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Abstract. Long-range components of the interaction in statistical mechanical systems may affect the critical 
behavior, raising the system's 'effective dimension'. Presented here are explicit implications to this effect of 
a collection of rigorous results on the critical exponents in ferromagnetic models with one-component lsing 
(and more generally Griffiths-Simon class) spin variables. In particular, it is established that even in 
dimensions d < 4 if a ferromagnetic Ising spin model has a reflection-positive pair interaction with a 
sufficiently slow decay, e.g. as Jx = 1/Ixl a+~ with 0 < a~< d/2, then the exponents ~, 6, ? and A 4 exist 
and take their mean-field values. This proves rigorously an early renormalization-group prediction of Fisher, 
Ma and Nickel. In the converse direction: when the decay is by a similar power law with try> 2, then the 
long-range part of the interaction has no effect on the existent critical exponent bounds, which coincide then 
with those obtained for short-range models. 

1. Introduction 

The presence of long-range interactions may affect the critical behavior in models of 

statistical mechanics,  raising their effective dimensionality.  In this Letter, we present the 

specific implications of a collection of general theorems (including some recent results) 

which establish this phenomenon  for a class of ferromagnetic models with one- 

component  spin variables and summable  interactions decaying in d dimensions as 

1 
J ~ - -  (a> 0). (1.1) 

Ixl d+~ 
A 

These results establish that in a class of such models, the critical exponents fl, 7, b, 

and A 4 (defined by (2.14) below), take their mean-field values: 

~ , 3 (1.2) = i ,  7 =  1, b = 2 ,  A 4 -  ~ 

as soon as 

dbnd.--= d/min{ I, a/2} >t 4 ,  (1.3) 
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i.e. if cr <~ d/2 or d t> 4. In particular, this shows that critical exponents can be rigorously 
derived, even for some three dimensional models. 

The results reviewed here for the above critical exponents typically come in one of 
two forms: either as explicit bounds in terms of d and a, or as less explicit but sharper 
relations involving another critical exponent (~/). All the explicit bounds depend on the 
dimension d and the power tr only through dbnct" . Hence, they are unaffected by the 
long-range part of the interaction if tr > 2. 

Both effects were predicted (on the basis of renormalization-group arguments) by 
Fisher-Ma-Nickel [1] who got (1.3) as the condition for 'upper-criticality', and a = 2 
as the threshold for the recovery of the short-range exponents. We note that mean-field 
values of critical exponents have been detected experimentally (at d = 3) in some highly 
ionic systems [2]. 

The major part of the analysis, whose results are reported here, was the derivation 
of relations in the form of partial differential inequalities (PDI), which have been 
obtained for the order parameter (through a collection of works) - typically by means 
of some geometric representation. The principal PDI are stated here in Section 4. Their 
analysis leads to complementary sets of critical exponent bounds: some are dimension 
independent, and naturally involve mean-field values, and other provide converse 
inequalities which depend on an 'effective dimension' deer.. A basic role in the extraction 
of an explicit dependence on d and tr is played by the 'infrared bound', of 
FrOhlich-Simon-Spencer [3], which, at present, has only been proven for reflection 
positive (RP) interactions. Let us explain here that role, and the term 'effective dimen- 
sion', as used in this Letter. 

For a system with a translation-invariant Hamiltonian, such as (2.1) below, it is 
natural to express the spins by means of Fourier transform ('spin wave') variables 
~(p). With a suitable finite-volume normalization, the thermal average (1 ~.(p)12)fl 
coincides with the Fourier transform Ga(p) of the correlation function ( trotrx> ~. It turns 
out that for various results a key issue is the density of these 'spin wave modes' - which 
is ddp - as a function of the 'excitation level' as measured by G. In the benchmark case 
of a d-dimensional finite-range Gaussian model (where ~(p) are independent 
random variables and the equipartition law holds exactly), G(p)  ,.~ C/p 2 (for p # 0) and, 
hence, the density of levels is dG-a/2. For systems with nontrivial spin variables, the 
behavior of Ga(p) is an intricate dynamical issue. Assuming that G/3c(P) "~ C/P <2 - '~ with 
some critical exponent r/, the density of levels can still be written as dG-a~ with an 
'effective dimension' deer.--d/(1- r//2). As mentioned above, the general results 
reported here are either dimension independent or depend on it only through d~fr.. In 
particular, (1.2) is shown to hold whenever deer./> 4. For reflection-positive interactions, 
the 'infrared bound' of FSS [3] yields the explicit estimate 

deer i> dbnd. �9 (1.4) 

In Section 3, we mention some known and some new examples of long-range reflection- 
positive interactions which exhibit power law with any values of d and tr > 0. These 
include Jx = 1/[I x II d +  ,7 with II x [I interpreted as either the Euclidean norm (if d~< 4, 
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otherwise there are some gaps in the proven values for a), or as 

11 x 11 = I xl] + " '"  + ]Xd] (in which case RP is proven for all tr >1 0, d i> 1). 

2. Critical Exponent Bounds 

We consider here ferromagnetic models with pair interactions, having a Hamiltonian of 
the form 

1 h 
H = - -  E Jy-xOx y- E 2 x e  y } ax (2.1) 

on the square lattice Z a. An interaction is said to be of long range if the decay of J x - y  
is slower than exponential. Specifically, we focus on couplings which decay by a power 
law, satisfying (1.1) with some a >  0. Throughout this Letter, the relation Ax ,~ Bx is 
defined to mean that 

ClB x ~. A x ~ c2B x (2.2) 

for some x-independent constants 0 < c~, c 2 < oc. 

While the most complete results on the critical behavior have been obtained for Ising 
spin models (with a x = + 1), many of them are valid more generally for one component 
spin variables with an a-priori measure in the Griffiths-Simon class [4]. This class 
consists of spin distributions which can be generated by means of distributional limits 
of sums of ferromagnetically coupled Ising spins. It includes the discrete variables which 
are equidistributed in { - k ,  - k  + 1 , . . . ,  k}, the continuous 'qr  field variables, and 
various other discrete and continuous spin distributions. 

The Gibbs states ( )8, h of such systems correspond to limits of finite volume 
measures with weights proportional to e -~n(,). Their properties are closely related with 
those of the first few derivatives of the free energy, which in our notation is 
( _ f l ) - l f ( f l ,  h), with f = lim IAI - 1  l n Z A ( f l  ' h); fl being the inverse temperature and h/fl 

the external field. In particular, the following quantities convey very significant informa- 
tion 

M(fl ,  h) = df(fl,  h)/dh = ( % )  a, h 

Z(fl, h) = ~M/~h 

~ ( ~ ,  h) = ~2f(# ,  h)lO#2 

u4 = ~2f(fl ,  h ) / a h  4 " 

(magnetization), 

(magnetic susceptibility), 

(specific heat),  

Much is already known about ferromagnetic spin models with two-body interactions. 
By the Lee-Yang [5] theory, they can exhibit phase transitions only at h = 0. Along the 
h = 0 line, in the (fl, h) plane, there are well-developed perturbative expansions for fl 
either small or very large. Furthermore, nonperturbative results have been obtained 
about the properties of the high- and low-temperature phases, and it was shown that 
they extend (for h = 0) up to a common critical point. In addition, it is known that all 
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the models of the above type share various basic characteristics in their critical behavior, 
some of which are summarized below in Proposition 1.1. 

The most elementary way in which the long-range nature of the interaction is seen 
to affect the critical behavior is through the falloff of the two-point function, or the rate 
at which its Fourier transform - G(p)  ( = s (trotrx) e ~v) diverges as p ~ 0 at fl = tic. 
For reflection positive interactions (with the only assumption on the spins being the 
integrability of exp(aa 2) for all finite a), it is known - by the important result of 
Fr01ich-Simon-Spencer [3] - that G(p)  is bounded for all fl < tic by 

1 
G(p)  <~ - -  , (2.3) 

2/~E(p) 

with 

E(p) = �89 ( 1 - e ' p X ) d x = Z s i n 2 ( ~ ) J x > ~ C Z , p . x l < _ l ( p ' x ) 2 J x .  (2.4) 

(The inequality (2.3) is saturated in Gaussian models with the given couplings, in which 
case it is related to the equipartition law - E ( p )  being the energy density of a 'spin wave' 
with momentum p. Away from p = 0, the inequality also holds for fl >~ tic - for periodic 
b.c.) 

For a long-range interaction obeying the power law (2.2), 

E ( p )  >~ Const. [plmin{2, ~} = Const. Ipl 2 - 1 2 - < +  (2.5) 

[ I xl + = max(x, 0)]. Hence, if the interaction is also reflection positive, we know that 

G(p)  <~ Cfl -~ IP[- (2-12-o1§  (2.6) 

for all/~ </~c({J}), with a/~-independent constant C. 
The bound (2.6) is not optimal in two ways: (i) its proof is restricted to RP inter- 

actions, (ii) for low d, and not too low tr, the infrared divergence of G(P) is expected 
to be less singular (in the sense of a lower power of J Pl - ~) than the one in the right side 
of (2.3). Since this inequality is the only way through which the range of the interaction 
enters much of the analysis, we state the following results under the more general 
assumption that there is some q with which G(p)  satisfies: 

G(p)  <~ Const. I pl - ( 2 -  ,) (2.7) 

with a constant which is fixed for all fl < tic in a neighborhood of ft. 
Following is a summary of results applying to the models introduced above. 

PROPOSITION 2.1. For each distribution in the Griffiths--Simon class, and a d-dimen- 
sional Hamiltonian o f  the form (2.1), there is a critical value tic - which is finite i f  either d >1 2 

or d = 1 and a ~ 1 - such that: 
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(i) For all [3 < tic, the Gibbs state is unique and its correlation functions decay qualita- 
tively as fast as the couplings: 

C([3) 
< aoax>~, o ~ - -  (2.8) 

Ixl,~+,, 

(the symbol ~ being defined by (2.2)). 
(ii) For [3 > tic, there is symmetry breaking, characterized by nonvanishing spontaneous 

magnetization: m*([3) - M([3, 0 + ) > O. 
(~  ) In the vicinity of the critical point (tic, 0), where M is singular, M satisfies the following 

inequalities - subject to restrictions given below - with deft. = d/(1 - t//2) (r/being any 
value with which (2.7) is satisfied). 
(a) Along the coexistence line, h = 0 and fl >i [3~ 

C([3 - [3~),/2 ~< M([3, 0 + ) ~< C'([3 - ]In([3 - [3c)] # 2/3 
(2.9) 

(b) Along rays [3= [3c + b . h , h  >t O: 

I/[ 3+312dent - I.] Chl/3 ~ M(flc, h) ~ C'h "L Ilnhl ~' (2.10) 

The constants C and C' do not depend here on b, which does, however, affect 
the lower-order terms 

(c) Approaching the critical point within the symmetric regime, h = 0 and [3 < tic, the 
magnetic susceptibility •([3, h) = OM(fl, h)/Oh diverges, with 

--[ 
c([3c-[3)-1<<.z([3, o+ )<. c'([3c- [3) L' lin([3c - [3)1 # (2.11) 

with the upper bound holding for any model with deft. > 2. 

Furthermore, along this line, the specific heat and the function 1 ~ I, introduced above 

satisfy: 

c < < c ' ( [3c  - lin([3c - [3)1 ( 2 . 1 2 )  

and 
3 I 14-d~ 

Cza>~ I ~ l  ~> C ' ( [3c - /D '~-~'+ z ' .  (2.13) 

The upper bounds for cases (a) and (b) are restricted to models with 1sing spins and 
deft. > 3.5. In all the logarithmic terms # = 0 unless deer. = 4 - in which case # = 1. 

Remark. The above Proposit ion summarizes an extensive collection of  works, with 
the latest bounds being derived in our reference [6]. The coincidence of  the boundaries 
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of the high- and low-temperature regimes is proven in the works of Aizenman [7] and 
Aizenman-Barsky-Fernhndez [8]. The validity of (2.8) throughout the high tempera- 
ture regime is based on Griffiths' inequality [9] for the lower bound, and - for the upper 
bound - on an extension of Simon's [10] method to long-range models found in [11]. 
The earliest of the mean-field critical exponent bounds is the lower one in (2.11) due 
to Glimm and Jaffe [12]. The complementary upper bound in (2.11) is from the work 
of Aizenman and Graham [13]. The lower bounds in (2.9) and (2.10) are found in [6, 
7 and 14]. The upper bounds of(2.9)-(2.10) were derived in Aizenman-Fern~mdez [6]. 
The upper bound on the specific heat in (2.12) is due to Sokal [ 15, 16]. The upper bound 
in (2.13) is the 'tree bound' ofAizenman [ 17], and Fr0hlich [ 18], while the (unpublished) 
lower bound in (2.13) follows from a simple adaptation (inequality (4.12) below) of an 
argument we used in [6]. Naturally, the works cited above were affected by various other 
(rigorous and nonrigorous) developments, of which it will be impossible to give a 
complete account here. Let us, however, note that many of the above results involve 
partial differential inequalities derived for the order parameter. The main PDI are listed 
in Section 4. 

The bounds (2.9)-(2.13) may be expressed as statements on the critical exponents, 
for which the standard notation is: 

M ( t ,  O) _~ C ( t  - tc)  ~ , M ( t c ,  h) = ~ Ch 1/~ , x ( t ,  0 )  = ~ C ( t c  - t )  - ~  
' ( 2 . 1 4 )  

(btgsing(fl, h )  ~ (tic -- t )  -c t ,  IT441 - ( t c  - t ) - ~  + 2 ~ , ) .  

It follows from (2.6) that for reflection positive long-range interactions ~//> 12 - a l +, 
or deer. 1> dbnd.. Hence, the above results carry the following explicit implications. 

PROPOSITION 2.2. In Ising spin models with reflection positive long-range interactions 
the critical exponents satisfy: 

(i) For tr < 2: 
I f  4d - 7tr > 0 

2tr-  d 
0 ~ < t - 2 ,  ~ - 3 ~ <  ~ + .  (2.15) 

Under the weaker restriction: d - tr> 0, 

2 2a - d (2.16) 0 ~< 7 - 1, 7 - 3 A 4 ,  ~sing ~< ~ + �9 

(ii) For tr >1 2 the same inequalities (2.16)-(2.20) hold with tr replaced all throughout by 
2 (short-range bounds). 

Remarks. The inequalities for critical exponents are understood as bounds on the 
limsup (for the upper bounds) and liminf (for the lower bounds) of the logarithmic ratios 
implied by the notation (2.15). As seen in Proposition 2.1, many of these bounds are 
valid more generally for spins in the GS class. A result of [13] (inequality (4.7) below) 
permits the somewhat sharper upper bound: A 4 ~< y + �89 



CRITICAL EXPONENTS FOR LONG-RANGE INTERACTIONS 45 

3. Long Range Reflection-Positive Models 

In view of the usefulness of reflection positivity, it is of interest to see a large collection 
of RP interactions - and, in particular, interactions exhibiting a slow faUoffin dimensions 
d ~< 4. Such interactions were presented in FrOhlich-Israel-Lieb-Simon [ 19], where 
the focus was on dimensions d = 1 and 2. In this section we mention, and supplement, 
some of their results. Even before recalling the definition, let us list some valid examples. 

Examples of long-range RP interactions: 

(1) (Based on FILS [19]) 

Jx = 1/Ix[ ~ (J" I = the Euclidean norm) (3.1) 

for l~<d~<4, and any z ~ > l d - 2 1 + .  (For d - - 1  one may add Jx-- 
C/([x] + a2)~). 

(2) J~ = 1/(ll x II + a 2)~, with It x II = I Xl I + " '"  + I x~l ,  (3.2) 

for any d 1> 1 and z >i 0. 

(3) Jx = l /  f] (lxil + a2) ~', ~,>~ 0. (3.3) 
[ ~ l i  

It should be noted here that the value Of Jx for x = 0 is not relevant (even if it diverges), 
and that reflection positivity is preserved under the addition of any nearest neighbor 
term - or in fact any other RP interaction. 

The cases grouped above in (1) include the d -- 1, 2 examples of FILS [19] and their 
natural extension to higher d. That construction yields RP interaction like (3.1) also for 
d > 4, but with a somewhat more involved restrictions on z (as explained below). Before 
commenting on the other examples added here, let us recall the definition of reflection 
positivity. 

DEFINITION.  An interaction {Jx} is called reflection positive (RP) (with respect to 
mid-plane reflections) if it satisfies: 

E Z(xl,xll)Z(yl, yl,)J(x, + Y l -  1,x,I--YlI) ~ O,  ( 3 . 4 )  
xl ,  Yl /> 1 

Xll , Yl l  ~ 7 d - 1  

for any finite collection of complex numbers (z~)~ ~ z~, and if similar inequalities are 
satisfied for all the other orientations of the reflection hyperplanes, with the correspond- 
ing decompositions of 7/a into 'orthogonal' and 'parallel' components (with Xl replaced 

by x i, i = 2 . . . . .  d). 
The one-dimensional RP interactions were shown in Frohlich-Israel-Lieb-Simon 

[ 19] to admit a spectral representation as 

J ~ = P ~  2 ' x ' - l p ( d 2 ) '  (3.5) 

with p(d2) a positive (and otherwise arbitrary) measure in [ - 1, 1], 
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The one-dimensional examples in (3.1) were generated in [19] by choosing 
p(ds) = (9(s)F(z)- ls~- 1 e-aS ds (supported in [0, 1 ]). An ingenious construction is also 
presented in [ 19] for the higher-dimensional cases of (3.1). In essence, the construction 
takes advantage of the reflection-positivity of the well-known free field (with arbitrary 
mass), whose two point function may be used to show the reflection positivity of 
couplings with d - 2 ~< z ~< d. Higher values of z are then generated by making use of the 
principle (derived in [19] by Schur's theorem on positive-definite matrices) that a 
pointwise product of RP interactions is also an RP interaction. For d > 4 (which is not 
of much interest for us), this construction leaves some gaps in the range of values of 
z. However, examples (3.2) and (3.3) suggest that these gaps are just a spurious effect 
of the argument. 

The interactions in (3.2)-(3.3) are obtained here by means of the following proposi- 
tion, which allows us to construct d-dimensional reflection positive interactions out of 
one-dimensional examples. 

PROPOSITION 3.1. (i) I f  Jx is a one-dimensional reflection positive interaction (not 
necessarily ferromagnetic), then the d-dimensional interaction 

Jx = JIIxll , with Ijxll = IXll + " ' +  Ixdl, (3.6) 

is also reflection positive (in za). 

(ii) I f  J ~i) . . . . .  ~ r are one-dimensional interactions with the spectral measure p - of 
(3.5), supported on positive 2, then the interaction 

L = J ~xl~l.... . ~i ~d)tx~t (3.7) 

is RP in Z a. 

Remarks. Unlike (3.6), (3.7) applies only to a certain subclass of RP interactions, 
which are automatically ferromagnetic. Both cases are implied by the more general 
statement that any interaction which may be written in the form 

f Jx = I-I ~ tx, I -  1 ~ (d,~l... d,~), (3.8) 
[ - 1 ,  1] d i = 1  

with /3 ( . )  satisfying: 

d 

~3 (d2) sgn(2k) 1-'[ sgn(2i) >I 0 for each k = 1 . . . . .  d ,  (3.9) 
i = l  

is RP (in d-dimensions). 

Leaving the details as an exercise, let us just comment that the reflection-positivity 
of interactions of the form (3.8) is implied by two different positivity statements: (i) the 
positivity of (3.9), and (ii) the 'positive definiteness' (as seen in the positivity of the 
Fourier transform) of the function f~(x) = 2 I xt _ on ~. (The second statement plays a 
role in the control of the 'parallel' direction in (3.4).) The fact that interactions of the 
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two types mentioned in Proposition 3.1 admit the representation (3.8), satisfying (3.9), 
is a rather direct consequence of the FILS representation (3.5). 

4. Partial Differential Inequalities 

It may be interesting to note that most of the properties discussed above are con- 
sequences of a number of partial differential inequalities which over the years have been 
derived for the systems considered here. Without repeating the full arguments, we shall 
summarize here the relevant PDI, grouping them according to their most elementary 
applications. We denote here [JI = ~xJo. x. 

An important preliminary fact (which has a number of derivations, e.g. an argument 
using FKG inequalities [20]), is that these models may exhibit a first-order phase 
transition for a given (fl, h) only if the magnetization is discontinuous there as a function 
of h. This can only happen at h = 0, by the Lee-Yang theory, or by the concavity stated 
below in (4.2). 

(i) Phase structure. The magnetization is an odd function of h, which for h > 0 is: 
(a) positive (Griffiths I [9]) and monotone (Griffiths II [20, 21]) in fl and h 

aM(fl, h)/Oh ; aM(fl, h)/Ofl>~ 0,  (4.1) 

and (b) concave (GHS [22]) 

32 M(fl, h)/t~h 2 <~ O . (4.2) 

While the low temperature is characterized by the nonvanishing ofM(fl, 0 + ), it can 
be shown (by an application of the Simon inequality [ 10]) that the rapid decay of 
correlations which is characteristic of the high-temperature phase persists (at h -- 0) as 
long as Z = 3M/dh is finite. The fact that the two phases extend up to a common critical 
point is derived (by an argument of Aizenman and Barsky [23]) from the PDI 

n <~ h. t~n/Oh + [ill J I M  2 + hM] . O(fln)/~fl (4.3) 

(obtained by Aizenman-Barsky-Fernhndez [8]), with the additional help of 

OM/Ofl <~ I J I M  aM/3h (4.4) 

(a consequence of GHS whose importance for the study of critical exponents was 
emphasized by Newman [24]). 

(ii) Mean-field bounds on the critical exponents. (a) The use of differential inequalities for 
critical exponent bounds seems to have been started by Glimm and Jaffe [ 12], who used 

t3Z/t3fl <~ IJl z = (a th  = O, f l< flc) (4.5) 

(a consequence of the GHS-Lebowi tz  inequality [25 ]) for the mean-field bound on V. 
The important result of McBryan and Rosen [26] that Z ~  m as f l~f lc ,  can also be 
derived from a finite-volume version of (4.5) (by an argument given in [27]). 

(b) The general mean-field bounds on ~ and ~5 (of [7, 14, 6, 8, 28]) can be derived 
from the PDI (4.3) and (4.4). 
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(c) A bound on b~l at h = 0 and fl < tic - with an important implication for the 
'triviality' of the scaling limits, can be expressed as 

l a3n/Oh3l <~ 2(81 j I)2• 4 (4.6) 

(Aizenman [17], FrOhlich [18]). There is also a sharper relation 

103n/Oh3[ ~< 2 [ J Iz  z" 0(flg)/0fl (4.7) 

derived in Aizenman-Graham [13]. 

(iii) Bubble-corrected inequalities 
The inequalities which supplement the mean field bounds in (2.9)-(2.13) are also 
obtained through PDI. It turns out that for some of the pivotal quantifies one may derive 
pairs of supplementary bounds which differ by factors involving the 'bubble diagram' 
B(fl), which is defined as 

B(]~) = ~ (%ax)~=o.  (4.8) 
X 

For large enough d, or small enough a, the bubble diagram is finite at the critical point 
(a fact which for RP interactions may be ascertained by the infrared bound (2.3)), and 
then the supplementary bounds completely determine the critical exponents. Even when 
the buble diagram diverges, one obtains informative, though less definitive, results 
through bounds on B of the form B ~ Const. X 1(4 - ao,)/21 + (as discussed in Sokal [ 16], 
and in Appendix A of [6]). Following are some such pairs of supplementary bounds. 

(a) For the study of 

Coast. ~< ff ~< [JI2B. (4.9) 

of Sokal [14] (based on [5, 25]). This is the simplest of the complementary pairs, and 
its discovery was a precursor of the results on the upper critical dimension. 

(b) For the study of 

~ a(HlJIz)  (HI J i g )  2 (4.10) 
0~ >~ coast. 1 + (fllJl)2B 

of Aizenman-Graham [13] - w h i c h  supplements (4.5). 

(c) For b and /~ 

M4 O-~h I 1 - hB/M[~ 
Coast. h-- S- >/ _.. /> coast. (1 + 2~-~ -B)  3 hz4 (4.11) 

of Aizenman-Femhndez [6], where the lower bound (which is the more important one 
here) was derived only for Ising spin systems. 

(d) For h 4 
1 (fl OZ'~ 2 

I~11>481~JI2B + 2x_2/~Caz/a#) ~ ]  , (4.12) 
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which complements (4.7). The (unpublished) proof of (4.12) is by a direct adaptation 
of the argument used to prove the lower bound in (4.10) (found on p. 435 in [6]). 

Let us end this note by recalling that some other drastic effects of long-range inter- 
actions occur in the borderline case of one-dimensional 1/Ixl 2 interactions. Recent 
rigorous proofs and the rich history of the subject can be found in [29], and references 
therein. 
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