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Abstract. We obtain Zakrzewski’s deformation of Fun SL(2) through the construction of a #-product on
SL(2). We then give the deformation of U{sl(2)) dual to this. as well as a Poincaré basis for both
algebras.

Mathematics Subject Classifications (1991). 16W30, 17B37, 81R50.

1. A «-Product on SL(2) and the Corresponding Hopf Algebra

Let G =SL(2) and A, = Fun(G). Formally, A4, is the associative algebra with |
generated by «, b, ¢, d, with relations

[a,b]—-—[a,c]:[a,d]=[b,c]=[b,d]:[c,a']:0, ad —bc = 1. (1)
Let g =sl(2) and U, =U(q). Let H, X, Y be a basis of g such that
[H, X]=2X, [H, Y]=-2Y, [X,Y]=H. (2)

Then r=H®@X — X® H is a (skew-symmetric) solution of the classical Yang—
Baxter equation, i.e.

712> #13] + [F125 723] + 113 723] = 0,

hence it defines a left-invariant Poisson structure r* and a Poisson-Lie structure
r* —r® on G.

In [3], Drinfeld gives a general procedure to construct a left-invariant *-product
on G deforming r*. Such a *-product is given by a left-invariant bidifferential

operator F} on G, where F, € U, ® U, verifies
h
Fu= 1+ + O,

(AD® 1)Fh (Fh ® 1) = ( 1& AO)Fh(l ® Fh))
(EB®@1F, =(1&¢)F, =1
(where A, and ¢, denote the standard comultiplication and counit on Uy).
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Following the construction of [3], we get

mcof L (A o v p2AY)
The bidifferential operator F;(F; ')* then defines a +-product on G deforming r* — r#
and actually turns A, (with its usual coalgebra structure) into a noncommutative
Hopf algebra, denoted A,.

Still following [3], the element R, = *F; ' - F, = | + Ar 4+ O(h?) is a solution of the
quantum Yang—Baxter equation, i.e.

R|2 R13R23 = Rza R13R12-

In the two-dimensional representation of g defined by

1 0 0 1 00
H=(0 ~1)’ X=(o o)’ Y=(1 0)’ )

we have
1 A —h h?
01 0 h
Ry = 00 1 —h
0 0 0 1

This is the R-matrix described by Zakrzewski in [5] as the representation of the
element R} = ¢, Unfortunately, R}, is not a solution of the quantum Yang—Baxter
equation. (One can check this using a three-dimensional representation of g.)

In [5], the matrix R, is used to determine relations for A, {(following the method
of [4]). We recall that A4, is the associative algbra with | generated by a, b, c, d, with
relations

le,a] =he?,  [e,d] = he?,

[b,al=h —ha®,  [b,d] =h —hd,

[a, d] = hac — hdc, [e, B] = hac + hcd,
ad — bc =1+ hac.

(4

Clearly, (4) deforms (1). The sufficiency of these relations will follow from
Proposition 2 below.
The comultiplication, counit and antipode given in [35), respectively, by

Aa AN aRa+b®c a®b+b®d
¢ df \ce®a+d®c c®bp+d®d/)

a b _ 1 0
e ¢/ 1)
a b d—he —b+ha~hd+h
5 = ,
c d —c a+ he

turn 4, into a Hopf algebra.
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Remarks. (1)} The algebra A4, has also been studied in [2].
(2) The set of relations of A, is invariant under the permutation {a, d}(h)(c).

2. A Deformation of U(sl(2))

Let U, be the associative algebra with | generated by H, Y, T, T~! and satisfying
the relations

(HT]=T*—1, [HT =T 2—1,

RS R

[Y’le"g(HT+TH), [Y,T ']: (HTVI-FT”lH),

1
[H, Y]:——Z-(YT+TY+YT*'+T"Y), T '=T"'T=1.

PROPOSITION 1. The comultiplication, counit and antipode given, respeciively, by
AHY=HRT+T '®H, AY)=YRT+T'®Y,
ADY=T®T, AT H=T'®T",
eH)=¢Y)=0, &N =eT =1,
S(H)=—-THT ', S(Y)y=-7TYT"!,
S(Ty=T1"", S(r-Y=r,

turn U, inte a Hopf algebra.

Remarks. (1) Applying the method described in (4] to derive a quantum univer-
sal enveloping algebra from A, only gives rise to the subalgebra of U, generated
by H, T, 7T .

(2) An extension U, of U, can be defined by introducing a new generator
X =(log T)/h. U, then is the associative algebra with 1 generated by H, X, Y,
with relations

H. X] = 2 sinh hX’

h
[H, ¥] = — ¥(cosh hX) —(cosh AX)Y, (5)
[X, Y]=H,

which are indeed a deformation of (2). The additional Hopf structure i1s given by

AX)=X®1+1®X, &X)=0, SX)=—X
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3. Poincaré Basis for A, and U,

The relations defining 4, and U, allows an immediate application of Bergman’s
diamond lemma (see [1]) to prove the following

PROPOSITION 2. The elements a*b'c™ and d*b'c™ (k, 1, m € N) form a basis of
A,. Similarly, the elements Y*H'T* (k,l € N, u € Z) form a basis of U,.

4, The Duality between A, and U,

Let {H;,m,u;, A, 8,8;) (i=1,2) be two Hopf algebras. Recall that a duality
between them is a nondegenerate bilinear form { , > on H; x H, satisfying

m(a@b), xy=La @b, A(x)},  {ui(1), x) = ey(x),
CA(@), x®y) ={a, my(x @), &f(a)=<{a,w(l)},
{Si(a), x) = <a, 5:(x)>.

PROPOSITION 3. The relations

(e =l )

<Y’ (: Z»:(? g) (6)
a6

-6 )

can be extended according to the rules above to a bilinear form on U, x A,, which is
a duality between U, and A,

The relations (6) deform (3).
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