A *-Product on SL(2) and the Corresponding Nonstandard Quantum-U($\mathfrak{sl}(2)$)

CH. OHN*

Université Libre de Bruxelles, Campus Plaine, CP 218, B-1050 Brussels, Belgium

(Received: 27 January 1992)

Abstract. We obtain Zakrzewski's deformation of Fun SL(2) through the construction of a *-product on SL(2). We then give the deformation of $U(\mathfrak{sl}(2))$ dual to this, as well as a Poincaré basis for both algebras.

Mathematics Subject Classifications (1991). 16W30, 17B37, 81R50.

1. A *-Product on SL(2) and the Corresponding Hopf Algebra

Let G = SL(2) and $A_0 = Fun(G)$. Formally, A_0 is the associative algebra with 1 generated by a, b, c, d, with relations

$$[a, b] = [a, c] = [a, d] = [b, c] = [b, d] = [c, d] = 0, \quad ad - bc = 1.$$
(1)

Let $g = \mathfrak{sl}(2)$ and $U_0 = U(g)$. Let H, X, Y be a basis of g such that

$$[H, X] = 2X, \qquad [H, Y] = -2Y, \qquad [X, Y] = H.$$
(2)

Then $r = H \otimes X - X \otimes H$ is a (skew-symmetric) solution of the classical Yang-Baxter equation, i.e.

 $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0,$

hence it defines a left-invariant Poisson structure r^{λ} and a Poisson-Lie structure $r^{\lambda} - r^{\rho}$ on G.

In [3], Drinfeld gives a general procedure to construct a left-invariant *-product on G deforming r^{λ} . Such a *-product is given by a left-invariant bidifferential operator F_h^{λ} on G, where $F_h \in U_0 \otimes U_0$ verifies

$$F_{h} = 1 + \frac{hr}{2} + O(h^{2}),$$

$$(\Delta_{0} \otimes 1)F_{h}(F_{h} \otimes 1) = (1 \otimes \Delta_{0})F_{h}(1 \otimes F_{h}),$$

$$(\varepsilon_{0} \otimes 1)F_{h} = (1 \otimes \varepsilon_{0})F_{h} = 1$$

(where Δ_0 and ε_0 denote the standard comultiplication and counit on U₀).

^{*} Aspirant au Fonds National belge de la Recherche Scientifique. Partially supported by EEC contract SCI-0105-C.

Following the construction of [3], we get

$$F_h = \exp\left(\frac{1}{2}\Delta_0 H - \frac{1}{2}\left(H\frac{\sinh hX}{hX} \otimes e^{-hX} + e^{hX} \otimes H\frac{\sinh hX}{hX}\right)\frac{h\Delta_0 X}{\sinh h\Delta_0 X}\right).$$

The bidifferential operator $F_h^{\lambda}(F_h^{-1})^{\rho}$ then defines a *-product on G deforming $r^{\lambda} - r^{\rho}$ and actually turns A_0 (with its usual coalgebra structure) into a noncommutative Hopf algebra, denoted A_h .

Still following [3], the element $R_h = {}^{r}F_h^{-1} \cdot F_h = 1 + hr + O(h^2)$ is a solution of the quantum Yang-Baxter equation, i.e.

 $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.$

In the two-dimensional representation of g defined by

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \tag{3}$$

we have

$$R_h = egin{pmatrix} 1 & h & -h & h^2 \ 0 & 1 & 0 & h \ 0 & 0 & 1 & -h \ 0 & 0 & 0 & 1 \ \end{pmatrix}.$$

This is the *R*-matrix described by Zakrzewski in [5] as the representation of the element $R'_{h} = e^{hr}$. Unfortunately, R'_{h} is not a solution of the quantum Yang-Baxter equation. (One can check this using a three-dimensional representation of g.)

In [5], the matrix R_h is used to determine relations for A_h (following the method of [4]). We recall that A_h is the associative algora with 1 generated by a, b, c, d, with relations

$$[c, a] = hc^{2}, [c, d] = hc^{2},$$

$$[b, a] = h - ha^{2}, [b, d] = h - hd^{2},$$

$$[a, d] = hac - hdc, [c, b] = hac + hcd,$$

$$ad - bc = 1 + hac.$$
(4)

Clearly, (4) deforms (1). The sufficiency of these relations will follow from Proposition 2 below.

The comultiplication, counit and antipode given in [5], respectively, by

$$\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \otimes a + b \otimes c & a \otimes b + b \otimes d \\ c \otimes a + d \otimes c & c \otimes b + d \otimes d \end{pmatrix},$$

$$\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$S \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d - hc & -b + ha - hd + h^2c \\ -c & a + hc \end{pmatrix},$$

turn A_h into a Hopf algebra.

86

Remarks. (1) The algebra A_1 has also been studied in [2].

(2) The set of relations of A_h is invariant under the permutation (a, d)(b)(c).

2. A Deformation of U(sl(2))

Let U_h be the associative algebra with 1 generated by H, Y, T, T^{-1} and satisfying the relations

$$[H, T] = T^{2} - 1, \qquad [H, T^{-1}] = T^{-2} - 1,$$

$$[Y, T] = -\frac{h}{2}(HT + TH), \qquad [Y, T^{-1}] = \frac{h}{2}(HT^{-1} + T^{-1}H),$$

$$[H, Y] = -\frac{1}{2}(YT + TY + YT^{-1} + T^{-1}Y), \qquad TT^{-1} = T^{-1}T = 1.$$

PROPOSITION 1. The comultiplication, counit and antipode given, respectively, by

$$\Delta(H) = H \otimes T + T^{-1} \otimes H, \qquad \Delta(Y) = Y \otimes T + T^{-1} \otimes Y$$

$$\Delta(T) = T \otimes T, \qquad \Delta(T^{-1}) = T^{-1} \otimes T^{-1},$$

$$\varepsilon(H) = \varepsilon(Y) = 0, \qquad \varepsilon(T) = \varepsilon(T^{-1}) = 1,$$

$$S(H) = -THT^{-1}, \qquad S(Y) = -TYT^{-1},$$

$$S(T) = T^{-1}, \qquad S(T^{-1}) = T,$$

turn U_h into a Hopf algebra.

Remarks. (1) Applying the method described in [4] to derive a quantum universal enveloping algebra from A_h only gives rise to the subalgebra of U_h generated by H, T, T^{-1} .

(2) An extension \hat{U}_h of U_h can be defined by introducing a new generator $X = (\log T)/h$. U_h then is the associative algebra with 1 generated by H, X, Y, with relations

$$[H, X] = \frac{2 \sinh hX}{h},$$

$$[H, Y] = -Y(\cosh hX) - (\cosh hX)Y,$$

$$[X, Y] = H,$$

(5)

which are indeed a deformation of (2). The additional Hopf structure is given by

$$\Delta(X) = X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) = 0, \qquad S(X) = -X.$$

3. Poincaré Basis for A_h and U_h

The relations defining A_h and U_h allows an immediate application of Bergman's diamond lemma (see [1]) to prove the following

PROPOSITION 2. The elements $a^k b^l c^m$ and $d^k b^l c^m$ $(k, l, m \in \mathbb{N})$ form a basis of A_h . Similarly, the elements $Y^k H^l T^{\mu}$ $(k, l \in \mathbb{N}, \mu \in \mathbb{Z})$ form a basis of U_h .

4. The Duality between A_h and U_h

Let $(H_i, m_i, u_i, \Delta_i, \varepsilon_i, S_i)$ (i = 1, 2) be two Hopf algebras. Recall that a *duality* between them is a nondegenerate bilinear form \langle , \rangle on $H_1 \times H_2$ satisfying

$$\langle m_1(a \otimes b), x \rangle = \langle a \otimes b, \Delta_2(x) \rangle, \qquad \langle u_1(1), x \rangle = \varepsilon_2(x),$$

$$\langle \Delta_1(a), x \otimes y \rangle = \langle a, m_2(x \otimes y) \rangle, \quad \varepsilon_1(a) = \langle a, u_2(1) \rangle,$$

$$\langle S_1(a), x \rangle = \langle a, S_2(x) \rangle.$$

PROPOSITION 3. The relations

$$\left\langle H, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\left\langle Y, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$\left\langle T, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix},$$

$$\left\langle T^{-1}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & -h \\ 0 & 1 \end{pmatrix}$$

$$(6)$$

can be extended according to the rules above to a bilinear form on $U_h \times A_h$, which is a duality between U_h and A_h .

The relations (6) deform (3).

References

- 1. Bergman, G. M., The diamond lemma for ring theory, Adv. in Math. 29, 178-218 (1978).
- 2. Deminov, E. E., Manin, Yu. I., Mukhin, E. E., and Zhdanovich, D. V., Nonstandard quantum deformations of GL(n) and constant solutions of the Yang-Baxter equation, preprint *RIMS*-701 (1990).
- Drinfeld, V. G., On constant, quasiclassical solutions of the Yang-Baxter quantum equation, Sov. Math. Dokl. 28, 667-671 (1983).
- 4. Faddeev, L. D., Reshetikhin, N. Yu., and Takhtajan, L. A., Quantization of Lie groups and Lie algebras, *Leningrad Math. J.* 1, 193-225 (1990).
- 5. Zakrzewski, S., A Hopf star-algebra of polynomials on the quantum SL(2, R) for a 'unitary' *R*-matrix, Lett. Math. Phys. 22, 287-289 (1991).