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Abstract. Reduction in the category of Poisson manifolds is defined and some basic properties are derived. 
The context is chosen to include the usual theorems on reduction of symplectic manifolds, as well as results 
such as the Dirac bracket and the reduction to the Lie-Poisson bracket. 

I. Introduction 

Reduction in the symplectic context is a natural outgrowth of the classical theorems of 
Jacobi and Liouville on the elimination of phase space variables for Hamiltonian 
systems possessing conserved quantities. Generalizations of these results to a geometric 
context culminate from work of Smale [34], Kostant [17], Souriau [36], Nehoro- 
shev [32], Meyer [28], and Marsden and Weinstein [24]. Further contributions are due 
to Marie [21], Kazhdan etal .  [15], Kumrner [19], and others. Expositions of this 
theory can be found in Abraham and Marsden [1], Arnold [4], Woodhouse [41], 
Marsden [22], and GuiUemin and Sternberg [12]. 

Reduction has many applications, which we cannot review here, as they are too 
extensive. We just mention the papers of Cushman and Rod [7], Guillemin and Stern- 
berg [11], Iwai [13, 14], Marsden and Weinstein [25, 26], Marsden et al. [27], 
Deprit [8], Arms et al. [2], Marsden etaL [23] as representative of just some of the 
interesting applications. Some of the basic ideas relevant to the general theory of 
reduction in the Poisson context are already given in Marsden and Weinstein [25, 26], 
Marsden et al. [27], and Montgomery et aL [31] (see also Tulczyjew [38]). 

One of the main reduction theorems in the symplectic context states that if (P, r )  is 
a symplectic manifold, J: P ~ g* is an Ad*-equivariant momentum map for a canonical 
G-action, # ~ g* is a regular value of J (or a 'clean' value of J)* and if the isotropy 
group G~, of/a acts freely and properly on J -  t(#), then there is a unique symplectic 
structure fl ,  on 

e~ = J -  ~(#)lG. 

* Research supported by DOE contract DE-AT03-85ER 12097. 
* *  Supported by an A. P. Sloan Foundation fellowship. 

'Clean values' are what Marsden and Weinstein [24] call 'weakly regular values'. 
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such that  

where i.: J-1(/~)__+ p is the inclusion and rc~,: J - l ( # ) ~  p~, is the projection. In this 

context, the Poisson brackets  on P .  are given as follows. Let f and h be smooth  real 

valued functions on P~, and let F and H be G-invariant extensions o f f  o n~, and h o ft.. 

Then 

{F, H } p o  i~, = {f, h } e o  rt~,. 

For  this to be valid, F and H must  be extensions o f f  o % and h o n ,  off  J -  1(#) which 
are G-invariant;  the brackets  are not  related this way if arbitrary extensions (or G ,  

invariant extensions) are used. The purpose  of  this Letter is to provide a Poisson context 
general enough to include this example as well as others, such as Dirac brackets  (see, 
e.g., Sniatycki[35]  and Flato etal. [10]) and the Lie-Poisson  bracket  (see, e.g., 

Marsden  et al. [27]). 

2. Poisson Reduction 

Let (P, {, }e) be a Poisson manifold*,  M c P a submanifold and i: M ~ P the inclusion. 
Let E c T P I M  be a subbundle of  the tangent bundle of  P restricted to M. We make 

some assumptions at the outset: 

(A1) E n TM is an integrable subbundle of  TM, so def'mes a foliation @ on M. 
(A2) The foliation r is regular, so the space of  leaves M/r is a manifold with 

projection ~: M ~ M/@ a submersion. 
(A3) The bundle E leaves {, }v invariant in the sense that  if K, L are smooth  functions 

on P with differentials vanishing on E then d {K, L}v also vanishes on E. 

D E F I N I T I O N .  We say (P, M, E )  is Poisson reducible ifM/r has a Poisson structure 

{, }M/a, such that  for any (locally defined) smooth  functions f ,  h on M/@, and (locally 
defined) smooth  extensions F, H o f f  o n, h o n with differentials vanishing on E, we have 

{F, H}eo i = {f, h}M/| n. (2. I) 

Under suitable technical hypotheses (as in Chernoff and Marsden [6]), the results of 
this Letter hold in infmite dimensions, but we work in the finite-dimensional case for 
simplicity. 

POI S SON REDUCTION THEOREM. Let assumptions (A I)-(A3) hold and regard the 
Poisson structure on P as a map B: T *P ---) TP. The triple (P, M, E) is Poisson reducible 

if and only if 

B(E ~ c TM + E ,  (2.2) 

~r A Poisson manifold is a manifold whose ring of C ~ functions is a Lie algebra whose bracket is also a 
derivation with respect to the usual ring structure. These key properties are explicitly isolated in Dirac [9], 
p. 10, but are implicit in the works of Lie. The term 'Poisson manifold' was coined by Lichnerowicz [20] 
and Bayen et al. [5]. 
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where E ~ = (~,:~ T*PI O~x(Ex) = 0) is the annihilator of E. 
Proof First assume (P, M, E )  is Poisson reducible. Let fix ~ E~ where x e M and let 

F be C ~ in a neighborhood of x such that dF vanishes on E and equals fix at x. Let 
~ ~ E ~ c~ (TxM) ~ = (E,, + TxM) ~ and choose an extension K of the zero function on 
M such that dK(x) = ~x and dK vanishes on E. Thus, 

( ~ ,  B~(flx)> = {K, F}p(x) = {0, f)M/a,(n(x)) = O, 

where f is the function on M/~  induced from F] M. Thus, Bx(fl~) ~ E~ + TxM. 
Conversely, assume B(E ~ c TM + E. Let f ,  h e C~(M/CP), the C ~ functions on 

M/O and let F, H be extensions of rc*f --- f o rc and r~*h = h o ~ whose differentials vanish 
on E. By condition (A3), {F, H ) e  is constant on the leaves of �9 and so induces a 
function on M/r We now show that this induced function is independent of the 
extensions, thereby defining a function {f, h}u/,} satisfying (2.1). Let H'  be another 
extension of n*h satisfying dH' I E = 0. Thus, H - H'  vanishes on M, so its differential 

vanishes on E + TM. Thus, by (2.2), 

( d ( H  - H ' )  (x), S~(dF(x))) = 0 

and so 

{F, U}e(x) = {F, H'  }e(x). 

Thus, (F, H }e(x) is independent of how h o ~ is extended, as long as the differential of 
the extension vanishes along E. By antisymmetry of the bracket, it is also independent 
of the f o it extension. Thus, {f, h}~/a, is well defined and is uniquely determined by 
(2.1). It remains to show that M/O is a Poisson manifold with this bracket. Antisym- 
metry, bilinearity and the derivation properties of the bracket are directly inherited from 
these properties on P and uniqueness. For Jacobi's identity, notice that if F and H are 

extensions o f f  ort and h o r~ whose differentials vanish along E, then so does d {F, H ) e  
by (A3), so {F, H}e is an extension of (f ,  h)M/,} o ~ that we can use in (2.1) to give the 

identity 

rt*{{f, h } , / . ,  k ) , / .  = i*{(r ,  H}e,  K}p 

and so Jacobi's identity on M/~  is inherited from that on P. []  

The functorality property of Poisson reduction is given by the following. 

COROLLARY. Let (P~, M,, E~) be Poisson reducible i --- 1, 2, and assume that ~: P~ ---} P2 
is a Poisson map such that (o(Ml) ~ ME, Tdp(EI) c E2, and rp maps the leaves of ~ 1 into 
leaves of ~2. Then r induces a unique Poisson map ~'MI/~I---~M2/~2 satisfying 
~2 o q) = ~ o ~t 1 called the reduction of ~. 

Proof. Since ~b maps leaves into leaves, the map q~ exists, is smooth, and is unique 
with the given property. To show that it is Poisson, let f,  h: M2/dP 2 ~ ~q be smooth (local) 
functions and let F, H:  P2 ~ E be smooth (local) extensions o f f ~  rc 2 and h o n2 whose 
differentials vanish on E 2. Then for any v ~ E~ we have 

d(Fo r v = dF" Tr = 0 ,  



164 JERROLD E. MARSDEN AND TUDOR RATIU 

since T(a(E 1) c E 2. Therefore, F o (a and H o (a are smooth (local) extensions of f o 
and h o ~?whose differentials vanish on E~. Therefore, 

= { F , H } , ,  o (aoi, 

= {Fo  (a, H o  (a}e oi,  

= { f o  ~, h o ~}M,/a,,o n, 

= 

which, since n~ is onto, shows that q3 is a Poisson map. [] 

Next we study the dynamic counterpart of the Poisson reduction theorem. If F: P ~ 
is a smooth Hamiltonian, we say that the submanifold M c P is conserved for F, if 

XF(X) e TxM for all x e M. For example, if B(E ~ c TM, then M is conserved for all 
functions F whose differentials annihilate E. As we shall see in the next section, in many 
examples B(E ~ c TM holds. 

DYNAMIC POIS SON REDUCTION THEOREM. Let ( P, M, E)  be Poisson reducible 

and H : P ~ R be a smooth function for which M is conserved. Then the flow (a t of XH induces 
Poisson diffeomorphisms ~, on M/O. The vector field on M/r whose flow is ~)t equals Xh, 

where h: M/O ~ ~ is uniquely determined by H via h o ~ = HI M. In addition, the vector 

felds HHI M and X h are n-related. 

Proof Since M is conserved for H, the flow (at of XH leaves M invariant, so by the 
previous corollary q3 t is a flow of Poisson diffeomorphisms on Mich. Therefore, if Y is 
the vector field on M/~  whose flow is q~t, XH, and Y are re-related. 

Now let f :  n / ~  - ,  ~ be an arbitrary smooth map and let F: P---, ~ be an extension 
o f f ~  ~ to P such that d F ~ E  ~ Then for any x e M  we have 

df(n(x))" Xh(zc(x)) = {f, h}u/a,(rc(x)) 

= {F, H}e(x  ) = dF(x) 'XH(x ) 

= df(g(x))" Trc(x) "XH(x) 

and so Xh(rc(x)) = Trr(x). XH(X), i.e., XH[M and X h are also It-related, which in turn 
implies X h = Y. [] 

Thus, if B(E ~ ~ TM, the dynamics of Xi~ on M projects to that of X h on M/~.  If the leaves 
of �9 are orbits of a Poisson group action, then the dynamics of XH on M can be 
reconstructed from the reduced dynamics o fX  h and the group action, as in the symplectic 
case (Abraham and Marsden [1], p. 305). 

3. E x a m p l e s  and R e m a r k s  

A. Let P = T*G where G is a Lie group, M = P and E be the tangent space to the left 
G-orbits. Then ( P, M, E )  is Poisson reducible and M/r = g* with the ( - ) Lie-Poisson 



REDUCTION OF PO1SSON MANIFOLDS 165 

structure: 

~3F, 

for I~ ~ t* and 3F/5~t ~ t the functional derivative. (For the right G-orbits we get the ( + ) 
Lie-Poisson structure.) See, for example, Marsden et al. [27] for the proof. This is the 
Poisson reduction (implicitly) used by Arnold [3] in passing from material to spatial 
coordinates in fluid dynamics, and by Marsden and Weinstein [25] for the Vlasov 
equation. More generally, if G acts on P canonically, then PIG is the Poisson reduction 
of M = P with E the tangent bundle to the G-orbits. 

B. Let P be a Poisson manifold and J: P ---, t*  an Ad*-equivariant momentum map for the 
canonical action of a Lie group G. Let I~ be a regular (or clean) value of J and M = J -  l (l~)" 
Let E be the tangent spaces to the G-orbits. Then ( P, M, E)  is Poisson reducible. Indeed, 
to check (A1) we observe that E ~ TM consists of the tangent spaces to the G~-orbits 
by equivariance of J. Thus, (A1) is satisfied and (A2) holds ifG~, acts freely and properly, 
so M / r  = J- '(#)/G~, is a manifold. (A3) holds since the G-action is canonical and 
B(E ~ c TM (so (2.2) holds) since J is conserved for G-invariant functions. 

Thus, J -  ' (# )/ G , inherits a unique Poisson structure satisfying (2.1). If P is symplectic, 
the Poisson structure on J -  I(#)/G,, is that of the reduced symplectic structure f2~,. This 
follows from the fact that from either point of view, G-invariant functions produce 
Hamiltonian vector fields n-related to their reductions (proved above in the Poisson 
case and in Marsden and Weinstein [24] in the symplectic case). 

C. In Example B, if we let M = J -  '((9), where (9 is a coadjoint orbit and E be the tangent 
bundle to the G-orbits, then (P, M, E)  is also Poisson reducible. Here, M / r  = J -  l( (9)/G. 

For a description of the symplectic structure in the symplectic case, see Marie [21], 
Kazhdan etal. [15], and Marsden [22]. Both structures coincide in this case and 
J - ' ( (9 ) /G  is canonically diffeomorphic to J-'(t~)/G~ for/~e (9. (This requires some 
proof, but is routine to supply.) 

D. Let P be a Poisson manifold, M c P a submanifold and let E = B((TM)~ Then 
(P, M, E)  is Poisson reducible (assuming E n TM is a subbundle). 

First of all, the characteristic distribution E n TM is integrable. Indeed, by Frobenius' 
theorem and the fact that Hamiltonian vector fields X F with dFI TM = 0 span B((TM) ~ 
pointwise, it is enough to show that [XF, X n ] e E ~ TM for two such Xr, An. Clearly 
IX F, X n ] e TM. To show it lies in E just notice that by Jacobi's identity, 

[XF, XH] = --X{F,H}p (3.1) 

so if we can show d{F, H}p vanishes on TM, we will be done with (A1). However, 
{F, H}p(X) = d F ( x ) ' X n ( x )  vanishes at points of M since dF annihilates TM and XH 
is tangent to M. We assume (A2) holds and note that (A3) follows from (3.1). Finally, 
B(E ~ c TM follows from the general fact that for a subspace F x c TxP, 

8x((Bx(F~ ~ c Fx, 
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as is readily verified. (In the symplectic case, Bx(F ~ is the symplectic orthogonal 
complement to Fx.) 

I fP  is symplectic and M c P is a symplectic submanifold, then E = B((TM)) ~ is the 
symplectic orthogonal complement of TM and thus E c~ TM = {0}, so the Poisson 
structure induced on M/O = M is the same as the one determined by the symplectic 
structure on M. 

If P is symplectic and M c P is Lagrangian, then E c~ TM = TM, so the reduced 
Poisson manifold M/~  is trivial. 

E. Let (P, f~) be symplectic and i: Mc-~P a submanifold. Let E be the characteristic 
distribution of i *fL Then ( P, M, E)  is Poisson reducible if and only if M is coisotropic. (The 
'if' part is given in Guillemin and Sternberg [ 12], p. 177.) It is well-known that M/O is 
also symplectic in this case (Abraham and Marsden [ 1 ], p. 298). The Poisson structure 
on M/~ is that of the symplectic structure when M is coisotropic. For P a Poisson 
manifold and E = B((TM) ~ ~ TM, (P, ill, E )  is also Poisson reducible if and only i fM 
is coisotropic (in the Poisson sense). All these statements are routinely verified. 

F. Reduction in Symplectic Leaves. Let (P, M, E) be Poisson reducible and let S c P 
be a symplectic leaf (see Kirillov [ 16]), with S ~ M ~ q~. Assume that the leaves of 
intersect S cleanly (GuiUemin and Sternberg[12], p. 180). Then S c~ ~ defines a 
foliation on S and the symplectic leaves in M/~  are given by the connected components 
of S c~ M/S  c~ ~. For example, if P is a symplectic manifold and the Lie group G acts 
freely and properly on P with Ad*-equivariant momentum map J, the symplectic leaves 
of the Poisson manifold PIG are the reduced manifolds J-~((9)/G, for (9 a coadjoint 
orbit. See Marsden et al. [23] for further examples involving semidirect products. 

G. Let P be a Poisson manifold and M =  J-l(60), as in Example C. Now let 
E = B((TM)~ so E ~ TM is the characteristic distribution of M. Thus, M/r is Poisson, 
by Example D. As in the symplectic case (Marie [21], Kazhdan etal. [15]), one can 
show M/~ is Poisson diffeomorphic to [ J -  ~((9)/G] x 0. 

H. An example arising in coupled systems is as follows (Krishnaprasad and 
Marsden [ 1]). Let P be a Poisson manifold and G a group acting canonically on P (on 
the left). Then G also acts canonically on the Poisson manifold (T*G x P)/G. The map 
~: T*G x e ~  g* x P; q~(ctg, x) = ((TLg)*o~g, g -  1. x) identifies (T*G x P)/G with 
~* • P. Thus g* x P is a Poisson manifold. One computes the inherited bracket to be 

{e, H} (~, x) = - g, L ~  ~-~ + {F, n}e  - dxF. ~ g  e + \ 8 ~ / e '  

(3.2) 

where the first term is the ( - )  Lie-Poisson bracket, 8F/81~ 9 is the functional 
derivative, and for ~ ~ g, Ce is its infinitesimal generator on P. If P --- b*, the dual of 
another Lie algebra t), (3.2) is the Lie-Poisson bracket of the dual of the semidirect 
product of g with 1). If the action of G on P has an Ad*-equivariant momentum map 
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J: P ~  g*, the map e: g* x P ~  g* x P defined by 

~(~, x) = (~ + J(x), x) 

transforms the bracket (3.2) into the decoupled bracket 

{ F , H } = -  / ~ ' L ~  ~-~ (3.3) 

Of course, this example is closely related to the Hamiltonian structures used for the 
description of a particle in a Yang-Mills field. See Sternberg [37], Weinstein [40], and 
Montgomery [30]. For an account of this from the Poisson reduction point of view, see 
Montgomery et al. [31]. 

I. The previous example gives an easy proof of the Adler-Kostant-Symes Theorem: I f  

G is a Lie group, H, K are subgroups such that G = HK with g = t) G ~ as a vector space 
direct sum, then Casimir functions of g* are in involution on the product Poisson manifold 
D*- x [*. Indeed, K acts on the fight on G and, hence, by lift on T'G,  so that by (3.3) 
the reduced Poisson manifold (T*G)/K ,,~ (T*H x T*K) /K  ~- T * H  x [* has the sum 
Poisson bracket. Now H acts on this manifold trivially on ~* and by lift of left 
translation, on T*H. The reduced Poisson manifold I-I~(T*H x ~* ) equals, therefore, 
the product I~*_ • ~*. I fF i s  a Casimir on g*, then it is Ad*-invariant and, therefore, its 
extension to T*G by left or right translations is both left and right invariant.Therefore, 
F induces by right invariance a function on T*H x ~* and by left invariance a function 
on b*- x ~*. Since reduction preserves the involutivity of functions, the stated result 
follows. By taking the infinitesimal version of this proof, it is easy to see that only g, 
b, [ enter and not the Lie groups G, H, K. 

We remark in passing that the Adler-Kostant-Symes theorem applied to the central 
extension of a Lie algebra ~ by an element e ~ g*, i.e., ~ = g x R with the bracket 
[(4, a), (r/, b)] = ([4, r/], (e, [4, ~/] )), yields the involution theorem of Mishchenko and 
Fomenko [29]. 

J. Dirac Brackets. Let P be a Poisson manifold and M a nondegenerate submanifold 
of P, i.e., B((TM) ~ ~ TM = {0}. Then M is a symplectic manifold. If E - B((TM)~ 

example D insures that M/O is a Poisson manifold. But since E c~ TM = {0}, the leaves 
of �9 are points, i.e., M/• = M. I f M  = 4-  l (O) f  or 0~ E2l, ~O = (~1 . . . . .  ~O2t), and the 
matrix C = (C o = {if;, ~}) is nondegenerate, a direct computation shows that the 
bracket on M is given by Dirac's formula: 

2l  

{F, H}M(x) = {if,/-7}e(x) - ~ {/~ 4,-} (x)C~ {~, H} (x) (3.4) 
i , j = l  

where C-  ~ = (C ~ and if, H are arbitrarily smooth extensions o f f  and H to P. I f P  is 
symplectic and N is any submanifold of P, Sniatycki [35] has shown that there exists 
a symplectic submanifold M in which N is embedded coisotropically. Then the Dirac 
bracket on M induces a Poisson structure on the reduced manifold N by example E. 
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In Dirac's language M, are second-class constraints and N is the fmal constraint 
manifold (see also Flato et al. [10]). 

Finally, we remark that i fM is a transverse manifold to the symplectic leaf S through 
Xo with S n M -- {Xo) and M = ~-  1(0) and if the matrix C is nondegenerate, then the 
above formula for the Poisson bracket on M still holds. This follows from the fact that 
every symplectic leaf of M is the intersection of a symplectic leaf in P with M. This 
formula applied to the case o f P  = g* shows that the transverse structure is linear if g, 
defines a reductive splitting of g (Weinstein and Molino) and is at most quadratic if the 
isotropy fl, has a complement in 9 which is a Lie subalgebra (this result is due to Oh). 
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