A *-Product on SL(2) and the Corresponding **Nonstandard Quantum-U(** $sl(2)$ **)**

CH. OHN*

Université Libre de Bruxelles, Campus Plaine, CP 218, B-1050 Brussels, Belgium

(Received: 27 January 1992)

Abstract. We obtain Zakrzewski's deformation of Fun SL(2) through the construction of a *-product on $SL(2)$. We then give the deformation of U($sl(2)$) dual to this. as well as a Poincaré basis for both algebras.

Mathematics Subject Classifications (1991). 16W30, 17B37, 81R50.

1. A .-Product on SL(2) and the Corresponding Hopf Algebra

Let $G = SL(2)$ and $A_0 = Fun(G)$. Formally, A_0 is the associative algebra with 1 generated by a, b, c, d , with relations

$$
[a, b] = [a, c] = [a, d] = [b, c] = [b, d] = [c, d] = 0, \quad ad - bc = 1.
$$
 (1)

Let $g = sl(2)$ and $U_0 = U(g)$. Let H, X, Y be a basis of g such that

$$
[H, X] = 2X, \qquad [H, Y] = -2Y, \qquad [X, Y] = H. \tag{2}
$$

Then $r = H \otimes X - X \otimes H$ is a (skew-symmetric) solution of the classical Yang-Baxter equation, i.e.

 $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0,$

hence it defines a left-invariant Poisson structure r^{λ} and a Poisson-Lie structure $r^{\lambda} - r^{\rho}$ on G.

In [3], Drinfeld gives a general procedure to construct a left-invariant $*$ -product on G deforming r^{λ} . Such a *-product is given by a left-invariant bidifferential operator F_h^{λ} on G, where $F_h \in U_0 \otimes U_0$ verifies

$$
F_h = 1 + \frac{hr}{2} + O(h^2),
$$

\n
$$
(\Delta_0 \otimes 1) F_h(F_h \otimes 1) = (1 \otimes \Delta_0) F_h (1 \otimes F_h),
$$

\n
$$
(\varepsilon_0 \otimes 1) F_h = (1 \otimes \varepsilon_0) F_h = 1
$$

(where Δ_0 and ε_0 denote the standard comultiplication and counit on U_0).

* Aspirant au Fonds National belge de la Recherche Scientifique. Partially supported by EEC contract SC1-0105-C.

Following the construction of [3], we get

$$
F_h = \exp\left(\frac{1}{2}\,\Delta_0 H - \frac{1}{2}\left(H\,\frac{\sinh hX}{hX}\otimes e^{-hX} + e^{hX}\otimes H\,\frac{\sinh hX}{hX}\right)\frac{h\Delta_0 X}{\sinh h\,\Delta_0 X}\right).
$$

The bidifferential operator $F_h^{\lambda}(F_h^{-1})^{\rho}$ then defines a \ast -product on G deforming $r^{\lambda} - r^{\rho}$ and actually turns A_0 (with its usual coalgebra structure) into a noncommutative Hopf algebra, denoted A_h .

Still following [3], the element $R_h = {}^{\tau}F_h^{-1} \cdot F_h = 1 + hr + O(h^2)$ is a solution of the quantum Yang-Baxter equation, i.e.

 $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$.

In the two-dimensional representation of g defined by

$$
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \tag{3}
$$

we have

$$
R_h = \begin{bmatrix} 1 & h & -h & h^2 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 & -h \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

This is the R-matrix described by Zakrzewski in [5] as the representation of the element $R'_h = e^{hr}$. Unfortunately, R'_h is not a solution of the quantum Yang-Baxter equation. (One can check this using a three-dimensional representation of g.)

In [5], the matrix R_h is used to determine relations for A_h (following the method of [4]). We recall that A_h is the associative algora with 1 generated by a, b, c, d, with relations

$$
[c, a] = hc2, [c, d] = hc2,\n[b, a] = h - ha2, [b, d] = h - hd2,\n[a, d] = hac - hdc, [c, b] = hac + hcd,\nad - bc = 1 + hac.
$$
\n(4)

Clearly, (4) deforms (1). The sufficiency of these relations will follow from Proposition 2 below.

The comultiplication, counit and antipode given in [5], respectively, by

$$
\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \otimes a + b \otimes c & a \otimes b + b \otimes d \\ c \otimes a + d \otimes c & c \otimes b + d \otimes d \end{pmatrix},
$$

\n
$$
\varepsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
$$

\n
$$
S \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d - hc & -b + ha - hd + h^2 c \\ -c & a + hc \end{pmatrix},
$$

turn A_h into a Hopf algebra.

Remarks. (1) The algebra A_1 has also been studied in [2].

(2) The set of relations of A_h is invariant under the permutation $(a, d)(b)(c)$.

2. A Deformation of $U(\mathfrak{sl}(2))$

Let U_h be the associative algebra with 1 generated by H, Y, T, T^{-1} and satisfying the relations

$$
[H, T] = T2 - 1, \t [H, T-1] = T-2 - 1,
$$

\n
$$
[Y, T] = -\frac{h}{2}(HT + TH), \t [Y, T-1] = \frac{h}{2}(HT-1 + T-1H),
$$

\n
$$
[H, Y] = -\frac{1}{2}(YT + TY + YT-1 + T-1Y), \t TT-1 = T-1T = 1.
$$

PROPOSITION 1. *The comultiplication, counit and antipode given, respectively, by*

$$
\Delta(H) = H \otimes T + T^{-1} \otimes H, \qquad \Delta(Y) = Y \otimes T + T^{-1} \otimes Y
$$

\n
$$
\Delta(T) = T \otimes T, \qquad \Delta(T^{-1}) = T^{-1} \otimes T^{-1},
$$

\n
$$
\varepsilon(H) = \varepsilon(Y) = 0, \qquad \varepsilon(T) = \varepsilon(T^{-1}) = 1,
$$

\n
$$
S(H) = -THT^{-1}, \qquad S(Y) = -TYT^{-1},
$$

\n
$$
S(T) = T^{-1}, \qquad S(T^{-1}) = T,
$$

turn Uh into a Hopf algebra.

Remarks. (1) Applying the method described in [4] to derive a quantum universal enveloping algebra from A_h only gives rise to the subalgebra of U_h generated by H, T, T^{-1} .

(2) An extension \hat{U}_h of U_h can be defined by introducing a new generator $X = (\log T)/h$. U_h then is the associative algebra with 1 generated by H, X, Y, with relations

$$
[H, X] = \frac{2 \sinh hX}{h},
$$

\n
$$
[H, Y] = -Y(\cosh hX) - (\cosh hX)Y,
$$

\n
$$
[X, Y] = H,
$$
\n(5)

which are indeed a deformation of (2). The additional Hopf structure is given by

$$
\Delta(X) = X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) = 0, \qquad S(X) = -X.
$$

3. Poincaré Basis for A_h **and** U_h

The relations defining A_h and U_h allows an immediate application of Bergman's diamond lemma (see [1]) to prove the following

PROPOSITION 2. *The elements* $a^kb^lc^m$ and $d^kb^lc^m$ (k, l, $m \in \mathbb{N}$) *form a basis of* A_h . Similarly, the elements $Y^k H^l T^{\mu}$ (k, $l \in \mathbb{N}$, $\mu \in \mathbb{Z}$) form a basis of U_h .

4. The Duality between A_h **and** U_h

Let $(H_i, m_i, u_i, \Delta_i, \varepsilon_i, S_i)$ $(i = 1, 2)$ be two Hopf algebras. Recall that a *duality* between them is a nondegenerate bilinear form \langle , \rangle on $H_1 \times H_2$ satisfying

$$
\langle m_1(a \otimes b), x \rangle = \langle a \otimes b, \Delta_2(x) \rangle, \qquad \langle u_1(1), x \rangle = \varepsilon_2(x),
$$

$$
\langle \Delta_1(a), x \otimes y \rangle = \langle a, m_2(x \otimes y) \rangle, \quad \varepsilon_1(a) = \langle a, u_2(1) \rangle,
$$

$$
\langle S_1(a), x \rangle = \langle a, S_2(x) \rangle.
$$

PROPOSITION 3. *The relations*

$$
\left\langle H, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
$$

\n
$$
\left\langle Y, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
$$

\n
$$
\left\langle T, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix},
$$

\n
$$
\left\langle T^{-1}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\rangle = \begin{pmatrix} 1 & -h \\ 0 & 1 \end{pmatrix}
$$
 (6)

can be extended according to the rules above to a bilinear form on $U_h \times A_h$, which is *a duality between* U_h *and* A_h .

The relations (6) deform (3).

References

- 1. Bergman, G. M., The diamond lemma for ring theory, *Adv. in Math.* 29, 178-218 (1978).
- 2. Deminov, E. E., Manin, Yu. I., Mukhin, E. E., and Zhdanovich, D. V., Nonstandard quantum deformations of $GL(n)$ and constant solutions of the Yang-Baxter equation, preprint RIMS-701 (1990).
- 3. Drinfeld, V. G., On constant, quasiclassical solutions of the Yang-Baxter quantum equation, *Soy. Math. Dokl.* 28, 667-671 (1983).
- 4. Faddeev, L. D., Reshetikhin, N. Yu., and Takhtajan, L. A., Quantization of Lie groups and Lie algebras, *Leningrad Math. J.* 1, 193-225 (1990).
- 5. Zakrzewski, S., A Hopf star-algebra of polynomials on the quantum SL(2, R) for a 'unitary' R-matrix, *Lett. Math. Phys.* 22, 287-289 (1991).