
First-Order Fuzzy Logic 
~ o v i K  

Abstract. This paper is an attempt to develop the many-valued first,order 
fuzzy logic. The set of its truth values is supposed to be either a finite chain or the 
interval (0, 1) of reals. These are special cases of a residuated lattice (L, v ,  A, ®, 
-~, 1, 0). It  has been previously proved that the fuzzy propositional logic based on 
the same sets of truth values is semantically complete. In this paper the syntax 
and semantics of the first-order fuzzy logic is developed. Except for the basic connec- 
tives and quantifiers, its language may contain also additional q~-ary connectives 
and quantifiers. Many propositions analogous to those in the classical logic are proved. 
The notion of the fuzzy theory in the first-order fuzzy logic is introduced and its 
canonical model is constructed. Finally, the extensions of GSdel's completeness 
theorems are proved which confirm that the first-order fuzzy logic is also semanti- 
cally complete. 

I .  In troduct ion  

The theory  of fuzzy sets is now a quickly developing branch which 
gained its popular i ty  because of its a t t ract iveness and ease of applications. 
The connection between fuzzy sets and  many-va lued  logic is very close. 
Any  logic with more than  two t r u t h  values is now usual ly called fuzzy 
logic. I t  should be stressed t h a t  the te rm "fuzzy logic" has, in fac% 
two meanings:  many-valued logic and linguistic logic whose t r u t h  values 
are words of na tura l  language. Linguistic logic has been introduced by  
L. A. Zadeh in [16]. In  this paper we deal with many-vMued logic whose 
t r u t h  values are taken either f rom the finite chain or from the interval  
of reals (0,  1>. 

In  [13] J .  Pavelka  int roduced the propositional fuzzy logic based 
on the above ment ioned t r u t h  sets ( they are special cases of the so called 
residuated lattice) and  he proved t h a t  it  is semanticMly complete. A na- 
tural  question arises if the first-order fuzzy logic being an extension of 
the propositional fuzzy logic is Mso semantical ly complete. 

We have tried to develop the  first-order fuzzy logic in this paper. 
Unlike P~velka whose proof is based on the ul traf i l ter  trick, we have 
tr ied to follow the classicM method.  We have proved the fuzzy extensions 
of GSdel's completeness theorems construct ing the ca.nonicM model 
of the fuzzy theory (in the language of the first-order fuzzy logic). Since 
our proof does not  use the results of Pavelka~s proof it m a y  also be consi- 
dered to be a direct proof of the completeness of the fuzzy propositional 
logic. Fuzzy  logic presented here is a direct generalization of the classical 
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predicate calculus which we obtain when we replace the general finite 
chain of t ru th  values by the Boolean la~ttice {0~ 1). 

2. Truth values, operations and generalized functions 

There are good reasons to suppose that  t ruth  values form a complete~ 
infinitely distributive and residuated lattice 

(1) Ae = (L,  v ,  A, ®, -->, 1, O) 

where 1, 0 are the greatest and the smallest elements, respectively, and ® 
-> are additional binary operations of (bold) multiplicatio~ and resid~- 
ation~ respectively, having the properties: 

a) <Z, ®, 1> is a commutative monoid. 
b) The operation ® is isotone in both variables and -> is antiton~ 

in the first and isotone in the second variable. 
c) The adjuction property 

a®fl~<~, iff a ~ # - > 7  

holds for every a, fl, 7 e Z.  
The reasons for using the residuated lattice are discused in [7, 12, 13]. 

When putt ing JL ~-(0~ 1), v -~max,  ^ ~ -min ,  0--~0, 1 = 1  and 

(2) a®fl = 0v(a-[-f l --1)  
a->~ = l ^ ( 1 - a , + ~ )  

for every a, f le  (0, 1) we obtain the residuated lattice (1). Similarly~ 
for Z = (0 ---- a n ~ ... ~ a~ ----- 1) being a finite chain we put 

(3) a k ®Up = (~max(O,kTp--m) 

%.--> a~ = amin(m,m_k+p) 

where 0 ~ b, p ~ m. We again obtain the residuated lattice (1). This lacy 
is very important  since finite chain and the interval (0, 1) have been 
used in all applic~tions of fuzzy sets and are the most natural from the 
point of interpretation of results. 

The choice of operations follows from the facts proved in [13]: 
-- If the operation -~ is not continuous on (0, 1 ) x ( O ,  1), then i~ 

is not possible to construct fuzzy logic with complete syntax. 
-- Every residu~ted lattice (1) based on (0, 1) such that  the  opera- 

tion -> is continuous on (0, 1)X(0~ 1} is isomorphis with the above 
lattice endowed with the operations (2). 

We will frequently use the following symbols: 

a ~  =D ( a - ~ )  ^ (#-~a) 
- la  ~D a->0 

(-~D stands for "being defined"). All through this paper we will confine 
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ourselves to the assumption that  the set of t ru th  values forms the above 
defined residuated lattice either with Z ---- (0, 1} cr L being a finite chain 
with the operations of multiplication and residuation defined by (2) or 
(3), respectively. Some of the properties introduced lur ther  hold, of 
course, for a general residuated lattice. 

LE~v[A 1. Z e t a  l f i1~ e L and 1 1 K  ~_ .L. Then  

(a) A a®A/~-<< A A (a e l  i ) 
a~K ~ e I  a e K  f leI  

b) A (a~)<~ A ~ A/~ 
aofleK a a K  a e K  

(c) A (~/~) ~< V ~ V/~ 
a , f l eK  a e K  t i c k  

(d) 7 ( - ] a )  = a 

(e) A (a®fl) = A a®fl  
a e K  a e K  

(f) a^/~ = -']( 7 a v  -]/?) 

(g) a--->fl =- -](a®-]f l )  

The proof follows from the definition of the residuated lattice andt 
in some cases, from the assumption tha t  r, is a chain. [] 

Many other properties of operations in residuated lattices are proved 
in [7, 12~ 13]. 

The four basic operations appear to be insufficient for applications 
of the fuzzy logic. The question arises whether we are able to introduce 
new operations which can enrich the given residuated lattice ~ in such 

way that  they will be the interpretation of new additionM logical con- 
nectives (see Section 4). ;[. Pavelka in [13] has shown tha t  any n-ary  
operation a fulfilling the condition 

(~) ( a ~ ) k ,  ®... ® ( a ~ ) k ~  .<< ~(a~l .-.I ~ ) ~ ( ~ 1 . . . 1  ~) 
for some k~1 . . . ,  k, where the exponentation is taken in the sense of the  
multiplication ® can be used as the interpretation of n-ary logicM con- 
nective. This condition called the f i t t ing  condit ion intuitively means 
that  "roughly equM values oi arguments imply roughly equal values 
of the operation a in them".  I t  can be verified that  every basic operation 
( v ,  ^ I ®, -+) fulfils the fitting condition (4). ~oreover,  uny operation 
derived from the operations fulfilling (4) also fulfils (4). 

In the first-order fuzzy logic we will also introduce generalized ope- 
rations QI 

Q: ~ ( Z ) - ~ Z ,  

where ~(aS) is the power set of iS. If K _~L, then we will write Q a instead 
a e K  
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of Q{a; a ~K} and Qa instead of Q{a). We will call Q the regular gene- 
ralized operation if it fulfils the conditions 

~(5.1) O (a ®~) < O a ®fl 
a e K  a e K  

(5.2) O ( (a®~)+o)+o  < ( Q (a+0)+0)®~ ,  
a~K a~E. 

,(5.3) A a ~< ¢2 a ~< V a , / i :  # O. 
a~K a s k  a~K 

P u t  Q a ----] Q(--]a). I t  can be easily proved tha t  0 is also a regular 
a~K a e K  

generalized operation. ~oreover ,  -~ Q a = Q (-]a) and Q (-3a) =-]Q a. 
a~K a~K 

The operation Q is adjoined to Q. If, moreover, Q a = - 7  Q (-Ta) holds, 
a ~ K  a e K  

then Q and 0 ~re adjoint generalized operations. The operations of sup- 
r emum V and inf imum A ~re a pair of adjoint  regular generalized ope- 
rations. 

In  what  follows we will suppose tha t  the t ru th  values form the algebra 

(6) A f = < L , V , A ,  ® , - - > , { a ; a e L } , { a ~ ; j e J o p } , V , A , { Q ~ ; j e J q } >  

where Z is either the interval <0, 1> or (m,+l)-e lement  chain, ®, -~ are 
the operations (2) or (3), respectively, {a i a e Z} is a set of nullary opera- 
tions, {%;j  e Jop} is a set of additional operations fulfilling (4) and {Qi; 
j e Jq} is a set of additional generalized operations. 

3. Language, terms and formulas of the first-order fuzzy logic 

The language of fuzzy logic consists of: 

a) Variables x, y, . . . .  
b) Constants c, d,  r, . . . .  
c) Symbols for t ru th  vMues a; a e JS. 
d) n-ary functional symbols f(~, g(H},.., with various superscripts 

G, H, .... 
e) n-axy predicate symbols p, q, . . .  and the designated identi ty sym- 

bol = .  
f) Binary connectives v*,  ^% &*, ~* and a set of n-ary connecti- 

ves {aj; j ~ Jop) (the ari ty of a~ is supposed to depend on the subscript 
j). 

g) Symbols for the general V and existential 3 quantifiers and a set 
of generalized quantifiers {Q~; j ~ Jq}. 

h) Auxiliary symbols ( , )  etc. 
The following are common recurrent  definitions of terms and formulas. 

Terms 
a) A variable or ~ constant  is a term without  superscript. 
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b) I f  f(G) is an n-ary  functionM symbol  and a l ,  . . . ,  a~ are terms 
wi thou t  superscript  or with the  same superscript  G, then f(a) (a l , . . . ,  as) 
is a t e rm with the  superscript  G. 

I f  the  superscript  is missing a t  the  funct ional  symbol,  then  the  t e rm 
is either wi thout  superscript  or the  superscript  does no t  mutter .  

~ormulas 
a) The symbol  a, a e L for the  t r u th  value is a (atomic) formula.  
b) I f  a, b, al, . . . ,  a~ are terms with an urbi t rary  superscript  and 

p is an n-ary  predicate  symbol,  then  a = b and p (al, . . . ,  an) are (atomic) 
formulas.  

e) If  ~, ~, ~1, . . - ,  W~ are formulas,  then  ~v  *~, ~0 ̂  *~, ~ &* y, ~ ~*% 
qi(~o~, "",q~n) for j eJop, (Vx)% (~x)~, (Q~x)~ for j eJq  are formulas.  

The connectives v *, h *, &*, ~*  will be called disjunction, conjunction, 
bold conjunction and implication, respectively.  Le t  us in t roduce the fol- 
lowing abbrevia t ions  of formulas :  

-]*~0 =D ~ * 0  (negation) 

~ * ~  -----~ (? ~*~) ^*(W ~*~) (equivalence). 

The  set of all terms of a given language f l  will be  denoted  b y  M s a n d  the  
set  of all formulas b y  L~¢. 

Like in the  classical logic we introduce the notions of free and bound  
variable,  and subst i tu t ib le  term.  I f  we subs t i tu te  a t e rm into a formul~ 
we mus t  t ake  care of its superscript :  the  t e rm b is subst i tu t ible  into the  t e rm 
a for the  variable x if, moreover,  a and b have  either the  same superscript  
or one of them is wi thout  superscript.  If  a, b are terms with the  same 
superscript  and ? is a formula,  then  a~ [b], ~x[b] denote the te rm or the  
formula  which we obtMn b y  subst i tu t ion of the  t e rm b for the  varible x. 

In  the  sequel, we will suppose thnt  we are given some language J of 
the  fh~st-order fuzzy logic. 

4. Semantics of the first-order fuzzy logic 

4.1. Structures and truth valuations 

A fuzzy set A in the  universe U denoted b y  A ~ U is a funct ion 

A : U-->Z. 

The element  Ax e Z for x e U is called the  grade of membership. The 
funct ion A is sometimes called the  membership function, i.e. the  member-  
ship funct ion and the fuzzy set coincide. A fuzzy set is explicit ly expressed 
b y  

{Axlx ;  x e U}. 

A fuzzy singleton is ~ one-e lement  iuzzy set {Ax]x}. 
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A strueture for the language of the f~st-order fuzzy logic is a set to- 
gether with fuzzy functions and fuzzy relations, i.e. 

= (1), p ~ , . . . ,  (g~, G ) , . . . } ,  

where 1) is a set~ p~ _~ 1) ~ are ~-ary fuzzy relations and g~ are n-ary fuzzy 
functions with the  domain G ~ D. The fuzzy funct ion g~ is defined as 
follows. I t  is function g~:/)~-->D fulfilling the condition 

(7) Gg~(Xl, ...~ Xn) ~ GXlA . . .  AGXn~ xl~ ...~ xn ~.D. 

The definition of a composite fuzzy function from fuzzy functions with 
the same domain is straightforward. 

Interpretatiort of symbols of the language J 
a) Each constant  is adjoined a fuzzy singleton in )9. I n  the classiea~ 

logic we usuMly suppose tha~ every individual d e / )  is adjoined a n a m e  
being a constant  in the language Jr. I n  the  fuzzy logic we mus t  deal with 
fuzzy singletons. Obviously~ a ~ fl follows from {aid} ~ {fl[d}. There- 
for% we mus t  introduce names for all the  nonempty  fuzzy singletons. 
in the l~nguage jr. They will be denoted by d , ,  a s JS--{0}. 

b) :Each n-ary functional symbol g(a) with the superscript G is adjoined 
an n-ary fuzzy funct ion d a with the domain G ~ D. 

c) Each n-ary predicate symbol p is ~djoined an n-ary fuzzy rela- 
t ion p~ ~ D ". 

Interpretation of terms 
In terpre ta t ion  of terms are fuzzy singletons. 

a) If a is d . ,  a ~ Z--{O} where d~ is the name of the fuzzy singleto~ 
(a/d) ~ D~ then the interpretat ion of the  term a is this fuzzy singleton~ 
i.e. 

~ ( a )  = { a / d } .  

If  a is a constunt  wi thout  subscript a, then 2 (a )  ~ (l/d}. 
b) If a = g(a) (b~a) , - . . ,  b~)), then  

~ ( a )  = {Gg~  (~(biO), . . . ,  ~(b(O))/g~ (~(b~G)), . . . ,  2(b~)))} ,  

where g~(~(b~ eO ), ...7 ~(b(~))) denotes the  composite fuzzy funct ion.  

We will often write d~ instead of {aid} and d e~ D instead of d~ ~ D. 

Interpretation of formulas 
Assume tha t  the s tructure 9 for the language j r  of the first-order 

fuzzy logic is given:/We define the t ru th  valuation 9(g)  of the  formulas 
g e ~ ¢  in the structure ~ as follows. Let % % ~0~, . . . ,  ~ e F~ .  

~) Z = 9  a ,  a ~ J5 
~ ( z )  = 
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b )  Z = D a = b 

1 if ~(a)  = ~(b)  i.e. if ~(a )  -=d,~ and 
¢ 

~(g)  = ~(b)  ----- da then a = fl and d ----- d' 

O otherwise 

c) Z =z~ ~pv*y~ 

~(z)  = ~ (¢ )v  ~(~,). 

d )  g = D  ~P ̂  *~ 

~ ( z )  = ~ ( ~ ) A ~ ( ~ ) .  

e) Z =D (P &* 

~ ( z )  = ~(~) ®~(~). 

f) g =z) q~ =:'* ~' 

~ ( Z )  = ~ ( ~ ) - + ~ ( ' P ) "  

g )  Z =Daj(~Ol,°'' '~gn)' j eJop 

~ ( z )  = ,rj(~(q~l), . . . ,  ~(q~ )). 

h) z =D (3z) 

~ ( x )  = V ~(~o~[aa]). 
deaD 

i) x =z, (Vx)~o 

~ ( z )  = A ~ ( ~ [ d o ] ) .  
dead 

J) g =.o (Qjx)(p,j eJq  

~(z)  = q~- ~ ( ~ [ a o ] ) .  
dead 

:RIE~A_I~K. All through this paper Q denotes the quantifier and Q the 
generalized operation being its interpretation in the structure. 

The symbol Q ~(~%[da] ) denotes the operation Q realized on the set 
dead 

K _~ L being determined by the values ~(~0~[da])eZ after substituting 
all the da's for all the d ' s e D  and ae3~--{O}. 

Obviously, 
@ ( ~ * r )  = @(~)~@(r)  

@(-1"~) = - q @ ( ~ )  = @ ( ~ ) - ~ O .  

If  the operation Qj, j ~ Jq being adjoined to the quantifier Q is regular, 

then we c~n enrich the language J by the symbol (~j to which we adjoin 

the operation Q~. Then we will e~ll Q1 and (~i adjoint quantifiers. The 
quantifiers Qj whose interpretation is the regular operation Q~. will be 
called regular quantifiers. 
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Clearly, ~ and ~ are adjoint regular quantffiers. In  the sequel, we 
will suppose that  the language 9¢ contains only pahos of ~djoint regular 
quantffiers. 

LE~vI~A 2. %et ~ be a structure for the language ~¢~ a (~) (x) a term with 
sul~erseript G and a free variable x, and 9(x)  be a formula with a free variable 
x. ~et b (a) be a term without free variables such that ~ ( b  (a)) = {a/d} is  
a fuzzy  singleton with the name da. Then 

2 ( a  (a) [b(a)]) = ~ ( a  (a) [d.]) 
2 (~x [b (a)]) = 2 (9~ [d~ ]) 

holds true. 

The proof proceeds by induction on the complexity of the term and 
formula. [] 

I t  can also be shown that  the t ru th  valuation behaves well with res- 
pect to the algebra of formulas. 

4.2. Operation of semantic consequence 

The operation of semantic consequence may now be introduced. Let  
X ~ ~'s be a fuzzy set of formulas. Then the fuzzy set of semantic con- 
sequences of the fuzzy set X is 

(~se~X)~----A{~(P);  X ~  for any structure ~ for the 
language J} .  

I f  ( ~ s e " X ) 9 > / a  , then will write X baw. The  formula 9 (x l ~ . . . ~ xn )  
is a-true in the structm'e ~ ff 

a = A 2 ( ~ . . . ~ , [ d ~ .  , . . . ,  d ~ o ]  ). 

Then we write ~ ~, ¢. The formul~ ~ ~ ~71 is ~n a-tautology ff 

a = ( V * ~ O )  

and we write ~,¢. If k1% then we simply write k9 and say that  ~ is ~ tau- 
tology. An element a e E for which 

a = A {fl; ~ ~ 9 in any structure ~ of the language J }  

holds will be called the degree of validity of the fo rm~a  ¢ (or, equivalently 
we will say thut  ¢ is a-valid). I t  can be immediately seen that  the formula, 

is ~n a-tautology fff it is a-vMid. 

L~,~vr, A 3. Let q~, ~ e ~ I "  Then 

(a) ~ * ~  iff ~(~) < ~(~) 
(b) V9~:~*~p if./' ~ (~ )  = ~ ( ~ )  
hold in any structure ~ .  
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It follows from Lemma 3 that ~o~*~o iff ~o~*~o as well as ~qo~*W. 

L ~ _ ~  4. The following formulas are tautologies (Q, ~ are adjoin~ 
regular quantifiers): 

(a) ~ [a] ~ * ( 3 x ) ~  

(b) ~(Vx) ~ ~ * ~  [a] 

(e) ~ 7* 7 " ~ *  ~ 
(d) ~(qx)~¢.* ~ * ( Q x ) - p ~  
(e) ~(Vx)(~¢~*~) =~*((Qx)~c~*(Qx)~) 

(f) ~(Qx) -1"~ ¢,* 7*(Qx) 
(g) ~(Qx)~*~*-i*(Qx) 
(h) ~-1"(~*~)¢-*(~ &* 7"~) 
(i) ~(~ A *~) ~*--]*( -7"~o V *-7"~) 
(j) ~(~ ~*~o)~*--p(~&* -7"~) 

(k) ~(~ a * ~ ) ~ * ( ( ~ * z ) ~ * ( ~  &*z)) 
(1) ~(-7"~* ~)~*(~,*~ ~*~) 
(m) ~ &*~o~*qo 

(n) ~ &* y ~ * ~  

The proof follows from Lemma~ 1 and the definitic, ns. [] 

If ~(&, ... ,  x~) is ~ formula, then the formula (Vx~) ... (yx~)~(x~ ..~ 
. . . ,xn) is its closure. 

TI~E0~E~ 1. Zet ~' be a closure of the formula % Then 

C o ~ o ~ v .  ~o ~ iff  '~ ~'. 

T~tEO]CES[ 2. Zet ~o be a tautology of the fuzzy propositional calculus. 
Then the formula resulting from ~ if  we replace some variables of q~ by 
formulas of the language of the first-order logic is a tautology of the first- 
-order fuzzy logic. 

L ~  5 (Axioms o~ ~ D E ~ ¥ ) .  The following fromulas are tauto- 
logies : 
( ~ )  ~ x = x 

(b) ~ x~ = y~*(x~  

(c) ~ x~ = y~ :~ *(x~ 

(8) 

= y~ ~ , ( . . .  - , i f ( x 1 ,  . . . ,  x ~ ) =  f ( y l ,  . . . ,  y~))...) 
-- y ~ , ( . . .  ~ , ( p ( x l ,  . . . , ~ ) ~ * p ( y l ,  . . ,  yo)) • ). 

P~OOF. We will demonstrate only (b). Then 

~(diol = <  ,)-~(~(d~o = d ; o l ) - ~ ( . . .  
a 1 \ 2 

( J ( % ,  %) , )) )) --> ~ (  . . . ,  = f ( d 1 ° i ,  . . .  , d~'~°( ) . . . .  1 



96 V. ~ov~k 

! 

m u s t  hold  for a rb i t ra ry  d, G~ D, d~ Gt D, i = 1, . . . ,  n in an a rb i t ra ry  
,structure ~.  If ~(dia i  --~ d~).  = 0 holds for some dl,  d~ , t h e n  (8) holds,  

*oo, since 0-->fl = 1 holds for every  fl e ~ .  I f  ~ (d / . i  = d~). == 1, i = 1, . . .  

. . . ,  n, t h e n  d% = d~. a n d f ~ ( & ~  , . . . ,  dn.~ ) = f ~ ( d ; , ~ , . . . ,  d'%) which 

aga in  follows f rom (8). [] 

5. Syntax of the first-order fuzzy logic 

5 . ] .  Rules of inference 

The rules of inference have  general ly been defined in [13]. E v e r y  
n-ary rule of inference r is a pair  ( r  8~ ,  r 8 ~ )  where r ~ is a syntactical 
pa r t  of the  rule r being a par t ia l  n -ary  opera t ion  on ~ and  r s~"* a seman- 
tical part  of r being an  n-ary  semicont inuous  opera t ion  on Z, i.e. the  
opera t ion  preserving all the  n o n - e m p t y  joins in • in each variable. Then  
the  opera t ion  r sere is isotone in each variable.  A fuzzy set X ~ ~ ]  is closed 
wi th  respect  to r = ( r  ~y~, r s~}  if 

x r ' ~ ( ~ ,  . . . ,  ~ )  >~ r ~ ' ~ ( X ~ ,  . . . ,  ~ )  

holds  for every  ¢, e ~ for which r 8vn is defined. The rule of inference 
is X-sound  if 

(9) ~(rSVn(~, ".., %) >1 rse~n(~(q~l), "" ,  ~(q~n)) 

holds in any  s t ruc tu re  ~ such t h a t  X9  ~ ~(9)  for all 9 e / ~ / -  The rule 
is sound if it  is O-sound.  The rules of inference are wr i t ten  in the  follow- 
ing way :  

r" ~ ' " "  ~ I (a~ , . . . , a~  1 • ev~,_ . . . . .  ~ rseK-;-, . . . .  r (9~, . . . ,  ~,~) ~a~, . . . ,  a D !  

where  a~ ~ Z are v~luat ions of the  formulas  ~ i - - - -1 , . . . ,  n. 

LE~:~A 6. Assume that the following rules of inference are given: 
(a) Modus  ponens 

q~,9~*YJ ( a ,  fl 1 
rM~: ~ ~a®f l ]"  

(b) 9, a-lifting rules 

rR~,~ : 9=>,---- ~ 

where a = (~'~Y'~X)qD. 
(e) Generalization 

(Qx)~ " 
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<d) Generalization of the consequent 

rao: 9~*(Qx)~ 
on the assumption that x is not free in q~. 
<e) Generalizatio~ of the antecedent 

r~:  (Qx)~*~ 

on the assumption that x is not free in ~. 
(f) Distributivity of the quantifier 

vn the assumption that x is not free in ~. The quantifiers are supposed to be 
regular. Then all the rules are sound except for the rule (b) which is X-sound. 

PJ~ooF. (a) has been proved  in [13]. ~¥e will demons t ra te  only (b) 
~nd  (d). 

(b) This rule is a generalization of the  rule r2a f rom [13] where its 
:semieontinuity w~s proved.  Soundness:  

where  fl ---- ~(~o) and a ---- ((d~vnX)~o ~ ~(~)  ---- a' for every  ~ fulfilling 
the  above assumption.  

(d) Semicont inui ty  is obviously fulfilled. Soundness:  

~ ( r~V~(~*~) )  = ~ (9~*(Qx)~)  = ~(9) -~  Q ~ ( ~ [ d o ] ) >  h (~(9)  
dead deaD 

- ~ ( ~  [ao]) = r ~ ( ~ ( v ~ * v )  ). [] 
Obviously, the  rule (f) remains sound even if we interchange the  

~ormulus ~o and v 2. Eve ry  rule rn~,~ , a e J~ is sound. 

5.2. Operation of syntactic consequence 

We will work with fuzzy sets of logical axioms A n ~ ~ and special 
axioms X ~ ~'~. Let  the  set ~ of X-sound rules of inference be given. 
T h e n  the  pair <Az, R> will be called a syntax of fuzzy logic. The operat ion 
of  syntactic consequences f rom a fuzzy set of formulas X is defined us 
follows : 

(<#~v~X)~ = A  {U~; AL, X C  U and U _ F ~  and U is 

closed with respect to all the rules r e ~}  

where  9 e /~y .  
A proof o~ of the  formula ~ f rom the  fuzzy set X is a sequence of for- 

mulas  

- - S t u d i a  L o g i c a  1/87 
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such tha t  each 9i, 0 ~< i < n is either u logicM or a special ~xiom f rom 
X or it is u formula  r 8~" is (~i~, - . . ,  9i~) where  ix , . . . ,  Q < i and r is ~n n-ary  
X-sound  rule of inference. E v e r y  proof  has a value 

A L 9  n if 9~ is a logical axiom 
VaI(eo) = Xgn if 9~ is a special axiom 

r ~e~ ( Va~ (o~(i~) , . . . ,  Val (eo(~)) if %~ was 
derived f rom ~ .. . ,~o~ using some n-ary  
rule of inference r, 

where  o~(i~) denotes  the  proof ~o(~ ) =D 9o, 9~, ' ' '~ 9~ i" 
We will usual ly  wri te  down the proofs more  extensively:  

~o = ~ 9 0 1 % ; r 0 ] ,  9x[a~; h ] ,  . . . ,  9~ = 9[a~; r j ,  

where ai = Val(o~(O ) ~nd r~ is a rule of inference b y  means of which the  
formula 9, w~s derived f rom some previous formulas (if such a rule does 
exist). 

Tm~on]~  3. 

( ~ X ) , ~  

[For proof  see [13]. 

---- V{Va~ (o~); o) is a l~roof of 9 
from the fuzzy set X ~ F j}.  

[] 

The syn tax  <Az, R> is X-sound  if 

Ar~ _~ ~dse~i and every  rule r e ~2 is X-sound .  

The syntax is sound if all the  rules r e R are sound. 
We  will wri te  X ~. 9 ins tead of (~sv~X)9 >i a). 
The syn tax  of the  first-order fuzzy logic will be  the  following. The 

fuzzy set A L of logical axioms consists of the  formulas:  
a) a, a &* fl, a~.*fl with  the  degrees of membership  a~ a®fl,  a-+fl 
b) All the  tautologies X, X A from [13] with the  degrees of member-  

ship equal  to 1. 
c) All the  tautologies f rom Lemmas  4, 5 and tautologies of the  form 

9 Dv?~*~[~9  where [] is any  of the connectives v*~ ^*,~&* with the  
degree of membersh ip  equal  to 1. 

d) The other  formulas with the  degree of membership  O. 
The set of rules of inference is the  set 

== {r~e , {rRa.. ; a e~L}~ re~ rGe ~ ra~ ~ rDO }. 

6. Fuzzy theories of the first order 

6.1. Properties of fuzzy theories 

The theory ~- in the  l~ngue~ge J of the  first-order fuzzy logic ( shor t ly- -  
the  fuzzy  theory) is the  three- tuple  

a- = (A~,  A s ,  ~> 
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where (AL~ ~} iS the  syn tax  of the  f irst-order fuzzy logic ~nd A s c / ~ j  
is a fuzzy set of specia.1 axioms. 

Let  ~ be a s t ruc ture  for the  language J .  Then ~ is n model of the  
theory  3- if 

holds for every  ~o e F x  and  we will write ~ ~ 3-. Obviously~ AL~o ~< ~(~o) 
and  

(cdSY~As)~ = A {~(~);  ~ is a model  of the  theory  3-} 

holds for every  ~o e /~  I .  If  (~semAs)~o = a, then  ~o is a-true (true in the  
degree a) ~nd we write 3 - ~  ~o. 

I f  (g'SY~As) ~ = a, then  ~0 is jus t  an a-theorem of the  theory  3- and 
we write 3- F. ~o (we also s~y tha t  ~ is provable in the degree a). I f  3rt-~ ~ 
then  ~o is a theorem of 3- and. we simply write 3- F ~o. 

I ~ v ~ A  7. (a) ~a~A~ ___ ~ A  s 

b) 3- F~ ~o follows from ~ ~ q~, a <. fl 

holds for every model ~ of the theory #'. 

Tm~o~.~ 4 (VA~D~¥ ~ m ~ o ~ ) .  I f  3- F a ~, and ~ ~ ~o then a 

Hence~ if 3- F~ ~, then  ~(~)  > / a  holds for every  model  of the  theory  
3-. 

The e lement  fl ~-- V {fl'i fl' -= a~®a~ and 3- F~ ~o~ 3- F.,. -]*~o~ ~o ~/v¢} 
is a degree of contradictoriness of the  theory  3- (or, respectively~ 3" is fl- 
-contradictory). The element  ~ ---- -~fl is the  degree of its consistency. I f  
3" is consistent,  then  3- F ~0 follows f rom 3- Fo -]*% In  general, however~ 
it m a y  t u r n  out  t ha t  3- F.~ ~0 and 3- F.: "]*qo and a~ ¢ 0, a~ ¢ O. I t  means  
tha t  a formula  ~s well as its negat ion are provable s imultaneously to 
a certain degree. Such ~ situation is ra ther  common in practice. 

LE3~L~ 8. Zet 3" be a fl-eontradictory theorey. Then 

Conversely~ i f  3-- F. q) &* ~*~ for some a > 0 and q) e t~]~ then 3-- is contra- 
dictory to some degree. 

P~oo~. Let  3- be fl-eontradictory. Then there  is ~ formula  ~o such 
tha t  3- F,h ~ and 3- F,~ -1"~0 and fl' ----- a~;~a~ <~ ft. Let  ~%~ ~o-1~ be proofs 
of ~ and  -~*~o, Val(o%) ~- a'~, Val ( ~ )  = ~ .  Then 

M*m &* M,m) [a;; m &* -]*m[ai 
is ~ proof with the value a~ ®a~ and V {Val(o~); ~o is the  proof (10)} = fl'. 
Thence 3-Frq0 &*- l*~  where f l ' ~ 2  and fl =- Vfl '  
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Let  3- ka ~0 &* --]*~0 and a > 0 and 3- be consistent. Then ~ ~z ~ &* -]*~o 
holds for every  model ~ where 0 < a ~ ft. Bu t  ~(~*& ~*~o) = ~ ( ~ ) ®  
®-]~(~0) = 0 in any  m o d e l -  a contradict ion.  [] 

L ] ~ - ~  9. Zet a theory 3-  have a model ~ .  Then 3-  is consistent. 

P~ooF. I f  ~ ~ ~, then  ~ ~-Ta -7~ and,  by  the  val idi ty theorem, 
3-F~ ~, 3- ky-]*~0 where f l ~  a and y ~ - ] a  which follows f rom fl®y 
~ 0 .  [] 

Since A s is a fuzzy set, i.e. the  funct ion As:  F]-->25, every  formula  
e~v / is adjoined a degree of membership.  I f  As~0 ----- 0, then  3- ~0 ~0 

might  become like in the worst  case. I t  means tha t  every  formula is "in 
some w a y "  provable, ~t least in the  degree 0. 

A theory 3- is complete if it is consistent and 3- k~ ~0 follows f rom 3- b-l~ 
--l*~. The notions of extension, conservat ive a.nd simple extension of 

theory  can be defined quite analogonsly to how if is done in the  classi- 
cal logic. 

: L ~ _  10. Let a theory 3-' be an extension of 3-, J(3-)~_ J ( 3 - ' )  
and let 3-'  have a model A' .  Then restriction of the model ~ '  to J ( 3 - )  is a 
model ~ of the theory 3- and for every formula q~ E -~j(:r) 

~'(~)  = ~(~)  

holds. 

I f  B _~ L~t(~) is a fuzzy set of formulus and  3- ~ theory,  then  3-' -~ A~, 
A s wB,  ~ )  is an extension of the  theory  3-. w e  will write 3-' ---- 3-wB. 

I~EMlVIA 11. Zet 3- be a consistent theory and let 27" k, q~. Then 3-'  

= 3-w{fl/-~q~} is a consistent theory i f f  f l ~  "-]a. 

Pnoo~.  3 - ~ ,  ~o and  fl < a-+0 follow f rom 3-'  ~ ,  -'l~0 and  3- '  k~. 
where a ~ a', ~ ~ fl', i.e. 3-' is cont rad ic tory  at  least in the  degree a '® 
®fl' > o. 

Conversely, let  fi ~ ~ a  and 3-k~, -]*~. If  fl ~ fl', then  3-' = 3-. I f  
f l ' ~  fl ~ -~a, then  no proof of -]*~ can exceed the  value fl and  so 3-' 
is not  contradictory.  Assume 3- k, --]*~ and let ~ be derived f rom -]*~o 
by  means  of the  proof 

~ =z...-~*~[~], ~ * ~  ~*~ [~], v[~ ®~; r~e] 

where /~ < B'. Since 3- is consistent,  fi ®~ ®e----0 holds for the  value 
of a proof of -]*~. Le~ w v be a proof c~using contradictoriness of 3-' 
i.e. fl®8 ®e > O. Using the  proof 

^ 

% =D ""--]*~ [e], (-]*~ ~*W) ~*( N*W ~*~) [1], --]*~ ~*~ [~] 

we obtain e ®8 ®fl 4 a ®fi ---- 0 -- a contradiction.  
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Le t  y =D ~*Z be der ived by  means  of the  proof  

~"v,----2) "''-~*~°[fi~], "-]*~°~*X [8], g[fl*®~; rMp], #~*z[a- ->f i®~;  rR~,~]. 

Then  there  is a proof  of /z &* -]*X wi th  the  vMue a t  least e. Using the  
proof  

. . . / ,&*  -]*g[~],  # &* -]*%~*-]*% [1], ~*%[~; r ~ e  ] 

we obta in  ~ ®8 ~ a, i.e. the  proof  is conver ted  to the  previous ease. [] 

TB:EOt~E:~I 5 (CO~PLETIO~ TtYEOI~E]Y~). Every consistent theory 3-  can 
be extended to a complete theory 3" which is a simple extension of 3". 

P~ooF.  The  cons t ruc t ion  of a max ima l  consis tent  t heo ry  is analoguous  
to  t h a t  in the  classical logic. 

Le t  ~ Fag ~nd ~ F . , - 7 * g  where  a ' < - ] a  and  p u t  3 " ' =  3"w{ ' - ]a /  

-7"~o}. Then,  by  L e m m a  11, 3"' is consis tent  bu t  3 " ' :  3"w(Aw{- - ]a /  
--]*~})~ i.e. A ~ A u{-Tal--]*qJ} - a contradic t ion .  

L E ~ X  12. Zet q~ be a formqda of the theory 3" and let al ,  ...~ an be 

terms sq~bstitutible in ~ for the variables x~, . . . ,  x n. Then 3" F. ~ and 
3" F.,~x 1...x~ [al, . . .  ~ an] implies a ~ a'. 

P~ooF.  The  propos i t ion  is ob ta ined  using the  proof  

(11) co =D ~%[a'], (Vx)~0 [a'; rG] ~ (Vx)~0~*~%[a] [1], ~%[a] [a ' ;  ~ e ]  

where  c% is a proof  of ~0. [] 

T n ~ o ~ n ~  6 (o~ o o ~ s ~ A ~ s ) ,  l e t  3" - - - - (AL ,  A z ,  ~ )  be the theory 
in She language J .  Z~et ~s extend f l  by new constants e ~C~ i.e. 
f l '  ---- f l w  C and let 3"' be a theory 3 " ' =  (A'z., A ~  ~ )  in the language 
f l '  such that Azq~ Asq~ for ~ e ~ ' ]  ~nd A' ----- ' -~ ~o 0 for q ~ ] .  Theq~ 

for every formula ~o e ~'~ 

3" ~o~%a...~,[e~,.. . ,e,] i f f  3" Fo ~ 

holds tr~e where e~, . . .~  e,, e C. 

P~oo~.  Le t  3"' F . ~ . . . ~ [ e ~  . . . ,  e~]. Using the  same idea as in the  
ctassieM logic we obta in  3" P~, ~ (Yl, . . . ,  Yn) where  y~ are new variables 
and  a ~_~ fl'. H e n c e ,  by  L e m m a  12, f l ' ~  fi and,  again by  L e m m a  12. 

~- F~. 9~ follows f rom 3"' F~, ~%~...x~[e~, . . . ,  en], fl <<. 7 

b u t  fl has been derived, f rom a and  therefore  7 ~ a ~ fl ~ 7. [] 

COI¢OLLAI~Y. The theory 3-'  is a conservative extension of 3-. 

The  proof  of the  following l emm~ is based on the  same ide~ a.s the  
proof  of Theorem 6. 
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LlmVr~A 13. .5et 3", ~ "  be theories and % ~' formulas.  I f  for any a ~ I~ 

3- F. q9 follows f rom 3 "  F# ~' 

holds for some fi, a <.< fl, and at the same time, for any y ~ Z 

3-' b, q~' follows f rom 3- ~ q~ 

holds for some ~, ~ ~ ~, then 

3- b. q~ i f f  ~ '  ~. q~'. 

T:~OI~E~ 7 (C:50S~E m:n::EO:B]~). Let ~ be a formula of the theory 
3-  and ~' be its closure. Then 

3-I-.~: i f f  3-l-a~'. 

PBoo~. I t  proceeds analogously to t ha t  in the  classical logic using 
Lemm~s 12, 13. [] 

6.2 Canonical model of the fuzzy theory 

The next  step to the proof of the completeness theorem is a construc- 
tion of the eanoniea~ model ~o of the  fuzzy theory ~-. Like in the  classical 
logic, we mus t  add axioms of Henk in  type (tt.enkin axioms) into the theory.  

If  the  t t enk in  axiom ( 3 x ) ~ * ~ [ r ]  is t rue in the degree 1, then 

V ~ ( ~ [ a o ] )  < ~ ( ~ [ r ] )  
e%D 

must  hold in any structure .~. This is possible only in the case tha t  r is a 
t e rm with the interpretat ion ~ (r) ---- d~ such tha t  V 2 ( ~  [d.]) = 2 (?~ [d~ ]). 

dead 
Analogously for ?~[r] ~*(Mx)~. The t t enk in  axiom ensures the existence 
of the fuzzy singleton d~ with the proper ty  ment ioned above. We will 
introduce Henkin  axioms generally for every regular quantifier Q:  

(12) (Qx)  
(13) ~ [ r ]  ~*(Qx)~  

where r is ~ special constant .  The theory 3- is Henkin if it contains for- 
mulas (12) and (13) as special axioms with the degree of membership 1. 
:From Theorem 4 it follows tha t  there mus t  exist fl and d o E D in every 
model N of the  Henkin  theory 3- such tha t  

Q ~(¢x[d.])  ----- ~(~[d0#]) .  
d~aD 

L E ~ [ ~  14. I~et 3- be a Hent~i~ theory and r a special constant for  
the formula ~o and a regular quantifier Q. Then 

3-f-, ,(Qx)~ i f f  ~ F ~ % [ v J .  

Canoniea~ model of the theory Y .  
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Assume 3" is a complete  Henkin  theory.  Le t  a, b be  terms wi thout  
free variables.  We define the  relat ion 

a ~ b  i f f  3 " F a  = b .  

L E ~ r ~  15. The relation ~ is an equivalence. 

The suppor t  of the  cunonicM model  will be  the  factor  set  J0 o ----- Mvl ~ .  
I t s  elements are equivalence classes la[, a e M~. Now, we will define 
the  s t ruc ture  of ~o: 

a) !~unetions (f~0' G) 

(14) f~o(a[a)l, . . . ,  la~)K) = lf(a)(a~ a), . . . ,  a ~ ) l .  

The fuzzy set G _ -Do will be defined as follows: 

I :  if there is ~ te rmf (~} (a~G) , . . . , a '~ ) )  
G[a] -~ such tha t  3" k f(a)(a(~ ~ ,  . . . ,  a ) ~  = a 

otherwise. 

The superscript  of a need not  be G. 
b) Predicates  P~o 

(15) P% (laxl, . . . ,  la~[) = a i f f  3" b ,p(ax ,  . . . ,  a,). 

Like in the  classical logic we can demons t ra te  t ha t  the  values of f~o 
and P~o do not  depend on the choice of representa t ives  of the  equivalence 
classes Jail , i = 1, . . . ,  n. 

We define 

~o ----" <-Do, (f~o' G), . . . ,  P~o' "" ") 

~nd call ~o a canonica~ structure for 3". Now, we must  show tha t  

(16) ~@o ~ 9  iff 3" ~,~9) 

holds for every  formula 9 ~ E j (x ) .  The proof proceeds b y  induction on 
the  complexi ty  of the  formula.  

1. I¢~te~Tretation of terms 

~o ( a (~) = {Gia (~) [/] a(~)l}. 
• ~ " " 2 Q  :By muuct~o~ on the length of a we obtain  

~0 (a (~) = ~o (fa)(a~S), . . . ,  a ~ )  
{G If (a) (a~C~'), . . . ,  a~))l/ t]  (a) (a~S), . . . ,  a~ a>)l} 

= {~ la(~)l/ja(~) I}. 
2. Interpretatio~ of formulas 

a) ~ = n  a, a ~ L. 
Then ~o(9) = a and we conclude th~,~ ~-~ a~ a ~< ,~. ]~y the validity 

theorem we have fi 4 a~ i.e. fi = a. 
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b) ~ = D a  = b .  
Then 

~ o ( a  = b) = I fff ~o(a)  = ~o(b) fff aa = aa and 

lal = [b[ iff a a = a b ~nd ~ I- a = b. 

I f  superscr ipts  of b o t h  t e rms  are d i f ferent ,  e.g. a (G) a n d  b (m, t h e n  a~ 
= G l a ( a ) l  = GIb(~[ = 1 b u t  HJb(n)l = 1 which  implies a a = a b. 

e) ~ = D p ( a l ,  . . . ,  a,~). 
Then  

~o ( P ( a l ,  . . . ,  a , ) )  = a i f f  Peo ( ~ o ( a D ,  . . . ,  ~o (an)) = a 
i f f  puo ( la l l  , . . .~ lanl ) = a iff 3- F,~p(a~, . . .~ an).  

d) ~p =D ~v*g .  
Then  

a n d  ~0(g) = ;' a n d  a = f lvy .  Assume ~- k~ ~o, 3- k r X- L e t  % a n d  ~x be 
proofs  of ~2 ~nd g~ respect ive ly ,  V a l ( % ) =  fl' V a l ( o ) ~ ) =  ~/. Using the  
proofs  

% =D %[/~'], ~ * ( ~ v * x )  [1], ~v*x [~'; r~.] 
¢ 

% = D  coz[7'], Z ~ * g v * ~  [1], Z v * ~  [7' ;  r~p] ,  

g v * ~ * * ~ v * Z [ 1 ] ,  ~ v * Z  [7 ' i  rmtP] 
we get  (f~SU~As)~0~> V ( / 9 ' v ~ ' ) a n d  3- F~¢ for  a = # v y ~ <  0. B y  the  

? 

v a l i d i t y  t h e o r e m  we h~ve  ~ ~< a, i.e. ~ = a. 

e) ~ = D ~  & g .  

Ana logous ly  to wh~t  we h a v e  done  in d), we use t he  proof  

~ =D % [fl'], % [~'], ~ ~*(z  ~*(~  &* Z)) [1], Z ~*(~ &* Z) Eft'; r ~ ] ,  

I ~ &* Z [fl' ®~"; r ~ ]  

~nd conclude that 3- F~ % f l ~ 7  <~ (~. Hence,  we ob ta in  ~ = a. 

f) ~ =D ~ ~*~. 

:First, suppose t h a t  Z =D 0. T h e n  ~o(~) = a iff ~o(~V) ---- fl a n d  fl-+O = "-]/~ 
= a. Since 3- is comple te ,  we h a v e  ~ - ~ - - ] * ~ .  

:For ~ rb i t r a ry  Z we h a v e  ~o(q) = a iff ~o(~) -+~o(~)  = a iff ~ (V) = fl 
a n d  ~0(g) = 7 where  f l - ~  = a. :From the  comple teness  of 3- ~nd the  
induc t ive  a s sumpt ion  we prove  t h a t  

3- ~.-q*(~ &* -]*z) 

where  ~' ---- - ] (~®'q~, )  ~- a. I f  ~o' is ~ proof  of -l*(w &* -]*Z), V a l ( a / )  
= ~, t h e n  us ing  the  p roof  

=~ [a"], -q*(~ ~*z )~*(~*x) [1 ]~  ~ * z [ ~ " ;  r ~ ]  
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we obts~n ~- bo ~, a = ~' ~ ~. Thence, a = 8 b y  the  val id i ty  theorem.  

g) ~o = ~  ~ A*Z. 

This formul~ ea.n be p roved  using f) and Lemmas  I (f) ~.nd 4(i). 

h) ~ = z  a~(~ ,  ...,~2~), J e J o p .  

Then 

~0(~) ----a iff ~o (~)  = f i i ,  i = l , . . . , n  ~nd 

a;(fll, . . . ,  fl~,) = a. F r o m  f), g) ~nd Lemm~ 3 i8 follows th~ot 3- b ~) i~*~ i ,  

i = 1, . . . ,  n. ~e t  ~o'~ be  ~ proof  of ~,¢~.*fl~, Val(o~) ---- yi.  Using the  ~au- 
to logy ~0~*(~0~*(~0 &* y)) we cnn write  down ~ proof of the  fm:mula. 
(~.~:~*fll)~& * . . .  &*(~c>*fl,~)~, with the  value 7[~ ® ... ®7~n. Then 

Le t  o~" be  u proof of ~his formula,  Val(eo") = y. Using the proof  

= ~  m" [r], ((~¢~*t~) .1 &*. 
~:~*~(p~, . . . ,~ , ) )  [1], ~ ( ~  
. . . ,  p¢)~*~(/~1, . . . ,  p~) [1], 

.. &*(~¢ ,*~ )~  ~ * ( ~ ( ~ ,  . . . ,  ~ )  

, . . . ,  ~ )~*~(~1 ,  . . . , ~ ) [ r ] ,  ~ ( ~ , . . .  
( ~ / ~ ,  . . . ,  ~ / ~ * / ~ ,  . . . ,  ~}) ~* ( ~ / ~ ,  

• . . , /~)  **~j(Pl ,  . . . ,  ~ ) )  [1], ~ ( p l ,  . . . ,  p~) ~*~3(~1, . . . ,  P~) [1; rMp], 

(~j(~,  . . . ,  ~ ) ~ * ~ ( B ~ ,  . . . ,  D~)) ~*(~j(B,, . . . ,  B~) ~ * ~ ( ~ ,  .. .  ~ ) )  
[1], ~j(B1, . . . , /~ )  ~ * ~ j ( ~ ,  . . . ,  ~ )  [r; r~p], 

we obta in  3 - F ~ a i ( ~  , . . . ,  ~ ) ,  ai(fll , . . . ,  f l~ )~  3 where ai(fll , . . . ,fl~) de- 
notes ~ formul~ corresponding to the  t ru th  value a~(~l, . . . ,  fl~). B u t  

~ a  = a j ( f l l , . . . , f l ~ )  snd  we conclude 3----a. 

i) q = ~  (Qx)~, where Q is ~ regular quantifier.  

Then 

~0(~) -~ a iff Q ~o(~x[a]) = a iff ~0(~x[r]) = a 
laleaJD 0 

because 3- is ~ t t enk in  theory.  I t  follows f rom I~emm~ 14 t ha t  

TttEOI~E~ 8. A complete H e n k i n  theory ~- having only regular ~uanti- 
t iers has a canonica~ model ~o such that 

~-~o~ iff ~o ~o~ 

holds for  every formula  q~ e ~ ] ( x ) .  

So f~r, we h~ve no t  employed  the rules of inference r~(~}. They  c~n 
be ommi t t ed  f rom the  syn tax  of the  fuzmy logic. If  however ,  we ha.re 
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these rules at  disposal we can omit  the presumption of the completeness 
of the  theory 3-. 

TttEO]~E~ 9. A consistent Henkin theory 3- having only regular quanti- 
fiers has a canonical model ~o such that 

3- F~ ~ iff ~o ~ 

holds for every formula ~ e ~ ( y ) .  

P~oo~. The completeness presumption was used only for ~ ----~ ~ ~* 2. 
The proposition is obtained using the p~;oof 

(17) o~ ----D e0~ [7'], ~P ~*%[fl->7'; rRvZ] 

where eo~ is a proof of % with the value y'. [] 

6.3 Completeness theorem 

In  this section, we will prove two theorems which are extensions 
of ~he classical GSdel's theorems on the  completeness of the predicate 
calculus. The qu~ntifiers of the  language fl(3-) are supposed to be re- 
gul~:. 

T~EOlCE~ 10. l e t  47" be a consistent theory, C a set of special constants 
for closed formulas ( Qx)~ and let A ~  be the fuzzy set of all Henkin axioms ZH 
g~ (of the form (12), (13)), AH% ~ = 1. Then the theory 3-' = 3 -wA~  in 
the language J (3- ' )  = J (3 - )wC is a consistent extension of the theory 3-. 

P~.0oF. AnMogously to the classical proof, we successively construct  
sets Ca, C2, . . .  of special constants of a given level and successively extend 
the  theory 3- by Henkin  axioms %~. 

a) Let  3-iw{1/((Qx)~*q~[r])  be contradictory to some degree for 
some ~ and a special constant  r. Then 

3-i F.-7*((Qx)9~*~x[r]}, for some a > @. 

Using the theorem on constants and the proof 

~o --~9 co'[a'], - ]*((Qx)~*~}~*(Qx)~0 &* -7"~)[1], (Qx)~ &* -]*~[a';  

(Qx)~ &* (Qx)-1"~ ~* (((~x) 7 ~ * - 1  (Qx)~)~* ((Qx)~ &* -7" (Qx)~) 

[1], ( (Qx)-]*q~*7(Qx)v)~*((Qx)~ &* -l*(Qx)~), [a'; rMp], 
(Qx) 7*~*-~*(Qx)~ ~[1], (Qx)~ &* -~*(Qx)~ [a'; r ~ ]  

we conclude tha t  ~'i FZ (Qx)~ &*-7*(Qx)v, a ~ f l .  Then 3- i is contra- 
dictory ~o some degree (cf. Lemma 8 ) -  a contradiction. 

b) Analogously, let ~-~ F~ -7*(~[v]~*(Qx)~),  a> ~ 0 
and m' be a prooY of 7 *  (qo*(Qx)~) with the value a'. Using the proof 

=~ o~'[a'], 7* (~*(Qx)~)~*~ &* -l*(Qx)~ [~], ~ &* -l*(Qx)~ 
[a'; rMe], (Qx)(~ &* -7*(Qx)qg)[a'; r~], 

(Qx)~ &* -l*(Qx)~ [a'; r~]  
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we obtain Y', P~ (Qx)9 &* ~*(Qx)~, a ~ ~, which is again a contradic- 
tion. [] 

T m ~ o l ~  11 (coy_eT,~,mv,~ss mm~ouEa II). a theory :~" is consistent 
i f f  it has a model. A consistent theory a" has a model ~o in  whieh 

holds for every formul~ 9 e/~/(~)" 

The proof proceeds analogously to the one in the classical logic using 
:Lemmas 9, I0 and Theorems 8, 10. [] 

Tm~o~E~ 12 (co~-we~wm~v, ss mm~om~ I). A formula 9 is a-theorem 
of  the theory 3- i f f  it is true in the degree a in it: 

1~1~oo~. From the validity theorem we obtain 

Y-~V ~ follows from ~- ~a 9, a < ft. 

Let  : r  V a 9 and ~ V~ 9. Since the theory ~ is consistent, it has a model 
~o for which ~0 V ~  holds. Then /5~<a, i.e. a - - /5 .  [] 

7. Discussion 

In  this paper, we have developed the first-order fuzzy logic based on 
the t ru th  set being either the interval ( 0 ,1}  or a finite chain. We have 
developed its syntax ~nd semantics and we have proved the completeness 
theorems which are fuzzy extensions of the classical GSdel's theorems 
(i.e. the classics~l ones gre special cgses of our theorems). 

The first-order fuzzy logic has mgny important applications. First 
of all at.e, of course, the applications in the fuzzy set theory where it can 
elucidate many questions which hsve been doubtful up till now. But  
it c~n also show some properties of the classical predicate calculus from 
the different point of view. 

The fuzzy logic is s special case of the continuous logic presented in 
[2] where the detailed relation between formal theory and its model 
is not studied. This paper solves this gap for the ease when the degrees 
of t ru th  form ~ rather special structure which, however~ ensures the 
completeness property. Our concept of the model is stronger than tha~ 
in [2] and, thus, we can expect that  most theorems presented there will 
hold true in a stronger form. 

~Th~t should be stressed are the additional logical connectives and 
quantifiers. They include all the connectives considered in any other 
systems o~ fuzzy logic (as far as the author is familiar with them). 
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We have left some questions open, e.g. the in t roduct ion of a new 
funct ional  symbol or a predicate symbol. However,  we can hardly  expect  
any  surprising results. 

The kind of fuzzy funct ion used in this paper proved to be the mos t  
na tura l  among various fuzzy functions.  I t  has interest ing properties 
e.g. f rom the categorical point  of view (cf. e.g. [8]). I t  is doubtful  i~ the  
use of another  type  of fuzzy funct ion would lead to the  same result.  

The completeness theorems hold for regular quantifiers which are 
more special eases of generalized operations t han  those considered in 
[2]. I t  is not  clear for the present  whether  the  presumption of regular i ty  
of quantif iers can be abandoned.  
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