vién  First-Order Fuzzy Logic
Novik

Abstract. This paper is an attempt to develop the many-valued first.order
fuzzy logic. The set of its truth values is supposed to be either a finite chain or the
interval <0, 1> of reals. These are special cases of a residuated lattice <L, v, A, ®,
—, 1, 0. It has been previously proved that the fuzzy propositional logic based on
the same sets of truth values is semantically complete. In this paper the syntax
and semantics of the first-order fuzzy logic is developed. Except for the bagic connec-
tives and quantifiers, its language may contain also additional m-ary connectives
and quantifiers. Many propositions analogous to those in the classical logic are proved.
The notion of the fuzzy theory in the first-order fuzzy logic is introduced and its
canonical model is constructed. Finally, the extensions of Godel’s completeness
theorems are proved which confirm that the first-order fuzzy logic is also semanti-
cally complete.

1. Introduction

The theory of fuzzy sets is now a quickly developing branch which
gained its popularity because of its attractiveness and ease of applications.
The connection between fuzzy sets and many-valued logic is very close.
Any logic with more than two truth values is now usually called fuzey
logic. It should be stressed that the term “fuzzy logic” has, in fact,
two meanings: many-valued logic and linguistic logic whose truth values
are words of natural language. Linguistic logic has been introduced by
L. A. Zadeh in [16]. In this paper we deal with many-valued logic whose
truth values are taken either from the finite chain or from the interval
of reals <0, 1>.

In [131 J. Pavelka introduced the propositional fuzzy logic based
on the above mentioned truth sets (they are special cases of the so called
residuated lattice) and he proved that it is semantically complete. A na-
tural question arises if the first-order fuzzy logic being an extension of
the propositional fuzzy logic is also semantically complete.

We have tried to develop the first-order fuzzy logic in this paper.
Unlike Pavelka whose proof is based on the ultrafilter trick, we have
tried to follow the classical method. We have proved the fuzzy extensions
of Go6del’s completeness theorems constructing the canonical model
of the fuzzy theory (in the language of the first-order fuzzy logic). Since
our proof does not use the results of Pavelka’s proof it may also be consi-
dered to be a direct proof of the completcness of the fuzzy propositional
logic. Fuzzy logic presented here is a direct generalization of the classical
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predicate calculus which we obtain when we replace the general finite
chain of truth values by the Boolean lattice {0,1}.

2. Truth values, operations and generalized functions

There are good reasons to suppose that truth values form a complete,
infinitely distributive and residuated lattice

(1) L =LKL, v,nrn, ® —>,1,0)

where 1, 0 are the greatest and the smallest elements, respectively, and ® ,
~~ are additional binary operations of (bold) multiplication and residu-
ation, respectively, having the properties:

a) (L, ®, 1) is a commutative monoid.

b) The operation ® is isotone in both variables and — is antitone
in the first and isotone in the second variable.

¢) The adjuction property

aRf<y U a<foy

holds for every a, f,y € L.
The reasons for using the residuated lattice are discused in [7, 12, 13].
When putting L =<0, 1>, v = max, A =min, 0 =0, 1 =1 and

(2) a®pf =0v(a+p—1)
a—>pf = 1A(1—a-+B)

for every a,$e<0,1> we obtain the residuated lattice (1). Similarly,
for L = {0 =¢a,<...<aq, =1} being a finite chain we put

(3) 3 ®ap = ama:c(o,k+p—m) ’

Q= 0y = pinim,m—k+p)

where 0 < k, p < m. We again obtain the residuated lattice (1). This fact
is very important since finite chain and the interval <0,1) have been
used in all applications of fuzzy sets and are the most natural from the
point of interpretation of results.

The choice of operations follows from the facts proved in [13]:

— If the operation — is not continuous on <0,1) x<0, 1), then it
is not possible to construct fuzzy logic with complete syntax.

— Every residuated lattice (1) based on <0, 1) such that the cpera-
tion — is continuous on <{0,1)x<{0,1> is isomorphis with the above
lattice endowed with the operations (2).

We will frequently use the following symbols:

aeof =p (a—>p)A(f~>a)
la =p a—>0

(=p stands for “being defined”). All through this paper we will confine
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ourselves to the assuraption that the set of truth values forms the above
defined residuated lattice either with L = <0, 1> ¢r L being a finite chain
with the operations of multiplication and residuation defined by (2) or

(3), respectively. Some of the properties introduced further hold, of
course, for a general residuated lattice.

LevMA 1. Let a,B,yeL and I,K < L. Then
(a) Na®AB<S A A (2 @B)

aceK BeI acK Bel
b) A (a=f) <A ae A B
a,feK acK K
(e) A (@=f)< Vaer VB
a,feK aeK BeK

(d) A Ta) =@
(e) A (a®p) = /}Za®ﬁ

aeK
() aAf = "1(Tlav TI8)
(g) a—f = "(a®71p)
(h) a—>f = TIf—>"a

The proof follows from the definition of the residuated lattice and,
in some cases, from the assumption that L is a chain. [J

Many other properties of operations in residuated lattices are proved
in [7, 12, 13].

The four basic operations appear to be insufficient for applications
of the fuzzy logic. The question arises whether we are able to introduce
new operations which ean enrich the given residuated lattice % in such
a way that they will be the interpretation of new additional logical con-

nectives (see Section 4). J. Pavelka in [13] has shown that any n-ary
operation ¢ fulfilling the condition

(4) (alﬁﬁl)kl ® s ®(anHﬁn)kn < a(a17 ece? an)(_)a(ﬁl7 b ﬁn)

for some k,, ..., k, where the exponentation is taken in the sense of the
multiplication ® can be used as the interpretation of n-ary logical con-
nective. This condition called the fitting condition intuitively means
that “roughly equal values of arguments imply roughly equal values
of the operation ¢ in them”. Tt can be verified that every basic operation
(v, A, ®, —>) fulfils the fitting condition (4). Moreover, any operation
derived from the operations fulfilling (4) also fulfils (4).

In the first-order fuzzy logic we will also introduce generalized ope-
rations @,

Q:2(L)—~L,

where 2 (L) is the power set of L. If K <L, then we will write ¢ a instead
acK
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of @{a; a € K} and Qo instead of Q{a}. We will call @ the regular gene-
ralized operation if it fulfils the conditions

61) Q)< Qa®p

acK aceK
(5.2) QK((a ®B)—>0)—=0 < ( QK(a——>O)—>0) ®8,
3.3 ANae<Q a< Va, K #0.

acK acK acK

Put @ a ="] Q(a). It can be easily proved that Q is also a regular
acK aeK

generalized operation. Moreover, | (:) a= @ (7o) and @ (Tla) =719 «.
~ el acK

The operation € is adjoined to . If, moreover, @ a ="]Q ("Ja) holds,
aeK acK

then @ and Q are adjoint generalized operations. The operations of sup-
remum V and infimum A are a pair of adjoint regular generalized ope-
rations.

In what follows we will suppose that the truth values form the algebra

6) Z=<L,v,n, ®,—>,1{a; GEL}7 {0'17.7 EJOp}, Vi, A, {Qm] EJQ}>

where L is either the interval <0, 1> or (m--1)-element chain, ®, — are
the operations (2) or (3), respectively, {a; a € L} is a set of nullary opera-
tions, {o;;j € Jop} is a seb of additional operations fulfilling (4) and {@;;
jedq} is a set of additional generalized operations.

3. Language, terms and formulas of the first-order fuzzy logic

The language of fuzzy logic consists of:

a) Variables », v, ....

b) Constants ¢, d,r,....

¢) Symbols for truth values a; a e L.

d) m-ary functional symbols f©@, ¢ ... with various superscripts
G, H, ...

e) mn-ary predicate symbols p, ¢, ... and the designated identity sym-
bol =.

f) Binary connectives v*, a* &%* =* and a set of n-ary connecti-
ves {o;;j € Jop} (the arity of o; is supposed to depend on the subscript
9)-

g) Symbols for the general V and existential 3 quantifiers and a set
of generalized quantifiers {Q;;j e Jq}.

h) Aauxiliary symbeols (,) ete.

The following are common recurrent definitions of terms and formulas.

Terms
a) A variable or a constant is a term without superscript.
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b) If f© is an n-ary functional symbol and @y, ..., a, are terms
without superseript or with the same superscript G, then @ (ay, ..., a,)
is a term with the superscript G.

If the superscript is missing at the functional symbol, then the term
is either without superseript or the superseript does not matter.

Formulas

a) The symbol @, a € L for the truth value is a (atomic) formula.

b) If a,b,a,,...,a, ave terms with an arbitrary superseript and
p is an n-ary predicate symbol, then @ = b and p(a,, ..., @,) are (atomic)
formulas.

¢) I @, y, ¢ ..., ¢y are formulas, then pv*y, pA*y, ¢ & y, p=*p,
0;(@1y -, @) Tor jedop, (Yo)p, @Ax)g, (Qu)p for jedg are formulas.

The connectives v*, A*, &* =* will be called disjunction, conjunction,
bold conjunction and implication, respectively. Let us introduce the fol-
lowing abbreviations of formulas:

¢ =p p=*0 (negation)
pety =p (p=>*p) A*(p=*p) (equivalence).

The set of all terms of a given language # will be denoted by M yand the
set of all formulas by #,.

Like in the classical logic we introduce the notions of free and bound
variable, and substitutible term. If we substitute a term into a formula
we must take care of its superscript: the term b is substitutible into the term
a for the variable ¢ if, moreover, @ and b have either the same superscript
or one of them is without superscript. If a, b are terms with the same
superscript and ¢ is a formula, then a,[b], ¢,[b] denote the term or the
formula which we obtain by substitution of the term b for the varible .

In the sequel, we will suppose that we are given some language # of
the first-order fuzzy logic.

4. Semantics of the first-order fuzzy logic
4.1. Structures and truth valuations

A fuezy sei A in the universe U denoted by A = U is a function
A:U—~L.

The element Az e L for » e U is called the grade of membership. The
function A is sometimes ealled the membership function, i.e. the member-
ship function and the fuzzy set coincide. A fuzzy set is explicitly expressed
by

{Az|x; 2 € U}.

A fuzzy singleton is a one-element fuzzy set {Ax/xr}.
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A structure for the language of the first-order fuzzy logic is a set to-
gether with fuzzy functions and fuzzy relations, i.e.

D =D, Pgy.-s(§a, @)y ...D

where .D is a set, p, = D" are n-ary fuzzy relations and g, are n-ary fuzzy
functions with the domain G < D. The fuzzy function g, is defined as
follows. It is funetion ¢,: D"—>D fulfilling the condition

(7) Ggg (B1y ey ) Z G0N ooo NGy, @1, ...,%, €D.

The definition of a composite fuzzy function from fuzzy functions with
the same domain is straightforward.

Interpretation of symbols of the language ¢

a) Hach constant is adjoined a fuzzy singleton in D. In the classical
logic we usually suppose that every individual d € D is adjoined a name
being a constant in the language #. In the fuzzy logic we must deal with
fuzzy singletons. Obviously, a # f follows from {a/d} # {#/d}. There-
fore, we must introduce names for all the nonempty fuzzy singletons
in the language #. They will be denoted by d,, a € L —{0}.

b) Bach n-ary functional symbol ¢@ with the superseript G is adjoined
an n-ary fuzzy function d, with the domain G S D.

¢) Each n-ary predicate symbol p is adjoined an m-ary fuzzy rela-
tion p, S D™ .

Interpretation of terms

Interpretation of terms are fuzzy singletons.

a) If ais d,,a @ L—{0} where d, is the name of the fuzzy singleton
{a/d} S D, then the interpretation of the term @ is this fuzzy singleton,
i.e.

2(a) = {ald}.

If a is a constant without subscript a, then 2(a) = {1/d}.
b) It a =g¢? B®Y,..., b)), then
2(a) = {095 (2(6), ..., DOD)Iga (2B, ..., 2]},
where g, (2@ ),..., 2(b®)) denotes the composite fuzzy function.
We will often write d, instead of {a/d} and d €, D instead of d, < D.

Interpretation of formulas

Assume that the structure @ for the language # of the first-order
fuzzy logic is given. We define the truth valuation Z(y) of the formulas
x € Fsin the structure 9 as follows. Let @, v, @1, ..., ¢, € Fy.

2) ¥ =pa,acl
Z(x) =a



First-order fuzzy logic 93

b) %2 =rpa=b

1 if 2(a) = 2(b) ie. it D(a) =d, and
D(y) =} 2(b) = dy then a = f§ and d = d’

0 otherwise

1) L =poV'®

D(y) = Z(@)vD(y).
a) X =bp A"y

D(x) = 2(p)AD(yp).
e) L=pp &y

2(y) = 2(p) @2(y).
f) L=p¢=>"¥

D(x) = Z(p)>D(y)-
£) X =p Gi(Pry -3 Pu)s jedop
D(x) = 0;(D(p1)y -y D))

h) X ~bp Ha)g
2(x) = V 2(p,[d,]).
ds,D
i) x =p (VYa)p
= A 2(p,[d,]).
de,D
) x =p (Qx)p,jedq

2(x) = ¢; 2(g,[d.]).
de,D

REMARK. All through this paper Q denotes the quantifier and @ the
generalized operation being its interpretation in the structure.
The symbol Q 2 (p,[d,]) denotes the operation @ realized on the set

K < L being determmed by the values 2(¢,[d,]) € L after substituting
all the d.’s for all the d’s e D and aeL—{0}.

Obviously,
2(p="y) = D(@)=I(v)
2(7Te) = "12(p) = 2(p)~0.
If the operation @, j € Jg being adjoined to the quantifier Q is regular,
then we can enrich the language # by the symbol Q to which we adjoin

the operation QJ Then we will call Q and Q adjoint quantifiers. The
guantifiers Q whose interpretation is the regular operation Q; will be
called Mgulcw quantifiers.
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Clearly, V and 3 are adjoint regular quantifiers. In the sequel, we
will suppose that the language # contains only pairs of adjoint regular
quantifiers,

LeMMA 2. Let 9 be a structure for the language £, a9 (@) a term with
superscript G and a free variable x, and @(x) be a formula with o free variable
z. Let 8 be a term without free variables such that 9 (b)) = {ad} is
a fuzzy singleton with the name d,. Then

2(aP [69]) = 2(af? [d,])
2(9,[69]) = 2(p,[d,])
holds true.

The proof proceeds by induction on the complexity of the term and
formula. O

It can also be shown that the truth valuation behaves well with res-
pect to the algebra of formulas.

4.2, Operation of semantic corsequence

The operation of semantic consequence may now be introduced. Let
X Z Py be a fuzzy set of formulas. Then the fuzzy set of semantic con-
sequences of the fuzzy set X is

("™ X)p = N{D(p); X <2 for any structure Z for the
langnage #}.
I (¢°"X)p > a, then will write X k, ¢. The formula ¢(x,...,s,)
is a-true in the structure 9 if

= 2 d ,...,d .
a _dile/c}iD (‘le...xn i (LR n"n] )
[l PRV (4

Then we write 9 k, ¢. The formula ¢ € F; is an a-tautology if
o = (6*"B)g

and we write F.p. If Fip, then we simply write kg and say that ¢ is a lau-
tology. An element e € I for which

a=A {8; 9 F; ¢ in any structure & of the language ¢}

holds will be called the degree of validity of the formula ¢ (or, equivalently
we will say that ¢ is e-valid). It can be immediately seen that the formula
@ i1s an o-tautology iff it is ae-valid.

LEMMA 3. Let ¢, pe ¥, . Then
(@) Fp="vy iff 2(p)< D(y)

(b)  kp="y iff D(p) = D(y)
hold in any structure 9.
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It follows from Lemma 3 that kp<*y iff kp=*y as well as Fe="*p.

LevmA 4. The following formulas are tautologies (Q, Q are adjoint
regular quantifiers):

(a)  Fp,la]=>*3x)p

(b)  EVo)p=*¢,[a]

() FTPF Toee

(d)  KQu)pe*T(Qu) Trp

@)  F(Yo) (pory)=>*(Qu)pe*(Qux)y)

() HQu) TrperT1%Qu)p
(g) HQu)oorpes*THQu)g
(h)  ETHe=*p)=Hp & TTFy)
(1) Eea*p) =TTV TT*y)
() Ho=*p)=*TTHe&* TT*y)
(k) Ko &p)=*((p=*x)=>*o & %))
() E(TTe=" p)eX(TTp=*9)
(m) Fo &*yp=*¢p
(n) Fp & yp=*y
The proof follows from Lemma 1 and the definitions. [

If ¢(y, ..., ®,) is & formula, then the formula (Vu,) ... (Va,)p(sy, ...
.y @) 18 18 closure.

THEOREM 1. Let ¢’ be a closure of the formula ¢. Then

DEp iff 2k ¢
COROLLARY. k ¢ iff F,¢'.
THEOREM 2. Let ¢ be a tautology of the fuzzy propositional calculus.

Then the formula resulting from ¢ if we replace some variables of ¢ by

formulas of the language of the first-order logic is a tautology of the firsi-
-order fuzzy logic.

LeEvMMA 5 (AxTOMS OF IDENTITY). The following fromulas are tauto-
logies:
(8) FkFo=u

() Fao,= y1:>*(m2 = yzb*(...»*(f(wl, s @)= F(Y1yeens yn))...)

() Ezy = y1=>*(002 = y2=>*(... SHP(Byy oo i) S D (Y15 ey yn))...).
Proor. We will demonstrate only (b). Then

® o, =d, )—>(9(d202 - d;a;)—>(...

LGN SO TN & )))...)) ~1

n
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must hold for arbitrary d; e, D, d;e,. D, ¢ =1,...,n in an arbitrary

structure 9. If 9(d; = d; ,) =0 holds for some d;, d; , then (8) holds,
too, since 04 =1 holds for every feL. It 9(di,, =d; ,) =1,i =1,.
%
.+ M, then d@a = O ¢ and fg(d Loy 9 o0y "an ) =f9(d1, y+-e3 @, ) which
% %

again follows from (8) I

5. Syntax of the first-order fuzzy logic
5.1. Rules of inference

The rules of inference have generally been defined in [13]. Every
n-ary rule of inference v is a pair ", r*™) where r¥" is a syntactical
part of the rule r being a partial n-ary operation on F4 and r*™ a seman-
tical part of r being an m-ary semicontinuous operation on L, i.e. the
operation preserving all the non-empty joins in L in each variable. Then
the operation 7°*™ is isotone in each variable. A fuzzy set X T F is closed
with respect to r = ", r¥o") if

Xr¥™ (@1, oy @) = 177 (Xpyy onny )

holds for every ¢; € F; for which 7" is defined. The rule of inference
is X-sound if

(9) DIV (Pry ooy ) Z 17D (@)y -y D (@)

holds in any structure 2 such that Xo < 2(¢) for all p € F,. The rule
is sound if it is @-sound. The rules of inference are written in the follow-
ing way:

Pry -y P ( (a1y ...y 0, )
TV @1y oeey @) \ 7" (a1, -0y @)
where ¢; ¢ L are valuations of the formulas ¢;, ¢ =1, ..., n.

LevmmA 6. Assume that the following rules of inference are given:
(@) Modus ponens

, ,w,wé*w(a,ﬁ)
MP - 1/) a®ﬁ
(b) @, a-lifting rules

e ey (o)
Boet oty \a>p
where o = (¢ X)¢.
{¢) Generalization

_? (e
"¢ Qay (a)
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{(d) @eneralization of the consequent
. p=ty a)

"0 o =*(Qa)y (;

on the assumption that x is not free in ¢.

{e) Generalization of the antecedent

IR it (a)

T (Quyp=*y \a
on the assumption that & is not free in y.
(f) Distributivity of the quantifier

. (Qo)e & y) (g)

P (Quyp&ry \a
on the assumption that x is not free in w. The quantifiers are supposed to be
regular. Then all the rules are sound except for the rule (b) which is X-sound.

Proor. (a) has been proved in [13]. We will demonstrate only (b)
and (d).

{b) This rule is a generalization of the rule rya from [13] where its
semicontinuity was proved. Soundness:

2 (rig.(v)) = D(p=*y) = D(p)~>D(y) = ¢’ > = a—>p =i (2(y)),

where f = Z2(y) and a = (V" X)p < D(p) = o’ for every 2 fulfilling
the above assumption.
(d) Semicontinuity is obviously fulfilled. Scundness:

D (rv"(p=*y)) = D{p=>*Qu)y) = @('P)—>dQD@(% [d.]) >d/\D(9(<P)
-2y [d,]) = ?sem(.@(q):*qp)). |

Obviously, the rule (f) remains sound even if we interchange the
formulas ¢ and . Every rule rg, ,, a € L is sound.

5.2. Operation of syntactic consequence

We will work with fuzzy sets of logical axioms Ay T F, and special
amioms X T Fg. Let the set £ of X-sound rules of inference be given.
Then the pair {4, £> will be called a syntax of fuzzy logic. The operation
of syntactic consequences from & fuzzy set of formulas X is defined as
follows:

(" X)p = N {Ugp; A, X < U and Uc F, and U is
closed with respect to all the rules r € &}

‘where ¢ € Iy,

A proof w of the formula ¢ from the fuzzy set X is a sequence of for-
mulas

WO =p @y Pryeces Py =@

7 — Studia Logica 187
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such that each ¢@;, 0 <7 << n is either a logical or a special axiom from
Xoritisa formul'a G NI (/N ®;,) Where éy,..., 4, < ¢ and 7 is an n-ary
X-sound rule of inference. Every proof has a value

Arg, if @, is a logical axiom

Val(w) = Xo, if ¢, is a special axiom
T (Val(og) ..., Val(w, ) i ¢, was
derived from ¢; ,..., ¢; using some n-ary
rule of inference 7,

Wher_e.w(i) denotes the proof Oy =D Por Prs -5 Piye
We will usually write down the proofs more extensively:

o =p @ lag; rols @rlar; 711, ooy @ = @loy; 7,1,
where a; = Val(wg) and r; is & rule of inference by means of which the
formula ¢; was derived from some previous formulas (if such a rule does
exist).
THEOREM 3.
(8*"X), = V{Val (0); » is a proof of ¢
from the fuzey set X S F,).
For proof see [13]. [J
The syntax (4, %> is X-sound if
A; < €™ and every rule r € Z is X-sound.

The syntax is sound if all the rules r e # are sound.
We will write X I, ¢ instead of (¢°"X)¢ > a).
The syntax of the first-order fuzzy logic will be the following. The
fuzzy set A, of logical axioms consists of the formulas:
a) a, a &* B, a=*f with the degrees of membership a, a®pf, a—f
b) All the tautologies X, X* from [13] with the degrees of member-

ship equal to L.
¢) All the tautologies from Lemmas 4, 5 and tautologies of the form
@ Owe*ypde where [ is any of the connectives v*, A% &* with the

degree of membership equal to I.
d) The other formulas with the degree of membership 0.

The set of rules of inference is the set

= {Tup) {"Ro,a; @€ L}, v, Y60 Taas Do) -

6. Fuzzy theories of the first order

6.1. Properties of fuzzy theories
The theory 7 in the language # of the first-order fuzzy logic (shortly —
the fuszy theory) is the three-tuple
T =<{Ap, Ag, )
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where {A;, #) is the syntax of the first-order fuzzy logic and Ag < F,
is a fuzzy set of special axioms.

Let @ be a structure for the language #. Then 9 is 2 model of the
theory & if

Ago < D(p)

holds for every ¢ € Fy and we will write 9 F . Obviously, 4.9 < Z(p)
and

(B Ag)e = A {2(p); 2 is a model of the theory 77}

holds for every g e F,. If (¥*™Ag)p = a, then ¢ is a-frue (true in the
degree a) and we write I k, ¢.

If (8" Ag)ep = a, then ¢ is just an a-theorem of the theory J and
we write I F, ¢ (we also say that ¢ is provable in the degree a). If T, ¢,
then ¢ is a theorem of 7 and we simply write 7 | ¢.

LeMMA 7. (a) €%"Ag = €¢°™Ag
b) T, @ follows from 2 kpp, a < B
holds for every model % of the theory T .

THEOREM 4 (VALIDITY THEOREM). If I b,¢@, and T k; ¢ then o
< f.

Hence, if 7 F, ¢, then Z(p) > a holds for every model of the theory
g.
The element g =V {f'; ' = ¢, Qa, and T Foy @ T oy '@, e By}
is a degree of contradictoriness of the theory J (or, respectively, J is g-
-contradictory). The element y = T|f is the degree of ils consistency. If
J is consistent, then  F ¢ follows from 7 F, “J*@. In general, however,
it may turn out that 7 +, ¢ and I +,, "1*p and o, # 0, a, # 0. It means
that a formula as well as its negation are provable simultaneously to
a certain degree. Such a situation is rather common in practice.

LeMMA 8. Let I be a B-contradictory theorey. Then
BV {y; T k0 & T, pe Byl

Conversely, if T t, ¢ & “T*p for some o> 0 and ¢ € F,, then I is contra-
dictory to some degree.

ProoF. Let 7 be f-contradictory. Then there is a formula ¢ such
that 7, ¢ and Ik, ‘1*q)'and f = 0,)Ra, < B. Let w,, w—, be proofs
of ¢ and T, Val(w,) = 0;, Val (v—,) = a,. Then
(10) o =p w,[0,], o, [0r], p=*("Tp=*p & %) [1],

Tro=*p & TT1%) [og; Fupl, @ & Vel ©d; ryp]
is a proof with the value a; ®a, and V {Val(w); o is the proof (10)} = #'.
Thence 7 +, @ &* TJ*¢ where ' <<y and f =V g

peF,
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Let 7 F, ¢ &* TT*p and a > 0 and J be consistent. Then 9 F; ¢ &* "J*p
holds for every model @ where 0 < a<< f. But 2(¢*& TJ*¢) = 2(¢) ®
®712(¢) =0 in any model — a contradiction. [

LeMMA 9. Let a theory I have a model 9. Then T is consistent.

Proor. If 2 Fk,¢, then 2 k-, Tlp and, by the validity theorem,
T tge, T+, TI*¢ where f<<a and y < “la which follows from f®y
<0. O

Since Ag is a fuzzy set, i.e. the function Ag: F,— L, every formula
p e Fy; is adjoined a degree of membership. If Agp =0, then J k¢
might become like in the worst case. It means that every formula is “in
some way” provable, at least in the degree 0.

A theory T is complete if it is consistent and J k, ¢ fellows from I F—,
“l*¢. The notions of extension, conservative and simple extension of
a theory can be defined quite analogously to how it is done in the classi-
cal logic.

LEMMA 10. Let a theory ' be an extension of 5, F(T)s F(T’)
and let T' have a model A’. Then restriction of the model 2’ fo F(T) is a
model D of ithe theory I and for every formula ¢ € ¥ 44,

D' () = D(p)
holds.

If B & F ) is a fuzzy set of formulas and J a theory, then J' = A,
AgUB, #)isan extension of the theory 7. We willwrite 7" = J UB.

LEMMA 11. Let I be a consistent theory and let T t,¢. Then T’
= F V{B] Tlg} is a consistent theory iff f< Ta.

PROOF. J t, ¢ and < a—0 follow from Ity Tlp and T '+, @
where a < o', § < §, i.e. 7' is contradictory at least in the degree o’ ®
®p' > 0.

Conversely, let < Tla and J Fy “Pp. It B ', then ' =7. I
B < B < Tla, then no proof of ~J*p can exceed the value § and so I’
is not contradictory. Assume Z F, “|*p and let p be derived from TJ*p
by means of the proof

w, =p ... Pp[Bl, . T*p=*p[0], [ ®J; ¥yl
where ,§ < B’. Since J is consistent, fi@é ®e = 0 holds for the value ¢
of a proof of T*p. Let o, be a proof causing contradictoriness of J7,
i.e. fRIQe > 0. Using the proof
w, =p ... Tlel, (TTo=*p) =+ Trp="¢) [1], “Trp="p [4]
TPy =>*¢[d; rupl, e ®9; 7yp]
we obtain e ®6QF < a®f = 0 — a contradiction.
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Let 9 =, =*y be derived by means of the proof

w, —p ... TelBl, Trp=*y [6], 2L ®8; Tz, Mﬁ*x[a-ﬂ?;@é;rm,a]-

Then there is a proof of u &* 7|*y with the value at least . Using the
proot

coo & Ty le], p &* TRy =* Ty (1, Ty les rae]
we obtain ;®é < a, i.e. the proof is converted to the previous case. [

THEOREM 5 (COMPLETION THEOREM). Hwery consistent theory I can
be extended to a complete theory T which is a simple extension of T .

ProOOF. The construction of a maximal consistent theory is analoguous
to that in the classical logic.

Let 7 F, ¢ and T b, ~J*p where o < Tla and put I =T U{ e/
“T*¢}. Then, by Lemma 11, J' is consistent but 7' = JU(Au{ ]a/
“T*¢}), ie. A € Au{Tla/T*¢} — a contradiction.

LEMMA 12. Let ¢ be o formula of the theory I and let a4, ..., @, be

terms substitutible in ¢ for the variables w,,...,x,. Then T F, @ and
T FaPay. (@ ooy @] implies a < o

ProoF. The proposition is obtained using the proof
(11) o =p w,[a'], (Vo)p [d'; 141, (Vo)p=*p,[a] [1], ¢, [a] [a'; 74p]
where w, is a proof of 9. [J

THEOREM 6 (ON CONSTANTS). Let I = (A;, Ag, #> be the theory
in the language £. Let us extend £ by new constants ecC, i.e.
I =900 and let T’ be o theory T’ = (AL, Ag, B> in the language
F' such that Agp = Agp for peFy and Agp =0 for o ¢ F,. Then
for every formula e Fy
T Fa@upayllry s n] f Thao
holds true where ey, ..., e, €C.

Proor. Let 7't @, . [€1,...; €] Using the same idea as in the
classical logic we obtain 7 kg @ (¥4, ..., ¥,) Where y; are new variables
and o< . Hence, by Lemma 12, §'< § and, again by Lemma 12.

T tp o follows from I b, @, o (€1, .05 6,1 g<y
but B has been derived from a and therefore y<a<<f<y. O

COROLLARY. The theory ' is a conservative extension of 7.

The proof of the following lemma is based on the same idea as the
proof of Theorem 6.
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LeEvMvMA 13. Let 7, T' be theories and @, ¢' formulas. If for any a e L
T ko follows from I’ tgo
holds for some f, a < B, and at the same time, for any y € L
Ik, ¢ follows from T tsq
holds for some &,y <9, then
T teo iff T h9.

THEOREM 7 (CLOSURE THEOREM). Let ¢ be a formula of the theory
g and ¢ be its closure. Then

T tap iff

ProOF. It proceeds analogously to that in the classical logic using
Lemmas 12, 13. [

6.2 Canonical model of the fuzzy theory

The next step to the proof of the completeness theorem is a construe-
tion of the canonical model 9, of the fuzzy theory 4. Like in the classical
logic, we must add axioms of Henkin type (Henkin axioms) into the theory.

If the Henkin axiom (3z)p=*g,[r] is true in the degree 1, then

V. D(p.[d,]) < D(p;[r])
de,D

must hold in any structure 9. This is possible only in the ease that » is a
term with the interpretation 9 (r)= d, such that V .@((pz[ 1) = D(p,[d;]).

Analogously for ¢,[r]=%Vz)g. The Hexnkin axmm ensures the existence
of the fuzzy singleton d; with the property mentioned above. We will
introduce Henkin axioms generally for every regular quantifier Q:

(12)  (Qr)p=>*¢,[r]
(13)  ,[r]=>*(Qu)e

where r is a special constant. The theory J is Henkin if it contains for-
mulas (12) and (13) as special axioms with the degree of membership 1.
From Theorem 4 it follows that there must exist § and d, € D in every
model 2 of the Henkin theory 4 such that

Q 2(p,[du]) = 2(9,[de])-
de,D

LEvmmA 14. Let 9 be a Henkin theory and v a special constant for
the formuloa ¢ and a regular quantifier Q. Then

T b (Qu)p iff Tk, .07].

Canonical model of the theory 7
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Assume 7 is a complete Henkin theory. Let a, b be terms without
free variables. We define the relation

a~b iff Tta =D>.
LrvMA 15. The relation =~ is an equivalence.

The support of the canonical model will be the factor set D, = M,|~.
Tts elements are equivalence classes la|, @ ¢ M,. Now, we will define
the structure of 2,:

a) Functions (fg,, &)
(14)  fo (@D, ..., 1aD) = |fD(a?, ..., a])I.
The fuzzy set & = D, will be defined as follows:

1 if there is a term f@ (a®, ..., a®)
Gla| = such that 7 +f@(a®, ..., a)® =a
0 otherwise.

The superscript of @ need not be G.

b) Predicates Pa,

(15) Pa, (laly o5 lay)) = a iff T Foplag, ..., a,).

Like in the classical logic we can demonstrate that the values of fgo
and pg, do not depend on the choice of representatives of the equivalence
classes la;], ¢ =1,..., 7.

We define

Dy = <Dy, (f%aG)y RN ) e
and call g, a canonical structure for 7. Now, we must show that
(16) Dy ko HE T H oo
holds for every formula ¢ € Fg(y. The proof proceeds by induction on
the complexity of the formula.
1. Iwnterpretation of terms
Zy(a) = {61a'9|/1a)]}.

By induction on the length of @ we obtain

D@D = 2,(fO(a?, ..., )
= {G1fD (a9, ..., a/If© (&9, ..., @M}
= {Ga'D|/|a®}}.

2. Interpretation of formulas
a) ¢ =p @, ael,

Then Z,(p) =« and we conclude that 7 ks a, a<<§. By the validity
theorem we have < e, ie. § = a.
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b) ¢ =D a = b.
Then

Z,(a =b) =1 itf g,(a) = 9,(b) iff o, = o, and
la| = |b| iff a, =0, and T Fa =b.

If superscripts of both terms are different, e.g. a@ and b®), then a,
=@Ga9 =¢bD| =1 but HBE)| =1 which implies a, = .

¢) ¢ =pp(@y, ..., &)

Then
Qo(?(aly ceey a’n)) = q iff 1_9@0 (go(aﬂ, sy @o(an)) =a
itf pgo(lally ceey l@y]) = a iff T Foplag, ..., a,).
d) ¢ =pypv*zy
Then

Dy(p) = e #f Bi(p)v 2,(x) = a Hf Dy(y) =B
and 9,(x) =yand a = fvy. Assume I kyp, 7 F, x.  Let o, and o, be
proofs of y and yx, respectively, Val(w,) = 8 Val(w,) = p’. Using the
proofs

w, =p 0, [F'], v=>*(ypv*y) (1L pv*y [6'5 ruel

wp =p @, [l x=>*xv*y (1], xv*y [¥'; 7],

vy =2yl evry [y'; rupl
we get (¥ Ag)e= V (f'vy)and T k@ for a =fvy<<d. By the
w(p,w‘p
validity theorem we have d < a, ie. § = a.
e) g =py & 1.

Analogously to what we have done in d), we use the proof

w, =p @y [8'] @, [¥'], p=*z=*(y & 2)) (1], x=*(v &* 2)[B'; Tup];
| p &* 1[f' ®y'; Tup]
and conclude that 7 b, ¢, fQy < §. Hence, we obtain 6 = a.

f) ¢ =p y="x-

First, suppose that y =,0. Then 2,(p) = a iff P,(y) = f and 0 = 718
= q. Since I is complete, we have J k., ~|*y.

For arbitrary x we have 9,(¢) = a iff 9,(v)—>Z,(3) = aiff @ (y) =
and 9,(y) = y where f—y = a. From the completeness of J and the
inductive assumption we prove that

T by 7Ty & TT*y)
where ¢ = T}f®@I¥) = a. If ' is a proof of Iy &* T*y), Val(w’)
= ¢”, then using the proof

w =p o' [8"], T*(p & TP*p) >y =>*)[L], y="2[6"; *upl
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we obtain 7 by, a = 6’ < 6. Thence, a = 6 by the validily theorem.

g) ¢ =p YPA*L
This formula can be proved using f) and Lemmas 1 (f) and 4(i).

h) ¢ =p6;(wy .-y w,), j€JoOp.
Then

Dy(@) =a i Dy(y) =F,¢=1,...,n and

6;(f1y .-y B) = a. From £), g) and Lemma 3 it follows that J F y;<*f,,
i = 1,...,n. Lot w; be a proof of y,«*f;, Val(w;) = y,. Using the tau-
tology <p=>*(zp =*p &*y)) we can write down a proof of the formula
(pre*B )1 &* ... &*(9, =*p, ) with the value y¥1® ... @ykn. Then

Tt (g, =B &* ... &*(y,<*B,)"n.

Let w” be a proof of this formula, Val(w”) = y. Using the proof

w=p 0"[y], (p1=*1)"1 &* ... &*(p,<*B,)n =>*(o;(p1, .., )

<:>*o'j(ﬂ1, ’ﬂn)) 1, aj("/’la ey '/’n)‘j’*o'j(ﬂu e B 7] dj(ﬁltr'-
sey ﬁj)‘i’*oj(ﬁly cesy ﬂn) [1]7 (aj(pl} e B (PBry ooy ﬂn)) =% (Gj(pu
e By) =>*”j(ﬁ1’ ?ﬂn)) 11, 3(”17 ceny By) :>*aj(ﬁ17 coes B) [13 Typls
Gj(ﬁn ceey ﬁn) [Gj(ﬁla B o p17 vy B) [Uj(ﬁly ceey ﬂn)’ "pJs

(o'j("l’la sevy 'lpn)<:>*0'j(ﬂ1, 'ﬁn)) ( 6;(Bry -5 By) =>*6;(P1y .en "/’n))
[1]’ Gj(ﬂl’ cers By) :”*a’j(‘/’u ey ) [V Tupls

0; (Y1 oevy W) [P ®0;(B1y ovv5 Bu)s Tupl

we obtain J b5 6;(y1y ..y ¥)y 05(Buy ..vy B) < 8 where 6;(By, ..., B,) de-
notes a formula corlespondmg to the truth value o;(fy,...,8,). But
d<a=0(f,...,p,) and we conclude ¢ = a.

i) ¢ =p (Qu)p, where Q is a regular quantifier.
Then
Do(p) = a iff Q Z(y,[al) = a itf Fy(y,[r]) =a

lalea Dy
because 7 is a Henkin theory. It follows from Lemma 14 that

T b, (Qu)y UE T b, p,[r] i Dy(y,[r]) = a
i 9,((Qw)y) = a.

THEOREM 8. A complete Henkin theory I having only regular quanti-
fiers has a canownical model 9, such that

T rp iff 9k @
holds for every formula ¢ € F gz .

So far, we have not employed the rules of inference g, . They can
be ommitted from the syntax of the fuzzy legic. If however, we have
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these rules at disposal we can omit the presumption of the completeness
of the theory 7.

THEOREM 9. A consistent Henkin theory I having only regular quanti-
fiers has a canonical model 2, such that

T hp it 9,F @
holds for every formula ¢ € Fyzy.

ProoF. The completeness presumption was used only for ¢ =, p=>*A.
The proposition is obtained using the proof

(7) o =p 0, [y'], p=>*3[B—>V"; Trys]
where w, is a proof of y with the value 9'. [J

6.3 Completeness theorem

In this section, we will prove two theorems which are extensions
of the classical Godel’s thecrems on the completeness of the predicate
calculus. The quantifiers of the language #(7) are supposed to be re-
gular.

THEOREM 10. Let I be a consistent theory, C a set of special constants
Sor closed formulas (Qu)p and let Ay be the fuzzy set of all Henkin amvioms yg
1g (of the form (12), (13)), Agyy = 1. Then the theory T' = T VAg in
the language Z(T') = F(T)U0 is a consistent extension of the theory 7.

ProoOF. Analogously to the classical proof, we successively construct
sets Cy, Oy, ... of special constants of a given level and successively extend
the theory J by Henkin axioms yz.

a) Let 7,0{1/((Qx)p=*¢,[r]) be contradictory to some degree for
some @ and 2 special constant ». Then

T by T'((Qu) p=*g, [r]), for some a> 0.
Using the theorem omn consfants and the proof
o =p o'[d'], T*((Qr)p=*¢)=>*Qu)p & TT¢)[1], (Qur)e & TT*pla’;

rup] (Qw) (gQ@fp &* _I*ip) [o'; 7], (Qu)g &* (Qu) TT*ple’; rpel,
Q) &* (Qz) TTrp=*((Qx) Tp=*"1(Q2)g)=*((Qu)¢ & 1*(Qx)g)
[1], ((Qz) Tp=*"1(Qu)¢)>*((Qu)p & T1*Qr)g), [a'; rupl,
(Qz) Tp=*"14(Qu)e 1[1], (Qo)gp &* T1HQu)pla’; 7yp]

we conclude that 7 I, (Qu)e & 71%(Qx)g, a<<f. Then 7, is contra-

dictory to some degree (cf. Lemma 8) — 2 contradiction.

b) Analogously, let 7, +, 7%, [*]=*(Qx)g), a>>0
and o’ be a proof of 7" (p=*Qu)e) with the value o’. Using the proof

w =p o'[a’], 7" (p=*(Qu)g)=*¢ & "1MQu)p [1], ¢ &* T1(Qu)e
[a's Tup)y (Qo)(p & T1*(Qu)e) [a; 74]s
(Qz)gp &* 1(Qu)¢ [a; 7pe]
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we obtain 7 k5 (Qa)p &* ~1MQu)e, a < f, which is again a contradic-
tion. O

THEOREM 11 (COMPLETENESS THEOREM II). A theory 7 is consistent
iff it has a model. A consistent theory I has a model P, in which

T ke Ml Dy k@
holds for every formula ¢ € F 4.

The proof proceeds analogously to the one in the classical logic using
Lemmas 9, 10 and Theorems 8, 10. [J

THEOREM 12 (COMPLETENESS THEOREM I). A formule ¢ is a-theorem
of the theory I iff it is true in the degree a in it:

T e it T F .
ProorF. From the validity theorem we obtain

T 4" @ follows from 7 F; ¢, a << §.

Let 7 kg @ and 7 F, ¢. Since the theory J is consistent, it has a model
9, for which 9, k, ¢ holds. Then < a, ie. a = O

7. Discussion

In this paper, we have developed the first-order fuzzy logic based on
the truth set being either the interval (0, 1) or a finite chain. We have
developed its syntax and semantics and we have proved the eompleteness
theorems which are fuzzy extensions of the classical Godel’s theorems
{i.e. the classical ones are special cases of our theorems).

The first-order fuzzy logic has many important applications. First
of all are, of course, the applications in the fuzzy set theory where it can
elucidate many questions which have been doubtful up till now. But
it can also show some properties of the classical predicate caleulus from
the different point of view.

The fuzzy logic is a special case of the continuous legic presented in
[2] where the detailed relation between formal theory and its model
is not studied. This paper solves this gap for the case when the degrees
of truth form a rather special structure which, however, ensures the
completeness property. Our concept of the model is stronger than that
in [2] and, thus, we can expect that most theorems presented there will
hold true in a stronger form.

What should be stressed are the additional logical connectives and
quantifiers. They include ali the connectives counsidered in any other
systems of fuzzy logic (as far as the author is familiar with them).
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We have left some questions open, e.g. the introduetion of a new
functional symbol or a predicate symbol. However, we can hardly expect
any surprising results.

The kind of fuzzy funection used in this paper proved to be the most
natural among various fuzzy functions. It has interesting properties
e.g. from the categorical point of view (cf. e.g. [8]). It is doubtful if the
use of another type of fuzzy function would lead to the same result.

The completeness theorems hold for regular quantifiers which are
more special cases of generalized operations than those considered in
[2]- It is not clear for the present whether the presumption of regularity
of quantifiers can be abandoned.
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