For > 0 the continuity of this map follows from Lemma III.3.6.

*(N(p+1)+p) g

1.5 (iii). u € Z*. By Lemma I11.34 Vre N, Vk >0

8( K< 1 u,
———— /\ = ——,
o M=,
As n—>o0

Next from Lemma I11.3.3 it follows that V ¢ > 1

¢ 1 1
f f{Du,,|P——x[k<u,,]x[u< Ck]dxdr:O(-—).
s Bp. Uy, k
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Here we have used the fact that u, /' » implies [u, << Ck] D [u<C Ck]. Letting
n—oco for k> C, C>1 fixed yields by lower semicontinuity

fthDu|”%x[k< u< Ck]dx dr =0 (%)

SBR

Remark ITI.5.1. We conclude the construction of solutions of the Cauchy problem
(ITL.1.1) by observing that the requirement

ucXx

in Theorem II.1 is necessary and sufficient for uniqueness.

Indeed, if solutions in 2. are unique, they can be constructed starting from
their traces on ¢t =7€(0,T) to yield u€ 2*. Vice versa by Theorem II.1 solu-
tions in X2'* are unique.

IML.6. Locally hounded solutions. We investigate here the regularity of solu-
tions of (IIL.1.1) whenever

Up € L;‘oc(RN)J r Z L.

2
In particular, we show that if p > NI then u€ L. (S7). Such a condition
on p and r is the same as the positivity of the number
%, =N(p—2)+rp, 2>0, (111.6.1)

which will play a central role in what follows.

Lemma IL.6.1. If uy € LI, (RY), r =1, 3y =9(N,p,r) suchthat VO <t =T,
VR>0,

» i
sup  [u'(x,7) dx <y I [ ulydx -+ (%)2—1’ 5 (I11.6.2)

0<z<t Bp Byg

Theorem II1.6.2. Let r=1 and 1<p<<2 satisfy x,>0 and assume
uoE Ly R™). Then ¥ t >0, x—u(x, t) € L3(RY) and 3y =y(N,p, r) such that

YO0<t VR>O,

_N b £\ L.
SUp u(x, t) =yt ( [ up dx)"r +y (—-;,)2". (I11.6.3)
xEBR BZR R

Remark II1.6.1. The first term on the right-hand side of (111.6.3) is formally the
same as an estimate for the case p > 2 (see [11], Theorem 1). In that context
(p > 2) one could find only solutions locally in time, in general. In the present
situation, the solutions are all global in time and the second term on the right-hand
side of (I11.6.3) controls the possible growth of such solutions for large times.
In our calculations below, we will assume that u solves (IIL.1.1) with u, €

CS(RY) so that
u, — div(|Dul > Du) =0 ae. Sp,

1 ; (I1L.6.4)
L Y € Lfcoc(ST)’ uc WIo’?:(ST)? Dut € LIOC(ST) .
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By the approximation procedure developed earlier, whence (II1.6.2) is established
for such smooth solutions, it continues to hold for solutions of (III.1.1) with
Uy € Lfoc(RN)'

Also, if (I11.6.3) is proved for smooth #, then all the approximations to the
solutions of (II1.1.1) with u, € Lj(RY) are locally uniformly Hélder continuous
in Sy (see [13]).

Proof of Lemma ITL.6.1. If r = 1, this is precisely Lemma I11.3.1, and so let us
assume that r> 1. Let ¢€(0,1), R> 0 be fixed, multiply (II1.6.4) by

) —>u(x, ) x), r>1,

where x—{(x) is the cutoff function in B, , , that equals one on Bg. Also, with-
out loss of generality we may assume that > 0 (if not, replace u by u + & and
then let ¢— 0). Standard calculations give

y _
W) dx < —— WA dy dy uly dx.
B{a ® -_(GR)I)OJ B(l—{a)R +Bzf1a 0

From this, VO<<¢t=<T, VR>0, Voc(0,1),

p—2+r

( sup f (1) dx) = . 2_{{ up dx + o_);_ (;—;)L' ( sup f u'(7) dx) r

0<r<t Bp 0<7<t B(140)R

The lemma now follows by an interpolation argument similar to that in Theo-
rem [.4.1. []

Proof of Theorem I11.6.2. Assume first that
1=r=p.
Let t, > 0 and o€ (0, 1) be fixed and consider the sequence of radii and time
levels
R,=RA+062™), t,=1t(1l—027".
Set
B,=Br, 0,=B,x(t,t), n=0,12,..,

and let (x,7)— {,(x,7) be a non-negative piecewise smooth cutoff function in
Q, that equals one on @,. and is such that

n+2 on+1
0= o= ot DL = oR ’

Consider also the sequence of increasing levels

k
kn=k~~27;, n=201,2,...,

where k> 0 will be chosen later.
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Muttiply (I11.6.4) by (v — k,), % and integrate by parts over Q,. Standard
calculations give

sup [ (u— k% Bdx + fo |D(u — k), C, |7 dx dr

t, <r<t By(7)

V4 2nP y on

< . P o _ 2

< B Qf S @ — ket dx dr 4 Qf [ — k)% dxdr. (IIL6.5)
Majorize the last integral on the right-hand side by

4 2””
ot

lul% 5, ff(u — k). dx de,

and the first integral by

() -

where we have assumed that

°°Qo ff(u— n)+d‘XdT

A
2-p

t
o)l oo 0, > (]—{;) . (T11.6.6)

If (I11.6.6) is violated, there is nothing to prove. We estimate now the left-
hand side of (IIL.6.5).
For all 7€ (¢, 1)

J =k Ghdx= [ =k w— k)7 Gdx
B Byt >k, 4 41

k \**
= (5m1) [ @ ket
B2
These remarks in (I1.6.5) yield

k\2-?
() sup [ M= ks G [ 1Dl k) A e

t,<t<t B (»)

<y 2"M [[(u— k) dx dv, (IIL.6.7)
Oy
where we have set
= (IT1.6.8)
o*t

Since (¢ — k,.1)4 . vanishes on the lateral boundary of Q,, by the embedding
of GAGLIARDO & NIRENBERG (see [19] page 62),

(ff[ U — Ky Lol dx dv)_‘l—é y (ff |D [ — knyr)y CalIP dx d'z:)7
9, Op

1__ _p_
~hmfm~mmmw)«
0<v <<t B(2)
(I11.6.9)
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where

N+ p
g= p( = ) (I1L6.10)

Estimating the last two terms on the right-hand side of (I11.6.9) by (I11.6.7),
we deduce that

[k Bx e = (f 1= . o1 i )0

. (meas {(x, 7)€ Q, | u(x, v) > an)}l’%

. et 4 N 4
< o nlE g ) (Mff(u—kn)idxdr)k(p 273
2y

D

(meas [u> k1N Q) 9. (IL6.11)

Since

fo (u — k) dx dv = (kyyq — ky)? meas ([u> k,11N Q,),

inequality (II1.6.11) yields
—p r2
[f @ = kypr) dxdv < pbrMk (ff(u — k)P dx dr)
Qn+l
a—r
where b—=2""" 1 > 1.
It follows from Lemma 5.6 of [19] page 95 that if k is chosen so that

__4_ (-2 __a '
[fwax=CM 72, C=b = y 7, (I11.6.12)
Qo
then
J[@—k),dxdr—>0 as n->oo,
Qy

i.e.,
#llco,0,, = K-

Recalling the definition of M in (I11.6.8), we conclude that there is a constant
y =y(N,p) such that VO<¢r<T, YR> 0,

Q2-—pg
2(q—p)

=

1 e (2. s () (1)

. < f [ wax dr>%. (111.6.13)

%(1_,;) B +or



282 E. D1 BENEDETTO & M. A. HERRERO

Consider the sequence of radii and time levels

er(32), (o £)

We write (IT1.6.13) over the pair of cylinders
Q,=Bp X(1y, 1) CQns1=Bg, X (ty11,1).
For these ¢ = 2~®*Y, If for notational simplicity we set

Y,= ”u“oo,BRnx(tn,t)a
we obtain

pq

yl” 92 —p) i _
Y, s —— Yggg;P)(ff uP dx dr) , 1=2%D,

+2@—p) Oni1

If 1<r=p we majorize the last integral in (I1L.6.14) by

v opor
(ff u’dxdr) Y2,

Cn+1

and rewrite the inequality that results as

ylr 92—p) L2rry ot ¥
Y, S ——YXyp o 2 (——- [ [w dxdz’) £t
0 Byp

tAa—»

Using the value of ¢ given by (111.6.10), we find that
“p N ¢ !

Y, S yl"'Y' "% (f; f [ dxdr)é.

0 Byp

By Young’s inequality, Vn=20,1,2,..., Y3§€(@©,1) if »,>0,

2 ¢ Nt 2
Y, = 0Y,.1+ y(6) I (t v £ [ dxdz') o,
0 Bp

(II1.6.14)

(I11.6.15)

By an interpolation argument entirely analogous to the one in Theorem 1.4.1, we

conclude that VO<<i=T7, YVR>0

N a
sup ul(x, t) =yt ( sup f () dx) r
0

XEBp <t<t Byp

provided (I11.6.6) holds.

(IIL.6.16)
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From this and Lemma III.6.1

N~ NP
Hu(t)looBR_ A {Bf u(')dx—l—(er) TR
4R
N _r P
_N P t P2\ %,
o+ g ()
B4R RZ

(1A

N ¢ ;
A (L) ()7
B4R
This last inequality holds true even if (II1.6.6) is violated and the theorem follows
by suitably redefining R and the constant y.
If r> p we take in (I11.6.4) the test functions (u — k,)"! £ and proceed
as before with obvious modifications.

II1.7. Condition (I11.6.1) is sharp. We will show that if « is a weak solution of
(ITL.1.1) with
Up 6 Llloc(RN)

and if N(p — 2) + p =0, then in general
x> u(x, )¢ L5 RY), t>0.
Let o, ,2> 0 and consider the function

2 e
- %NT;% = |x|. (ITL.7.1)
One verifies that if ¢<<1 and p >1
z€L'@RY), but z4¢LRY), Vr>1. (111.7.2)
Let u be the unique solution of (III.1.1) with

o=z, N=2,
(I11.7.3)

p=- (ie. Np—2)+p=0).

Let 2> 0 and set
v=(1—ht), z. (111.7.4)

Proposition I11.7.1. The numbers € (0,1), f > 1, o> 1, h> 0 can be chosen
so that
v, — div(|[DvP 2 Do) <0 in 9'(Sy).

This fact being assumed for the moment, it follows from the comparison
principle that
u=v a.c. Sp.
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Hence uc L'(0, T; LL,(RY)) but
x—u(x, )¢ L, RY) Vr>1.

The comparison principle here is applied as follows. By the definition of
weak solution, the truncated functions u, = u Ak are, VY k> 0, distributional
supersolutions of (I11.1.1) (see § I.1). Setting

W=y —1U, W) == U — Uy,
we find

VO<s<t<T, V9eXlSp), VIECFRY), (=0,
(IIL.7.5)

ST
f f {’a? Wao(@ —0)4.L 41| Dv P2 Dv — | Duy, P2 Du] D((w — v),. C)}dxdrgo,
s RN

Observe that w(r)—0 as 7—0 in LL.(RY). Therefore we may proceed
as in the proof of the uniqueness theorem in § IL.3 and prove the analog of Pro-
position IL.3.1,i.e, VO<t<T, Vg=1, 3y =y, p,q) suchthat VR> 0,
Yoe(0,1),

[ wH@)?dx = ft [ (whr 2t dx dr. (T11.7.6)

Ep (6R) 5 Bi'to)R

Proceeding as in the proof of Theorem IL.1.1, we find w* =0, ie., s =u ae.
Sr.

Proof of Propesition I11.7.1. By direct calculation on the set ¢ > 0,

z
Dz = — —2‘Fx,
4
where
24 200?
F= {N—f— E—ég + pop 92} (I1L.7.7)
We will choose
82 e—2k
and k€N so large that F> 0. Also
2?1l
\DzP~2Dz = — ————x,
4
p~2Fp—1 1wl
div(|DzP"2Dz) = —(p — 1)——?———Dz-x+p—é;,T—Dg - x
p~le~1 p—IFp—Z
N (p— ) ———DF" x.

4 e
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Since

@ Dz-x = —zF,

(i) Do-x=e,

—4p 40 4op*

(iii) DF-x = in2 + (& — 0% + & — 0o
we obtain '

7P 1Fp 2
div(|Dz|P?*Dz) = ———{(p—~ 1) F*—(N—p)F— (p — 1) DF - x}.

(11L.7.8)

We calculate the expression in braces on the right-hand side of (I11.7.8) using
the definition of F and the fact that N(p — 2) + p = 0, to obtain

o 272 088 + 1) ,
div (|Dz|P 2 Dz) =2(p — 1) 7 { In? 7 (I11.7.8")
200(x — 1) p* 4of0® Ng (N—-2) ocgz}
(€ —0*%  lne*e* — 0¥, Ig* (2 —o%),
ZP—1fpp—2
> _
=2(p—1) 7
2007 0’ 28 NB
{e e ), [(“ Ve T 92] i ez}‘

Consider the sets
&P ={ e 2kt < g2 e—2k}’ keN,
cgg) E{@z < e—z(k+1)}'

On &

div (| DzP~2 Dz) = 2(p — 1)

2P pr—2 {204(04 — 1) %g_cé Nﬂ}
o et k 2k)°
Thus «>2, §>1 and k> 1 can be chosen so that
div(|Dz["?Dz) =0 on &P.
On &2, if k is sufficiently large,

B

F= N—]T_(N D),
so that
_ IR 4o NP
p—2 > — z — —
div (|Dz|P?Dz) = —2(p — 1) o7 { k+1 20—+ 1)}
-1
v
= (k+1) ¢
where

y=2p—HW— 1" @+ N)p.
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Finally with » given by (IIL.7.4) we compute in {0 << p < &}
P(v) =v, — div (|Dv[? 2 Dv)
= —hz — (1 — ht),7 1 div (| Dz|? 72 Dz).
On &P, £(v) <0 and on £P

Y ZP*Z]

2053 |t g

By calculation on &
ZP~2
(kzli— 1) o <(k+ 1)
where we have used the fact that N(p — 2) + p = 0. Therefore
2@) < v(—h + y*(®)).
Choosing A = p*(k) proves that
P) =0 on0<p<e.

(k + 1777 @ = y*(k)

If the inequality is viewed in the sense of § 1.1, then the test functions all vanish
near p = 0 and the result follows.

IIL.8. The case 1, a measure and p > 2N/(N + 1). We prove the solvability
of the Cauchy problem
u, — div (|Dulf~>Du) =0 in R¥x(0, oo)
(I11.8.1)

0O)=u=0 il —< 2,
u(’ )Wlu':9 N+1 p<

where y is a o-finite Borel measure in RY with no growth condition as |x |- co.
We let S, =RYx(0, ).

Theorem TI1.8.1. For every non-negative o-finite Borel measure p in RY, there is
a measurable function u: S, — RT satisfying

U€ Ciol(Sw)  for some o = (N, p)€ (0, ), (111.8.2)

| Du € LS ) (I11.8.31)

(x, 1) —> Du(x, 1) € Ci(Sy) for some o = (N, p)€ (0, 1), (I11.8.3ii)
€ L3,(S ). (111.8.4)

Vo< s<t<oo, Yg&CRVX[0,T]) such that supp{x—q(x,1)} (B,
Yt =0 for some o >0,

@ [ (ug) (¥) dx + f [ {—up, + | Dul’~* Du Dy} dx dr = [ (ug) (s) dx,
RN s RN RN
(111.8.5)
(ii) lim [ (up) () dx = [0, x) du.
Rind B, By
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Proof. Let {u,}, n€N be a sequence of C®(R") functions and let there be a
constant y independent of » such that for all ¢ >0

@ f,u,,dxéy fd,u,
9
) " 1I1.8.6
(i) [ opndx— f pdu, VeeCPRY). ¢ )
RN RNV
Let u,, n=1,2, ..., be the unique weak solution of

6 . __2 . N

—u, — div (|Du, P *Du,) =0 in RVX(0,c0)

ot (I11.8.7))

u,(, 0) = p,.

Since p > 2N/(N + 1), from Theorem III.6.1 with r = 1 (see Remark TIL.6.2),
and (II1.8.6)~(i) it follows that

{u}nen is locally equibounded in S..

2N .
N 2} by the results of [12, 13], there exists « =
(N, p) € (0, 1) independent of n such that

Since also p > max{

(6, )= u,(x, 1) € CF (So) uniformly in n
(x, )= Du,(x, )€ C (S.) uniformly in n.

By a standard diagonalization process a subsequence can be selected and rela-
belled by » such that

Un, Du,— u, Du  uniformly on every compact subset £ of S,

d 0
Bt ot
Therefore (I11.8.5)-() holds for u, ¥ 0 < 5 << t << oo.

Let ¢ be a test function as in (111.8.5). Multiply the first of (I11.8.7), by ¢ and
integrate over B,Xx (0, 5) to obtain

u, weakly in L*(x).

Bf (u,p) (s) dx — Bf 1,9(0) dx

< [ [ |Du, =" | Dy] ds dr.
0 BQ
By Corollary I11.3.1 and (II1.8.6)-(i), the right-hand side is majorized by

(0, N, p) 7 (1+ fd) D

. 20
Letting n— oo

f‘P(O X) dﬂ‘<ys1’ (1 + [du ) (P-l),

whence (III.8.5-11).
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Added in proof

PHiLIPPE BENILAN has informed us that, in a note in preparation with T. GAL-
LOUET, he has also introduced a notion of solution for elliptic equations of the
type

div (|DulP~Du)y = f€ LY(2), Vp>1,

where Q is a domain in RY. Such a notion is irrespective of the sign of u and
could give an a.e. meaning to Du for the semigroup solution of (0.1) if one had
the global information u, € L*(RY).

A remark of STEPAN LUCKHAUS. The arguments of §III.5(i) show that indeed
Dv,— Dv strongly in Lf,(Sr). This implies that that Yk >0, Du,;—> Du,
strongly in L7, (S7).

In discussion with DI BENEDETTO, S. LUCKHAUS found a simple way to show
the latter. First, in (I11.4.2,) take the test functions (u,; — uy)p, where u is the
limit of the u,and @€ CP(Sy) is not negative. The a priori estimates of $I111.3
and the construction procedure of §II1.4 can be used to establish these as ad-
missible test functions, and some calculations show that

[ [ |DunlPp dx dv = [ [ |Duty|?~? Dty Dy @ dx dv + O (L) . ()
St St n

Now since [u << k] C [u, > k], we have
[ [ 1D~ Dut, Dt @ dx dv :.<_,‘li:~l- [ [ 1Dy ¥ @ dx dr —}—i [ \Duff pdxdr.
5r P sp P sr

Put this in (1) and let n— oo along a subsequnence reindexed by » to get

[ [Dw}? @ dx dv <lim inf [ [ |Du, "  dx dt
ST n—>00 ST
< lim sup [ f |Du, [P ¢ dx dv < [ [ |Du )7 p dx dv.
n—>oo :S,T :ST

This and Lemma I1.2.2 can be used to identify more efficiently the limit of
the nonlinear term in §II1.5(i). The advantage of working with the functions v,
and v, however is that they are not truncated and therefore they supply informa-
tion on the set where the solution is unbounded. Such a singularity set is non-
void in general, as shown by the arguments in §II1.7.

Acknowledgment. The work of pt BENEDETTO was partially supported by NSF grant
DMS-8802883, that of HerrErO, by CICYT grant PB86-0112-C02-02.
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