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ABSTRACT. The possibilities for the existence of truly localized soliton solutions in the realistic 

three-dimensional case are discussed. The gauge invariant theory of a non-linear chiral field is 

shown to be a good candidate for a model with solitons. 

The exact solution of the two-dimensional Sine-Gordon model [1,2] gives us a new mechanism 

whereby one (or a few) field can describe a rich spectrum of particles. Localized solutions of the 

corresponding classical equations of motion (solitons) correspond to the particles with the 

following properties: 

1. They are heavy compared with the weakly interacting field masses. 

2. They interact strongly. 

3. They have an exactly conserved quantum number - the topological charge. 

These properties suggest the attractive possibility of building unified models of weak, electro- 

magnetic and strong interactions based on a Lagrangian with fundamental fields for leptons, photons 

and intermediate bosons only [3]. The existence of soliton solutions is a necessary property for 

such a Lagrangian. 

I want to present here some arguments for the conclusion that such a Lagrangian must include 

a non-linear chiral field. These arguments will be based mostly on the properties of the topological 

charge. 

The conserved topological current of the Sine-Gordon model can be written in two forms 

1 1 
Ju=-2-~ euv 6vu= -f~euv6vXX -1, x=e iu. (1) 

This allows two generalizations to three-dimensional case. The first consists in using a linear 

'isovector' field u a, a = 1, 2, 3, with the current 

Jg = etzrj,p a 6 abc ~ v u a ~ p U b ~ au c. (2) 
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This current is conserved irrespective of the equations of motion (thus it is topological) and the 

corresponding charge density Jo is a pure divergence 

Jo = divP, Pi = eikt eabc ua 6to ub 81 uc. 

The charge 

Q= f Jo dax 

is non-zero only for u fields with non-vanishing asymptotics when Ixl ~oo, which is realized for 

instance by the Higgs mechanism. It is exactly this charge which is used in the monopole solutions 

o f ' t  Hooft and Polyakov. There are two obstacles for such solutions to be used as the building 

blocks of hadron physics. 

1. They have magnetic charge and so are accompanied by the const/r 2 tail of the magnetic field. 

Magnetic charge and topological charge are proportional so that a magnetically neutral bound state 

has a zero topological charge. Thus the latter cannot serve as a baryon number. 

2. They are very heavy in the case of the standard W+EM models. Indeed for the fields u with 

vanishing 7u = 6u + [A, u] the current (2) is equivalent 

Jp = epvpo F~vp Vo U a, 

so that we have an estimate for the static part of the Hamiltonian 

M 1 + 1 (Viu)2 + ~/(ul d3x ~ 

>1 i f eiklgalc vlua da x I= Mu IQI, 
e e 

where 
~r~. = (u") 2 I 

and M u is of the order of the mass of the intermediate boson. 

The second possibility of generalizing (1) consists in using a non-linear chiral field X(x) with 

values in a compact group G. The expression for the corresponding topological current looks as 

follows 

J .  = euupo tr [T v, Tp] T o, (4) 

where 
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lies in the corresponding Lie algebra. The charge density Jo is not a divergence and the charge 

Q = faro d 2x has only integer values when properly normalized. 

The stability of a non-trivial soliton solution will be guaranteed if the static. Hamiltonian of 

the model allows for an estimate like (3). There is no reason to believe that such an estimate is 

true for the ordinary chiral Lagrangian of Sugawara and S. Weinberg 

1 
s = ~ tr T~. (5) 

Indeed, it contains only quadratic terms in Tz whereas the current (4) is cubic in T u. 

The form of the current (4) suggests the natural modification of the Lagrangian (5). Namely, 

the Lagrangian 

s T~ +~([Tu, Tv]) 2) (6) 

leads to the static Hamiltonian 

e 2 

H~t,ti~ =ft~(2- ~ Ti~ + ~ ([Ti, Tk]) ~) d~x 

which allows an estimate 

e IQI =el f eikttr[T i, Tk]T l d3x •Hstatic. 
X X 

Note that e is in the numerator of the left-hand side in this estimate, in contrast with e in the 

fight-hand side of (3). This shows that for small e one can expect a small mass for the soliton. 

The Lagrangian (6) was introduced by Skyrme [6] in the particular case of G = SU(2). Skyrme 

used a parametrization of X of  the form 

g 

and a Lagrangian which looked as follows: 

1 8 e 2 
= 2 - - ~ r  ~r +2-  [ ( ~ u r  -- (~r162 

It can be shown to be a particular case of (6). Skyrme has found a spherically symmetrical solution 

of the corresponding equations of motion 

= sin g (z )  ~-- ; r  = cos g(r),  
r 
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such that g(r) = O(r-2), when r ~  oo. The last result reflects the fact that the first term in (6) 

dominates for small T u and the asymptotic behaviour is governed by equations corresponding to 

(5), which does not contain any dimensional parameters. 

The situation with a r -2 tail can be cured if the equations of motion for the X field contain a 

source rapidly vanishing at infinity. Such a sourse can be provided by a gauge field. 

The gauge invariance of the usual kind, i.e., with respect to the transformation 

X - ~ X  

evidently destroys the topological charge. The same unfortunately is true for the Hopf invariant 

of the 0(3)/0(2) n field which was a base for the EM+ W model in Reference 7). Another possibil- 

ity is to use 

X ~ 2 X ~  -1 (7) 

as a gauge transformation. This makes the field X a natural non-linear generalization of  the Higgs 

field u. We shall show that there exists a Lagrangian of the X field interacting with the Yang-Mills 

field A u which is gauge invariant with respect to the ordinary transformation law for the Yang- 

Mills field and law (7) for the X field, and which admits an estimate from below for the correspon- 

ding static Hamiltonian. 

To do this, let us introduce the covariant generalization of the current T u 

L u = VuXX-: = (6uX + A u x -  xAu)x -1 = 6uXX -1 +A u - xAux -1 

R u =X -1 VuX---)~x6uX+x-1Aux-Au =x-ILux. 

(8) 

It can be shown that the topological current (4) is equivalent to (i.e., leads to the same charge as) 

Ju = eu u o o tr ( [Lw L.o I L o - 3Fuo (L o + R o ))" (9) 

Note that the last expression is manifestly gauge invariant. 

The Lagrangian 

1 2+~__ 1 2 e= ) 
s  ~ - ~ L  u 4e 2 F ~  + 5 ( [ L  u,L~,]) 2 (10) 

allows for the desired estimate. To prove it, it is sufficient to realize that 

t rL~ = t rR~ 

and use the inequality 

ab<~2a2 +2-~b 2 
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with an appropriate 3' for both terms in (9). One finds that 

e 1 
IQI ~<Hstatic- X (36 + e2e2f A 

In the model for EM+ Ir interaction ~ plays the role of the weak coupling constant. We see that 

the sollton mass (if it exists) is of order e(Mw/e ) and can be made reasonably small for small e. 

The interesting soliton solution has to have an asymptotical behaviour of the form 

X-~Xo, r-~ oo, (11) 

where Xo is a constant, but is different from unity. It is clear from (8) and (10) that the stationary 

subgroup H of Xo corresponds to the massless fields. So to make the Yang-Mills field acquire a 

mass, we must have H smaller than G. The last requirement constitutes an obstacle for the actual 

finding of the soliton for the most interesting case 0(3). Indeed, the condition (11) spoils the 

spherical symmetry and we cannot use the standard spherically symmetric ansatz. 

I am still optimistic about the possibility of finding the appropriate separation of variables in the 

equations of motion. Actual work in this direction is in progress now. 
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