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AB S TRACT. For a wide class of Eagrangian systems we show rigorously that the conventional 

formulation of Noether's theorem provides a bijective map from the set of equivalence classes of 

Noether's symmetries onto the set of equivalence classes of conserved currents. We further discuss 

if Noether's theorem is generalized in a significant way by several formulations proposed in this 

decade. 

1. INTRODUCTION 

In a recent paper of Ibragimov [1] a method is proposed to relate conserved currents with 

symmetries for arbitrary systems of partial differential equations by means of a previously for- 

mulated generalization of Noether's theorem [2]. On the other hand, Candotti-Palmieri-Vitale 

[3, 4] and Rosen [5, 6] have generalized Noether's theorem in such a way that conserved currents 

appear in general to be unrelated with symmetries even for Lagrangian systems (see in particular 

[6] and Theorem 1 of [4] ). Then the following questions naturally arise: 

(1) Does Noether's theorem provide a deep relationship between symmetries and conservation 

laws for Lagrangian systems? 

(2) To what extent is it possible to generalize Noether's theorem? 

The present note is devoted to investigate these two questions. It is formutated in terms of 

algebraic methods as introduced by Gel'fand and Dikii in [7], and it uses several notions and 

results of a previous paper [8]. In order to keep the paper within usual language we adopt the 

formal term 'infinitesimal transformation' to describe the vector fields of first-order differential 

operators acting on the algebra of regular density functions. 

Out analysis is based on the concept of an integrating factor of a system of partial differential 

equations, which is closely related to the conserved currents of the first kind [9]. It allows us to 

isolate that property of Lagrangian systems which is implicit in the conventional formulation of 

Noether's theorem [10]. This property is that integrating factors of Lagrangian systems define 

symmetries. It leads in a natural way to the Noether map between Noether symmetries and 

conservation laws. Our main task is to deduce rigorously under what conditions this map is 

bijective. The answer to this question taust take into account two aspects. First, the algebraic 
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nature of  the discussion requires obtaining an algebraic characterization of  the ideal of  density 

functions which vanish on the solutions of  the field equations; and, secondly, there are natural 

notions of  equivalence in the sets of  symmetries and conserved currents which suggest that it is 

more intrinsic to consider the Noether map in terms of  equivalence classes. In this way, we are 

able to prove rigorously the bijective character of  the Noether map for normal Lagrangian systems. 

Finally, we conclude that the above-mentioned generalizations of  Noether's theorem do not irn- 

prove in any sense the deep property of  kagrangian systems provided by the conventional for- 

mulation of  Noether's theorem. 

2. FORMUI�9 OF THE RESULTS 

We follow the notation conventions of  [8]. Let R be the algebra of  C = functions F = F[x,  u] 

depending upon n independent variables x i ( i  = 1 .... n) and derivatives of  arbitrary order o f m  

dependent variables u r (r = 1 , . . ,  m). By a normal system of partial differential equations we 

shall mean a system of the form 

oNr+ 1 blr 
co'[x, u] ~ o t N r + l -  Of[x, U] =0 ,  r =  I,. . . ,  m, (1) 

where tdenotes one of  the coordinates x i, Nr (r = 1 ..... m)  are non-negative integers, and u 

r such that the component of  y corresponding to the coordinate t denotes the set of  variables uy 

is less than or equal to N r. Clearly, if 0 ~ E R all the variables u r may be written as C = functions 

of the variables [x, u, co], where co denotes the set of  functions DC~co r (i~1/> 0, r = 1 . . . . .  m). 

Then, every element o f R  may be expressed as a C = function F[x,  u_, co]. I_et I be the ideal of  

functions F @ R which vanish when the field equations (1) are satisfied. That is, F E I if and 

only if F[x, u,  0] = 0. The following lemma establishes an important proper tyofnormal  systems. 

L E M M A 1. The Meal I is generated by the funct ions  D a cor ( Ic I >1 O, r = 1 .. . . .  m).  

Proof  Evidently Daco r EZ On the other hand, from a fundamental theorem of  calculus we have 

1 

F[x,  _u, cq] = F[x,  _u, 0] + ~ Daco r I OD%o o 7(r)dr 
r, 

0 

where 3' is the curve 7(~-) = [x, u_, rco]. The conclusion follows at once. [] 

Given F,, G E R  we write F =o G when F -  G EL A vector function A = (it 1 .. . . .  An)(Ai  E R )  

is said to be a conserved current o f ( l ) i f  D .  ~_o 0. Clearly, if ~ _2 0 or D "  A -  0, t h e n A  

is a conserved current. Two conserved currents A and A are said to be equivalent if 

�96 - �96 '= g + C with B ~ 0 and D .  C --- 0. From Lemma 1 every conserved current o f ( l )  

must satisfy an equation of  the form D �9 A = 2r,~X~ " D~co ~ where X~ E R and the sum extends 

to a finite number of  terms, 

An rn-component function X =CA 1 ..... X m) is said to be an integrating factor of  (1 ) i f  the 

followi•g system of  equations is satisfied 
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B ( Z X s c o s )  =0 ,  r = l , . . . , m .  (2) 
B ~ r  s 

Since the kernel of the variational derivative coincides with the range of the divergence operator 

[8], every integrating factor determines, up to a divergenceless term, a conserved current by the 

equation 

___> __~ 

D "  Aa = Z U J .  (3) 
F 

These conserved currents associated with integrating factors are called first kind conserved 

currents [9]. 

The hext lemma describes an identity which can be deduced in a way similar to the way we 

deduced identity (6) in [8]. It will be used in the proof  of  Lemma 3. 

LEMMA 2. Given X~, ~r E R  (I~1~> O, r = 1 ..... m) then wehave 

X~" Da~ ~ = ~ Da({X~}~ r) (4) 
F, ~ r ,  

where 

{x~} -= ~ (- ~)~~~(~ ~ ~) DeG+e. (5) 

Now, we are ready to prove 

LE M M A 3. For normal systems: (i) Every conserved current is equivalent to some first kind 

conserved current associated with an integrating faetor o f  the form X = X[x, u_]. (ii) Two first 

kind eonserved currents A x and A x' are equivalent i f  and only i f  X o_ X' (i.e. Xt~ X 'r for all r). 

Proof. 0) We will use the following alternative notation for the derivatives of  the field 

F ~ Y F 
H ~  Hl,  a ~ ~ H a  

where a is a symbol with tz 1 components which indicates the partial derivatives with respect 

to the coordinates different from t. 
---> -+. --~ ~ --> 

_ - - A [ x ,  u ,  I_et A = A [x, u, co] be a conserved current and let B [x, _u_] _ 0].  Clearly, B is a 

conserved current equivalent to A. Then 

B ~ ~. aBo . D  a (aNr+l  u r _ O  r )  o0 ,  
�9 L allrNr,~�8 \ a t N r + l  = 

P, a 

(6) 

where Bo denotes the t-component of B. Let us observe that the left-hand side of (6) depends 
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only on the variables [x, u ] .  Then it taust vanish identically in order to be an dement  of  the 

ideal/ .  Therefore, from the ident i ty  (4) we deduce 

D .  B= Z Da((p�8 r) = Z {Pr} tor +fi~ -~ 
r,  a I" 

(7) 

where p�8 =- O“ and C is determined, up to divergenceless term, by 

-_> --> 

D" C = ~ Da( (p�8 }oor). 
r ,  l a l ~ > l  

Clearly, U ~ {pf} = U[x,  u“ and A a -=B - C is equivalent to B. Therefore, A is equivalent 

to A a . 

(ii) ~ -+ I.et A a and A a' be equivalent first kind conserved currents. Then 

A -A~, - Ax' Z ~~" r --" = D % o  + B  

where DB - O. If  we apply to A the divergence operator we get 

---> --~ -->r - '~ Z (?( -X'r)c~ = Z (D X~ �9 Dy r + Xc~" DD%S) .  
r 1", O~ 

(8) 

This equation is an identi ty of  the form Er, cJla[x, u, co]DC%o r '1" y _ = E1",cJIy [x, u, co] D%o r and it 
o f r  o implies r~~ =~7~ for all r, a. Then, from (5) it follows that (rT~} = (r~~1"} for all r, a. But (8) 

yields {r~1"} = ?ff - X 'r and {~,r} = 0. Therefore X_ --~ X'. 

On the other hand, if  X ~ X', then Aa  - Aa '  is a first kind conserved current with integrating 

factor r7 = X - X' g 0. From part (i) of  this theorem we have that there will be a first kind con- 

served current A�87 equivalent to A n such that p = P [x, u ] .  As we have seen, this implies 
- +  --> 

p =o r~ _o 0. But p [x, u] o= 0 if and only if  P = 0. Therefore D �9 Ap - 0, and this means that 

Aa and Aa '  are equivalent. 

We now turn out at tention to normal Lagrangian systems. I_et us suppose that (1) is a 

Lagrangian system. That is, there is L E R  such that co ~ = 6L/&F. Given ~i, r/1" C R  let us 

consider the infinitesimal transformation 

x~ = xy + e~i[x, u (x)], u'1"(x') = ur (x )  + en ~ [x, u(x)] (0) 

which induces infinitesimal total variations of  the fields of  the form 

� 9 2 4 9 2 4 9  p r _ - ~ r  ~ . ¦ 2 4 9  (10) 

In the usual context  of  Noether's theorem [10] it is proved that the transformed field u '  = u'(x) 

satisfies to first order in the parameter e the Euler-Lagrange equations associated with the 

Lagrangian function L'  = L + e¦ where 
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¦ =5(~L) + Z DekOr. __DL --> . --> p~ __8L (11) , . ~  au¦ = D  J + Z , .  ~;u" 

and J is determined up to a divergenceless term by [8] 

-+ -+ ~-~  [ r “ L ) 
D ' J = D ( ~ L )  + Z D c~ ~P ~ �9 (12) 

r,  Ic~l ~> 1 

An explicit choice of  J may be written in terms of the notation conventions ( 1 1 ) - ( 1 3 )  of  [8] in 

the following form 

J= ~i L + Z [iil.. ix]D,1.., k pr ~L ; - -  . (13) 
r ,k  >t 0 ~bliil . - ik  

From (11) it follows that ¦ is a divergence if and only if p is an integrating factor. In this 

case, L and L'  determine the same system of Euler-Langrange equations, and then (9) defines 

a symmetry of  the kagrangian system. These symmetries associated with integrating factors are 
--> --~ ___> 

called Noether symmetries. Moreover if ¦ = D �9 K, identity (11) implies that K J is a con- 

served current and it is precisely a first kind conserved current A o associated with the integrating 

factor p. 

Let us denote by S o an infinitesimal symmetry u'(x) = u(x) + ep[x, u(x)] o f ( l ) .  I f p '  is a 
o t pt  m-component function such that p = p ,  then and p determine the same total variations on 

the solutions of  (1) and therefore S o" is also an infinitesimal symmetry of  (1). Consequently, it 

is natural to define that two infinitesimal symmetries So>and S o, are equivalent if and only if 

P ~ O'. In this way, if we call the corresp¦ S o -+Ap between Noether symmetries and 

first kind conserved currents of  Lagrangian systems the Noether map, the following result follows 

at once from Lemma 3. 

T H E OR E M. For normal Lagrangian systems the Noether map induces a bijec tive correspondence 

from the set o f  equivalence classes o f  Noether symmetries onto the set of  equivalence classes of  
conserved currents. 

We shall end our analysis with some comments: 

(a) The result of  the theorem cannot be generalized to all the Lagrangian systems. It is well- 

known [11] that Noether currents associated with gauge transformations are equivalent to the 

zero current. It does not contradict our result since equations of  motion of  gauge covariant 

theories are not normal systems. 

(b) As we have seen, the Noether map between symmetries and conserved currents is a con- 

sequence of  the dual role played by integrating factors in Lagrangian systems. For arbitrary 

systems of  partial differential equations integrating factors determine conserved currents by 

means of  (3), but in general they do not define symmetries. This means that the fundamental 

property of  Lagrangian systems which is implicit in Noether's Theorem is that integrating factors 
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give rise to symmetries. This fact is the origin of the relationship between conservation laws and 

invariance properties in the Lagrangian formalism. Notwithstanding, several generalizations of 

Noether's Theorem have been proposed in which conserved currents appear unconnected with 

symmetries (see [4] and [6] ). We disagree with this point of view since it lacks the basic content 

of Noether's Theorem. 

(c) In [ 1 ] Ibragimov gives a way to derive all the conserved currents of arbitrary systems of 

partial differential equations from symmetry groups. Ibragimov's argument (see the proof of 

Theorem 2 of [1 ] ) is that every conserved current A may be obtained from the infinitesimal 

symmetry 

~i = AJL, r/r = ~ .  Du , (14) 

where L is a weak Lagrangian such that L ~ 0. But this cholce of r~ r corresponds to a null total 

variation of the field (see (10)). That is, it generates the identity transformation u' = u. Clearly, 

this result cannot be interpreted as a group theoretical foundation of all the conserved currents. 

Moreover, it follows at once that the infinitesimal transformations which lead to a given conserved 

current A in Ibragimov's approach are given by (see formula (6) of [1] ) 

¦ 
~ i=Ay Z [iil..ik] Di~''lk pr (15) 

r,k >~ 0 6blril . Zk 

with pr -_ r~r -~ �9 Du r arbitrary. Therefore, all the infinitesimal transformations 

u'~(x) = u~(x) + ep~[x, u(x)I may be associated with A. This means that the method of 

Ibragimov does not provide any intrinsic relationship between conserved currents and symmetries. 
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