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Abstract, Perturbations of a Dirichlet form h by measures p are studied. The perturbed form h—u_ +
p+ is defined for g_ in a suitable Kato class and ¢4 absolutely continnous with respect to capacity.
Lp-properties of the corresponding semigroups are derived by approximating x_ by functions. For
treating p 4, a criterion for domination of positive semigroups is proved. If the unperturbed semigroup
has Ly — L,-smoothing properties the same is shown to hold for the perturbed semigroup. If the
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for a large class of measures.
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Introduction

If one wants to define a Schrodinger operator —%A + V in L(R™) for a potential
so singular that there is no direct way interpretation it is meanwhile traditional
to use the theory of forms in order to define the operator. The term of the form
associated with V' can be thought of as generated by the measure VA™ (where
A" is n-dimensional Lebesgue measure). It is the aim of this paper to investi-
gate properties of the operator obtained if VA™ is replaced by a more general
measure .

The context in which the operatar discussed above can be understood best is
the evolution associated with the heat equation with absorption

ue = $Au - Vu, (1
where now the absorption-excitation rate V" should be replaced by the absorption-

excitation ‘distribution’ 1. The effects of absorption-excitation can be assessed by
looking at the Feynman—Kac formula

¢ (3a-Y) ¢4y = B, { exp (- fo Vi) ds) f(b(t))} @

describing the solution of the Cauchy problem for (1) with initial value f, where
b runs through the continuous paths, and F.. is expection with respect to Wiener
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measure on paths starting at z. From (2) it is intuitively clear that V' cannot be
replaced by measures concentrated on sets which are not ‘seen’ by the Wiener
process. Also, it is apparent that, in order to generate a reasonable evolution, the
restriction on the negative part of the measure must be more incisive than on the
positive part.

More generally, we shall treat the problem discussed so far in the context where
—%A is replaced by a selfadjoint operator I associated with a regular Dirichlet
form h. The positive Borel measures x generating a closed form h + p are those
which are ‘absolutely continuous’ with respect to the capacity generated by §, (We
point out at once that the notion of ‘Borel measure’ does not include the property
that the measure of compact sets should be finite.) The positive measures p such
that f) — p generates a semigroup acting in all L,-spaces are those in an extended
Kato class.

The main topic of this paper is to study different aspects of the semigroup
(e~tHr;{ > 0), where H, is the operator associated with b + p. The fundamental
principle in this investigation is to approximate u by functions and transfer the
properties known for the approximating objects. In the context of general Dirichlet
forms, the operation of convolution is not available; in this case, smoothing of p is
achieved by applying resolvents of I suitably.

Measure perturbations of Dirichlet forms have been studied in increasing gen-
erality and with different aims during the past years; cf. [BM], [ABR], [AM],
[BEKS], [Stu]. One of the differences to all of these papers (except [BEKS]) is that
our approach is operator theoretical in spirit (even if we use, of course, potential
theory of Dirichlet forms), whereas in the mentioned papers probabilistic methods
are used. As a side effect we can dispense with some assumptions which are needed
in order to construct a process associated with a Dirichlet form; cf. Section 1.

The paper is organized as follows:

The Kato class of measures

Approximation of measures in S N Sg

Approximation of measures in Sk

Perturbation by general measures

L, — L,-smoothing

. Holomorphy of L{-semigroups

Appendix A. A form convergence theorem

Appendix B. On the comparison of symmetric semigroups

O AW

In Section 1 we introduce our setup concerning Dirichlet forms h. We define
the perturbed form b + i for u € Mo, discuss smooth measures and introduce the
extended Kato class Sx of measures. i

In Sections 2 and 3 we study ) — 1 for measures u € Sk with ¢(p) < 1. The
ultimate aim is to show that, with the associated selfadjoint oper-H _ ,, the semi-
group (e~ *¥-#;¢ > 0) acts also on all L-spaces, for 1 £ p < oo (Theorem 3.3).
In Section 2 the approximation procedure is described. The first step does not yield
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approximation of general measures p € Sk by functions, but only of those which
additionally are of finite energy integral, u € Sp. This, however, tumns out to be
sufficient since measures in Sx can be cut off, yielding measures in So.

In Section 4 we study the form b — p_ 4+ py where p_ € Sk, e(u—) < 1, and
t+ € Mo. Again it is shown that the corresponding semigroup acts also in L,, for
1€ p< oo

In the remaining two sections we require additional properties of h. In Section 5
it is assumed that the unperturbed semigroup has the property that e~ maps [
to Lo for all ¢ > (. It is shown that then the semigroups obtained in Section 4
enjoy the same property. In Section 6 we assume that the unperturbed semigroup
is holomorphic in L. Then it is shown that under rather general conditions the
perturbed semigroup has this property as well.

Finally, in Appendix A we prove an abstract form convergence result which is
used in Section 2, and in Appendix B we establish a criterion for domination of
positive semigroups which is needed in Section 4.

1. The Kato Class of Measures

Throughout the whole paper, we shall need the following assumptions and nota-
tions.

X will denote a locally compact Hausdorff space, m will be a Radon measure
on X with suppm = X. B will denote the Borel o-algebra on X. Further we
assume that a regular Dirichlet form b in L2(X,m) is given; its domain will be
denoted by D, and the corresponding scalar product on D is (+|-)y := (b + 1)[-, -]
(For Dirichlet forms and their properties we refer to [Fu]; in particular we recall
that ‘regular’ means that 1) N C.(X) is dense in D, i.e. D N Ce(X) is a core for
f, and additionally that D 1 C';(X) is dense in C.(X) with the supremum norm.
Throughout the paper we fix the scalar field K which may be R or C; accordingly
the function spaces are real or complex.) By H we denote the selfadjoint operator
corresponding to b, and by (U(¢) := e~*#;¢ > 0) the corresponding semigroup.
Recall in particular that, by the Beurling—Deny criteria, U(¢) acts as a positivity
preserving contraction on all Z,(m), 1 £ p £ oo, for all ¢ > 0. By D* we denote
the conjugate linear continuous functionals on 17, dualized over the scalar product
of L2( X, m),sothat D C Lo(X, m) C D*. Finally, cap(-) will denote the capacity
defined by h.

We note that our assumptions concerning X are more general than those used
in [Ful; in fact, it is not clear whether one can associate a suitable process with
h under these conditions. The results we shall quote from [Fu] are valid in this
generality, however, since their proofs obviously carry over.

Concerning Dirichlet forms we also mention [BH], [MR]. Dirichlet forms pro-
vide a framework for a unified treatment of a vatiety of operators H of physical
interest: Laplace operators on (open subsets of) R” or manifolds ([Dal]), relativistic
Hamiltonians of the form H = v/ —A + m? — m ([CMS)), or certain pseudodiffer-
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ential operators ([HI], [J]). Further we mention the application to Feller generators
([Dem]).

We recall that any « € D admits quasi-continuous versions, denoted by u™,
two of which coincide quasi-everywhere.

We define

My = {u: B — [0,00]; po-additive, and p(N) = 0
for every set N € B of zero capacity}.

A g-additive set function u : 8 — [0, oc] may also be called a Barel measure on
X. A Radon measure p on X will be an inner regular Borel measure such that
1(K) < oo for all compact K.

For p € My, integrals with functions in D can be defined since they do not
depend on the choice of the quasi-continuous version. It was shown in [Sto2}, that
for each pu € My a closed form in (D, (+|-)y) is defined by

D(:u) = {u €u™ e ‘CZ(Xn“)}v

plu,v) = /u"' - v~ dy,
and consequently a closed form h + p in Ly( X, m) is defined by

D(h+ p) = D(u),
(b + f"')[uw v] = b[uv 'U] + I”’[ul ’U].

We note at this point that the corresponding definition in [AM] is incorrect: Despite
the fact that [AM; (3.1)] defines a sesquilinear form on L,(|u| + m) it cannot be
considered as a form on Ly(m), in general.

Our next result will show that the class My is the natural set which can be used
in order to generate closed forms. Let R denote the (order complete) lattice of
positive Radon measures on X. Then £ N My is a band in R, and therefore each
p € R has a unigue decomposition, called the Riesz decomposition, t = ptr + Us
with g, € RN My, and y, disjoint to B N My, ie, v € RN Mp and v < u,
implies v = 0. (For the notions concerning vector lattices which were used above
we refer to [Sch; Chapter II]. These notions apply, in fact, to vector lattices; we
have employed them for the corresponding positive cones.)

1.1. PROPOSITION. Let ji be a Radon measure on X, and let . = pr + 1, be the
decompasition of i just described.

(a) For each compact I C X there exists a set N C K,N € B such that
cap(N) = 0, us(K\N) = 0. (Compare [FST, Lemma 2.1]; u, is cailed the
smooth part of ji.)
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(b) The regular part (cf. [8il], [RS; supplement to VIIL7]) (§ + u|D N C.(X)),
of b+ p restricted to D N C(X) is given by h + u,.

Proof. (a) (see [FST; loc. cit.]). Let
N :={NCK;N ¢ B, cap(N)=0}.
Then there exists N € A such that
pa(N) = sup us(N).
NeN

(The proof is as in the proof for the Lebesgue decomposition; cf. [Ba; proof
of Theorem 17.13, p. 120 f.].) This implies p,(N') = 0 for all N' € A with
N'NN =0, ie, xx\whs € My. Since p, is disjeint to Mg N R we conclude
Xiwps = 0.

(b) Clearly, (h + p|D N Ce(X)), =: t dominates § + u,. To prove t < § + .,
let p € DN Cy(X), K := suppe, and choose N as in (a). The regularity of
45 implies the existence of a sequence of compact sets Ky C K, C ---C N
such that p,( N\ U,cn /() = 0. This implies that there exists a sequence (1) in
DnC,(X)suchthat 0 € 1, < 1,x,(z) = 1 forall 2 € K, ||1bn]ls — 0. Let
Pn 1= @(1 — 9¥). Then ¢, — ¢ weakly in (D, (-|-)y); therefore there exists a
sequence (@), P a convex combination of {¢,,; m > n}(n € N), converging to
@ in D (weak and strong closure coincide for convex sets); without restriction we
may assume ¢, — ¢ in D). By construction, ¢,, — 0, ji;-a.e., and so g [e,] — 0
for n — 0. Now the closedness of t implies

tle] < limtfp,] < lim(h + )]
= lim(h + pr)son] = (b + g2 Yleg].

In case that X is countable at infinity, a measure y is called smooth, if there
exists an increasing sequence of compact sets, (I7,), such that u(F,) < oo and
cap( K\ F,) — 0 for every compact & C X; cf. [Fu; p. 72]. For arbitrary locally
compact spaces this condition is not suitable, since it allows only measures which
‘live’ on a K,-subset of X. We shall now give a notion of smoothness which
appears to be more appropriate for our general context,

a

1.2. DEFINITION. Let K C X be compact. Then a sequence {F;,) of closed
sets in X (not necessarily F;, C K') is called a K -nest, if cap( K\ F,,) — 0 for
1 — 00.

1.3. DEFINITION. A measure is called smooth, if @ € Myand ifforevery K C X
there exists a K(-nest (F7,) such that 4(F,) < oc for all n € N. The set of smooth
measures will be denoted by 5.
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Ta illustrate the usefulness of these notions and to verify that our definition coin-
cides with Fukushima’s in case that X is countable at infinity, we state the following
results.

1.4, THEOREM (cf. [Sto2; Theorem 2.1]). Let ¢ € DNC(X), K := supp i, (Fy)
a I -nest. Then

gpelin{feD;HnEN:osf“QXFn}D-

1.5. THEOREM. For g € My, the following conditions are equivalent:

(1) it is smooth.

(i) D{p) is dense in (D, (| )p).

For the proof, see [Sto2]; for measures of the form V'm the proof was given in
[Stol].

1.6, THEOREM (cf. [Fu; Theorem 3.2.3, p. 731). Let u be a Borel measure. Then
the following are equivalent:

(1) i is smooth.
(i) For every compact I( there exists a K -nest (I,), such that x g,y € So for all
n € N

For the proof, see [Fu; p. 73]. Here we have used the notation Sy for the class of
measures of finite energy integral, i.e.,

Sp = {,u E My, D3ur /u” dyt is continuous with respect to|| - ”b}

In order to introduce the extended Kato class we use the following mapping for
€ Mp,a>0:

@(ﬂaaf) : CC(X)+ - {05 00]7

ona)f = [ +a) an(= [ ([T vora) ).

We define the extended Kato class

Sy = {p € Mp; Ja > 0: &y, ) extends to a bounded linear

functional on L (X, m)},

and for u € 5’[{, a > 0 we define

ca(tt) := [|2(p, @)ool = |9(12 O], (x my1)s
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¢ ‘= inf ¢ = lim ¢ .
() = inf ea(p) = lim ca(p)

The resolvent equation implies ¢, (p) < oo, for 4 € Sk, and all & > 0. In [AM]
the Kato class is introduced, which in our notation can be written as S = {u €
Sw: ¢(p) = 0}. In [Stu] the name Dynkin measure is used for measures in Sk in
the case of the classical Dirichlet form in L,{IR™). Previously, for this form, the
class Sg was introduced in [BM] as G K,,.

We use the slightly larger class Sy including the quantities c,(u) and e(y),
since it appears that those measures ¢ € Sk satisfying ¢(u) < 1 form just the right
class of perturbations for which the operator ‘H -y’ (in a suitable sense) can be
defined in all L,(X,m),1 £ p < oo. For the case of the classical Dirichlet form
on R"™, the Kato class I, (cf. [Si1]) was extended in the analogous way to Kn in
| Vol].

1.7. REMARKS. (a) For u € Sg, o > O there exists (H + a)‘lp € D which is
uniquely determined by the equation

/ W dp = (54 )u, (H+ )il (ve DNC(X)).

For V € Ly( X, m)4 it follows that Vm € Sp and
(H+ o) 'Vm=(H+a)'V

for & > 0, where (H + «)~! is the resolvent of H.
(b) For i € 5y we have the equivalence

,uE51{#36!)0:(]{—{—0:)"'#61}00,

and for 1 € S N Sp the functional ®(1, o) is generated by (H + o)~ 1.

() Sx C 5. This follows, since (I + o)~ '(C.(X)) is a dense subspace of
D which is contained in Loo({m) and in £;(X, ) for any u € Sx. Consequently,
D(u) is dense in D and Theorem 1.5 yields the assertion. (In Theorem 3.1 it will
be shown that each ¢ € S'K is h-bounded.)

1.8. EXAMPLES. (a) By the preceding remarks it 1s easy to give examples of
measures ;2 = ¥V'm which lie in 5, S5, 55 with respect to the trivial Dirichlet
form § = O:

Vme Soe Ve L,
Vme Sy o Vel

(In this case Sy = § W)
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(b) A typical example of a measure in My is given by the following definition:
Fix B C X and let (cf. [BDM; Def. 2.2, p. 5])

oo ifcap(ANB)#0

0  otherwise.

OOB(A) = {

Then oog € M.
(¢c) For B € B, the measure cox g,

> ifm(ANRB)#0,

coxn(d) { 0  otherwise
and belongs to M.

(d) For the classical Dirichlet form in Ly(R),6 € Sk N .Sp. More general-
ly, for the classical Dirichlet form in L,{R"™), the surface measure of every 1-
codimensional compact C'!-submanifold of R lies in the Kato class; cf. [BEKS;
Section 41].

We conclude this section by an approximation result which will serve as one of the
steps in the approximation of measure perturbations by functions for a large class
of measures, including smooth measures.

This result and the subsequent carollary generalize [AM1; Theorem 2.4]; the
proof given there uses probabilistic methods and hence does not carry over to our
general context.

1.9. PROPOSITION. Let yu € So. Then there exists an increasing sequence (I1,)
of closed sets such that cap(X\F,) — 0 (n — o0), xF i € Sy foralln € N.

Proof. (i) We first show (H + @)~z — 0in D for @ — oo. If u € D, then
clearly (H + a)~'u — 0. Further, the family ((H + «)~'; 2 > 1) is bounded in
L(D*, D). Since D is dense in D* we get (H + &) '® — 0in D forall & € D)™
Because of Sy € D™ we obtain the assertion.

(i) We show: For £ > 0 there exists a closed set F C X, cap{ X\ F) < € such
that xFpu € Sk

For i € N we have (cf. [Fu; Lemma 3.1.5])

cap{m € X3 (1 + o) p)(z) > %}
< R(0(H + @) ] + | (H + o) ).

Therefore, (i) implies that there exists an open set Uy with cap(Uy) < 27 %¢ and
« > 0 such that

1
((H+ ak)“l;u)” % 5 ae on X\ U;.
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Define U ;= U, Uk, F := X\U. Then cap(U) < ¢ (by [Fu; Lemma 3.1.2]).
Further, for k € N,

g.e. on supp (xr) C F,

el

(H + o) Nxre))™ < (H 4 o) tp)™ g
hence

((F+ e urp))™ < ¢ (vrw) —ae

From (Fu; Lemma 3.2.3] we conclude

m—a.c.

Et

((H + )™ (xrm))™ <

So we have shown xpp € Sp.
(iii) Choose a null sequence (g,,) and choose I}, carresponding to g,, according
to (ii), without restriction ( F,,) increasing. a

1.10. COROLLARY. Let pu be a Borel measure on X. Then the following are
equivalent:

(i) u is smooth.
(it) For every compact I C X there exists a K-nest (F,) such that xp,pu € Sk
foralln e N

Proof. Clear from Theorem 1.6 and Proposition 1.9, a

2. Approximation of Measures in S 1 5y

The aim of the present section is to approximate measures x by measures Vm
generated by functions. This will finally allow us to transfer certain properties
from operators of the form H-V to operators ‘H-p'. The essential step is the
following approximation result.

2.1. THEOREM. [let u € 31\' N Sp,e > 0,7 1= eql(yt). Then rhere exists a
sequence (V,,) in La(m) 0 Lo,(m)y such that

(Vo) <7 (nEN),
an}u\zdm < y(olu] + al|u|®) (» e N,ue D),

and V,, — w strongly in L( D, D). Further,

plu] < y(olul + allul?) (€ D).
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(The strong convergence in L(D, D*) can also be expressed as follows: For all
u,v € D, the sequence [ uoV,dm converges to fuvdy, and for each u the
convergence is uniform for » in the unit ball of 1).)

The approximation of i by functions will be achieved by smoothing with
resolvents of H as introduced in Remark 1.7(a). For n € N we use the mapping

n(H +n)"!: 8 — S.

2.2. LEMMA (cf. [Fu; Lemma 3.2.1, p. 70]). For every u € 5y, the following
statements hold:

i) n(H +n)lp — pin D" forn — oo
(i) n(H + n)" 'y — p vaguely forn — .
(iii) Foralin € N,a > 0:

(1 — %) (H + a)"ln(H + n)_lﬂ < (H+ a)'l,u.

Proof. (i) This follows from the fact that n(H + n)~!, interpreted suitably on
D~, converges strongly to the identity.

(ii) For u € DNC.(X), (i) implies [un(H + n)~'pdm — [wudyu. This carries
overto u € C,(X) by approximation ( is regular).

(iii) is a consequence of the resolvent equation and the positivity of (H + &)1
foro > 0. a

The following proposition will supply the bounds for the approximations V,, in
Theorem 2.1.

2.3. PROPOSITION. Let V € Ly(X,m}s 0 > O,(H + a)" 'V € Lo(X, m).
Then forallu € DN Ce(X):

[V Iu dm < I(H + )™V los(h + )l

Proof (cf. [Sil; p. 259]). Without restriction we may assume V' € Lo (X, m) (if
necessary, approximate V' from below by bounded functions). Then
H 4+ ) 'V|lw = [[(H 4+ @)7'V||eo,c0 (the norm of the operator from L,
10 Loo). By duality [[V(H + o)™ "|l1.1 = [|(IT + @)~V ||eo,c0- Applying the Stein
interpolation theorem, one obtains

VY20 + ) P, = IV 4+ 0) 'V 2l < ICH + @)V floo,00,

which implies the assertion. Here we have assumed without restriction (see proof
of Theorem 5.1) that K = C. O
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Proof of Theorem 2.1. Letug := (H + o) 'p (€ Loo(X,m)). For n € N let

Vo= (n—a)(H+n)"p=(1-2)n(H +n) !y From Lemma 2.2 (jii) we
conclude

(O 4y o= (1-2) (F + ) (B + )7 < (F 4 0) =,
and therefore

ea(Vn) < 7.
From Proposition 2.3 we conclude

[1uPVadm <36+ )} (we DN CAX)),

and this implies, by Lemma 2.2 (ii),

il = [ luPdu = lim [ [uPVadm <100+ a)lu]
forall w € DN Cy(X).
Finally we prove the strong convergence V,, — p in L(D, D*), The previous
facts show that the sequence (V,m) is uniformly bounded in L{D}, D*). It is
therefore sufficient to show that V,« -~ up in D*, or equivalently,

vp = (H + )" (Vou) = v:i= (H + o) (up) inD

forevery u € DN Co(X)4.
We calculate

(b+ a)fv—vs] = /('U — vy )udp — /(v — vy )uV, dm
= (h+ a)[(v — v)u, (H + ) 'u — (H + a)~1V,].

Since (H + )"V, — (H + &) 'x in D, by Lemma 2.2 (i) it remains to show
that ((v — v, )u) is bounded in D. From [Fu; Thm. 1.4.2, p. 25] we obtain

1o = v )elly < [l = Talloo  [[ulls + llo = ally - ellco-
The boundedness of the first term follows from the inequalities
0< (H+a) ' (Vau) < 7llulle forn €N,

0 < (H+ ) (up) < v][u|oo-
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The boundedness of the second term is obtained from

(h+ vl = (107 +a) (V) Voudm

< ulley [ wVidm — [ulloy [ uds,

where we have used the vague convergence stated in Lemma 2.2 (ii). a

2.4. COROLLARY. Let pu € S N Sy, c(ji) < 1. Then, by the definition of c(u),
there exists o > O such that v := c.(p) < 1. Let (V) be as in Theorem 2.1.
Thern:

(a) The forms h— p, h— Vy,{n € N)are bounded below by —ycv. Denoteby H_,
the selfadjoint operator corresponding to b — p. Then we have strong resolvent
convergence

H-V,—H_,.

(b) The Cg-semigroups (e"%1-u;1 2 0), (e7H-Y): 1 > 0) on Ly(X, m) act
also as Co-semigroups on L,( X, m) forp € (1, 00). Denote by Uy, _u(+), Up,—v,{+)
(n € N) the respective Co-semigroups on L,(X, m). Then, for all p € (1,00), the
strong convergence

L’Tp’_”(t) =8= nli.rlolo UP,—Vn(t)

holds uniformly for t in bounded intervals. There exists constants M 2 O,w € R
depending only on «,y such that

|Up,—u(t)lpp < Me”" (¢ 20,p € [1,00)).
Finally, for p € [1,00), f € Lo(X, m) 4,1 2 O the inequality
Up,—p(1)f 2 Up()f 2 0

holds. (For ‘Uy(-)’ see the notation introduced subsequently.)

In order to prove part {b) of the corollary we recall the significance of the constant
¢4(+) in connection with the Miyadera perturbation theorem for Co-semigroups (cf.
[Vo)).

First we recall that, by the second Beurling—Deny criterion, e is a contraction
in all L,(X,m) (1 < p < co). The induced semigroup will be denoted by Uy(-)
and its generator by —Hp, for p € [1, o0).

tH

2.5.LEMMA. Let o > 0,0 < v < ¥ < 1. Then there exists & > Q such that for
allV € Loo(X, m)y satisfying co(V') < 7 the following inequality holds:

!

/Oa VT fihat < YISl (f € Li(X,m)). 3
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As a consequence —H | +V generates a Cy-semigroup U _v (), and the constants
M > 0,w € R in the estimate ||U\_v(t)]| < Me**,t 2 0, depend only on
&Y, 7"

Progf. First we show the equality c,(V) = ||[V(H1 + )71 For f €
DnC(X)4 wehave

@(V,a)f:/X((If+a)-‘f)~1fdm:]XV(H+a)—1fdm.

Taking the supremum over those f with ||f]|li < 1 the asserted equality is
obtained.

Now ineqguality (2.1) follows from [ Vo1; Proposition 4.7(b)]. The last statement
is then a consequence of the Miyadera perturbation theorem as stated in [Vo]. O

Proof of Corollary 2.4. (a) The lower bound for b — p, h — V,, follows imme-
diately from the estimates given in Theorem 2.1, e.g. for b — p:

Blu] — ulu] 2 blu] — yhlu] — yallu)? 2 —vellu|*

Now the strong resolvent convergence A — V;, — H_, is a consequence of
Theorem A.1 (Appendix A).

(b) For p = 2, the assertion is a consequence of (a). Choosing 7' € (v,1)
we conclude from Lemma 2.5 that the Cp-semigroups Uy _v, () satisfy a uniform
estimate

U1 v, ()]]11 € Me** (n€N,t20).

Applying duality and interpolation, the same estimate is obtained for U, v, (-),
forp € 1, 00).

The strong resolvent convergence H — V,, — H_,, implies the strong conver-
gence

e”tH-s = s — lim e’t(Hﬁv“),
n—oo
uniformly for ¢ in bounded intervals; cf. [Pa; scct. 3.4]. Moreover, the inequality
e~MH=Va)f 5 e=tH § 5 0, valid for all f € Lo(X,m)4,t > O,n € W, carries
over to the limit.

Let f € L1N Lo, (X,m),t > 0. Then the sequence (e~*7=V») £}, _\ converges
to e~t1-« f in L;(X, m) and is bounded in L;(X,m) as well as in Loo(X, m) (the
latter by duality). This implies that e "*(H V=) f converges to e ~tH-» f in L,(X,m)
forall p € {1, > ); this convergence is uniform for ¢ in bounded intervals. Forp = 1
the Fatou lemma implies

le=#=0 fily < Timin [|=01=¥2) |

< Me! £l
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The convergence shown in the preceding paragraph implies the existence and the
strong continuity of U/, _,(-), forp € (1, oc). Forp = 1, the estimate shown above
proves the existence of a one-parameter semigroup Uy, _,(-). Since Uy _,(t) is
positivity preserving for all ¢ > 0, the strong continuity follows from [Vo3]. D

2.6. REMARK. If p, 1t € 8§k N Sp, e{p) < 1,11 < &', then

Up—u(0)f € Uy, (1) F

forallp € [1,00], f € Ly(X,m),t = 0.
For p = 2, this follows from Corollary B.3 (Appendix B), and it carries over to
general p.

3. Approximation of Measures in S
3.1. THEOREM. fet u € St. Then p is h-bounded. More precisely, if o > 0,
v i= o), then

ulu] < y(olu] + of[ul)

Proof. Let K C X be compact. By Theorem 1.6 and Remark 1.7(c) there exists
a K-nest (F},) such that xp,, pp € Sy for all n € N. The definition of Sk implies

XF € Sk, calxF ) € ca(p) =7 (n € N). Theorem 2.1 implies

[F P dp < v (5[] + allul?) (u€ DyneN).

n

From p € M, one obtains

J = fim [ P du< (ol + o) (ve D)

Tt OO Fﬂﬂk

Since K is arbitrary we obtain the desired inequality. O

3.2. REMARK. If p € My is h-bounded and u(X) < oo, then p € Sy (clear
because of [ |u™|du < wfu]'Zu(X)/?). In partticular, if » € Sx has compact
support, then u € S,

Before we proceed to the main result of this section, we introduce some notation.
For p € Sk,e(p) < 1, Theorem 3.1 implies that h — u defines a closed form,
whose associated selfadjoint operator will be denoted by H_,,. We let

K :={K C X; K compact}
directed by inclusion; for K € X define

HEK = XKH.
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3.3. THEOREM. Let p € Sx,c{p) < 1. There exists a > O such that vy =
eo(p) < 1. Then:

(@) h — pand h — py (K € K) are bounded below by —vya. For the associated
operators,

Heppe = Hop

in strong resolvent sense.
(b) For all p € [1,00), the semigroup (e~tH-#;t 2 0) acts also as a Cy-
semigroup on Ly(m), which we denote by U, _,(-);

Up—u(t) = 5 - [Pél;lC U=z (1)

uniformly for t in bounded subsets of [0, c0).
(c) There are constants M 2 0,w € R depending only on «, ¥ such that

10— (2)ll < Me!

forallt > 0,p € [1,00).

Proof. (a) The semiboundedness follows from Theorem 3.1. The strong resol-
vent convergence can be seen with a proof as in [RS; supplement to VIIL.7, pp.
372-377]. One only has to realize that a bounded monotone net of selfadjoint oper-
ators is strongly convergent; this is proved as in [RN; proof of ‘Satz in Nr. 104°].

(b) The strong convergence

Uz—p(t) = s~ I!{]g}c Uz,- e (1)

follows from the strong resolvent convergence H_,, . — H_., with the same proof
as for sequences; cf. [Pa; chap. 3, Thm. 4.2]. From Corollary 2.4 and Remark 3.2 we
infer that U, _,..(+) is a Cq-semigroup for I € X, and the bounds ||U, _,, (¢)|| €
Me“* in Corollary 2.4 are independent of K. Fix p € [1,00), f € Ly(X, m)4,
t > 0. Remark 2.6 implies that (U, _,, ()f)xex is monotone increasing in
L,(X,m). Since it is bounded, it is convergent;

Up-u(t)f := I{lg}c Up—usc ().

We conclude that I7, _,(t) = e = on Ly N L,(X,m), U, _.(-) is a one-
parameter semigroup, and Uy, _,(2)f = Up(t)f = Ofor f € L,(X, m)+.

This implies that U, _,(-) is strongly continuous for all p € [1,09); cf.
[Vo2; Proposition A.1]. Hence the uniform convergence follows from the Dini
theorem,

(c) follows from (b). O
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3.4. REMARK. For the case of the classical Dirichlet form in Ly(IR™), there is
a different possibility to approximate measures in S, and even more generally,
measures which are fj-bounded. Namely, convolution with a §-sequence provides
an appropriate approximation. Since this has been carried out in [HS] we will not
discuss it further.

Corollary 2.4 and Theorem 3.3 together show that we have a two-step approxima-
tion for measures in Sg-. First they are approximated from below by

pr, B €K,

and since each uy belongs to Sz N So, it can be approximated by functions Vi n
The point is that we can control the constants ¢, during this process. For further
reference we state this consequence explicitly,

3.5. THEOREM. Let i € 5’1\-,4:1 > 0,7 1= ¢,{pt) < 1. Then there exists a net
(V.)ier ef functions V, € Ly N Log(X,m), such that

@ ecaV)<y (t€1)
(i) H -V, — II_, is strong resolvent sense,
(iiiy e -V .y e=tHu srrongly, forall t > 0.

If (X, m) is such that L,( X, m) is separable, then the net (V,) can be chosen as a
sequence.

The last statement of the theorem follows {rom the fact that, due to the separability,
bounded sets of operators are metrizable for the strong operator topology.

With this theorem at hand, one can carry over certain results known for # — V
to perturbations of the form H_,, namely those which rely on the constants ¢,.
We have already used this strategy in the proof of the relative boundedness of
measures in the extended Kato class, Theorem 3.1. A farther demonstration of
this method will be given in Section 5, where we prove L, — L, continuity of the
SEMmigroups.

4. Perturbation by General Measures

4.1. THEOREM. Letu, € My, it € S, e{p-) < 1.

(a) The closure of D(114) (cf. Section 1) in Ly( X, m) is of the form Ly(Y,m)
with a locally measurable set Y C X.

(b) Denote by H,, = II_,, ., the selfadjoint operator in L,(Y, m) associated

with the form i) — p— + 4. Then
0g ety getHn g

forall f € Ly(Y,m)y,t = 0.
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Proof. (a) See the remarks following Proposition B.1 (Appendix B).

(b) Clearly, D( ) is an order ideal in D. We want to apply Corollary B.3 with
unperturbed form f~ g2 _ +¢ (in Corollary B.3: h) and perturbed form h—p_ +c+p4
(in Corollary B.3: ¢), where ¢ » 0 is chosen such that h — x_ + ¢ > 0. (Note that,
in general, h — p_ + ¢ will not be a Dirichlet form; the conditions of the first
Beurling—Deny criterion, however, are still satisfied.)

Now it is easy to see that all the hypotheses of Corollary B.3 are satisfied, and
the conclusion yields (b). O

4.2. COROLLARY. Let o, i, Y, H,, be as in Theorem 4.1. Then the semigroup
(e7*Hu;t > 0) acts as a positive Co-semigroup U, ,(-) on L,(Y,m), for all
p € [1,00), and the bounds for the operators in L,(Y,m) are the same as for
(e'tH“‘— it 2 0), L.e. the bounds given in Theorem 3.3.

Proaf. This is obvious from the inequality given in Theorem 4.1, The strong
continuity of U, ,.(-) follows from [Vo3]. a

At that point, let us compare the scope of measures treated above with the one
treated in [AM]. Since we want to study those p, for which the semigroup still
acts in all L,-spaces, the assumption p_ € Sk cannot be weakened substantially.
In [AM] more general p_ are allowed, since different properties of ‘H-u’ are
investigated. The standard assumption in [AM] concerning the positive part is
i+ € 9, which is certainly more restrictive than our assumption g4 € My, the
latter being minimal, if one wants to use Dirichlet forms or the Feynman-Kac
formula.

For the classical Dirichlet form on RY, the class My has been recognized as
‘the right one’ for positive perturbations of —A at least in [BDM], where the
connections between probabilistic and variational notions are studied; see also
[Stu] for a detailed account concerning the associated additive functionals.

4.3, NOTATION. Let piy,p—,Y ete. be as in Theorem 4.1. The generator of the
Co-semigroup Uy, ,(-) on L,(Y, m) (see Theorem 4.2) will be denoted by — H,, ..
Further, P will denote the projection P : L,(X, m) — L,(Y,m), Pf:= xvy f.

We note the following monotonicity property.
4.4. REMARK. Letpy, p!, € Mo, py < p/p,andY’ CY C X the corresponding
sets; D(uy) = Lo(Y',m), D(uy) = Lo(Y,m). Let p_,u' € Sk,c(u_) <

1,pu_ < p—. Then D(h—p’_ +pl ) = D{p!, )isanidealin D(p ) = D(h—pu_+
1t )s

(b — i+ ), 0] < (0 — pl + ), 0)
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for all w,v € D(ul )+, and therefore Corollary B.3 implies

e et (fe LyY',m)y,t>0)
This monotonicity obviously carries over to the induced L ,-semigroups.

Next we present an application of a monotone convergence theorem for forms to
our situation.

4.5. THEOREM. Let p_ € Sy, c(p-) < 1. Let (1,),er be an increasing net in
Mg, py € My, and py. = sup,c; p1, in the sense that

supt(u] = pyfu] (v€ D)

13}
{where the form i takes the value +0 if u does not belong to the domain), Then,
forl < p< oo, fé€L(X,m),t>0, there is convergence

Up,-—u-+m(t)PLf = Up —p_tus ()Pf

(where P, denotes the canonical projection of Notation 4.3, corresponding o
fo, ). For [ € L,(Y, m), this convergence is uniform for t in compact intervals
of (0, 00).

Proof. (i) Fix 1 £ p < oo, for the moment. Then, for t,x € I,t € &,
Remark 4.4 implies Up _,_ 4, (1)P, 2 Up,—p_44.(t) P (t 2 0). Therefore, for
t > 0,5 — limer Up— 4, (1) P, = V(1) exists, and V;,(-) has the semigroup
property V,(t + ) = V,(t)V,(s) (¢, s > 0). It was shown in [AB, Corollary 3.3]
that V,(+) is strongly continuous, that ¥,(0) := s — lim,_,o V,,(?) exists and is a
band projection, i.e., R(V,(0)) = L,(Z,m) for suitable Z C X, and V,,(0)f =
xz f. In particular, V,(+) is a Clg-semigroup on L,(Z, m). Dini’s theorem implies
Up,— i (8} f — Vu(2)f uniformly for ¢ in compact subsets of (0, 00), for f €
L,(Z,m).

Let 1 € ¢ < oo. Then there exist V,(-) and Z, as above. Clearly, V,(t) = V,(t)
on L, N L,(X,m), and this implies that Z = Z is independent of g.

(ii) It remains to see that V,(-) coincides with the semigroup associated with
the form h — pr_ + g4, This is shown by a standard method (cf. [Da; Chapter 4,
Theorem 4.3.2]): Let --S be the generator of the Cy-semigroup Va(-) on Ly( Z, m),
and ¢ the form associated with 5. Then

b—po tp SELh—po +py (LED),
and this impliest = § — u_ + p4. Q

Next we illustrate what distinguishes smooth measures from other measures in
My, from the point of view of the associated semigroups. The characterization of
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smoothness will be analogous to the definition of ‘regular’ for absorption rates,
given in [Vol; Definition 2.12],

4.6. PROPOSITION. Let u € M. Then the following are equivalent:

() pes
(i) Up(t) = s — limp—o4 Up 4. (t) for some {all) p € [1,00) and all t > 0.

The proof is sufficiently analogous to that of {Vol; Proposition 5.8(b)] to be
omitted.

4.7. EXAMPLE. Let us now reconsider two of the examples introduced in 1.8.
ForBC X,BCB,

Dbh+ooxg)={feD;f=0 m-ae. onB} D
D(h+oog)={fe€D;f*=0 qe.onB}.

If we specialize to the classical Dirichlet form on R?, and B = B, the latter domain
equals W) o(R?\ B) (= the closure of C2°(R?\B) in W}(R)). If B = By U B,
with disjoint closed sets such that By is of Lebesgue measure zero, but not of
capacity zero, then clearly

D(h + coxs) = D(h + coxp,) O Wi o(R¥\By) 2 Wy o(E*\B),

so that h + coxg # h + oog.

In fact, this can happen in a more interesting way (as shown in [Sto] where
a detailed study of related questions is given): Using Example 1.17 in [He], one
can find a compact K such that K = K but nevertheless WZI,O(JR"\K Y#A{f €
Wi,'; f =0aeg. on K}. This shows that a conjecture in [Si; p. 384] is false. At this
point the first named author would like to express his gratitude to Prof. Hedberg,
who kindly pointed out [He; Example 1.17] to him.

5. L, — Lg-Smoothing

In this section we show that if H has the additional property that e ~* maps L,to
L, for1 £ p < ¢ € 00, > 0 then the perturbed semigroup has the same property.
For the case of H = —4A on R? this is well-established; cf, [Sil], [Dev], [Vol]
for the case of measures of the form Vdz, [BM] for measures in the Kato class.
The proofs in the mentioned papers do not carry over to the present context. We
denote by | - ||, ¢ the norm in L(L,, L,).

5.1. THEOREM. Let py,pu_,Y, H, be as in Theorem 4.1.
(a) Assume that, for all t > 0, the operator e *H is continuous as an oper-
ator from Li(m) to Loo(m). Then e=*Hs is continuous from Li(m) to Loo(m),
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Jor all t > 0. (And as a consequence of the Riesz—Thorin convexity theorem,
e~ tw is continuous from Ly(m) to Ly(m), for 1 < p < g € 00,1 > 0).

(b) Assume, more specifically, that there are constants C 2 0,d 2 0 such that,
forl < p<gg oo, 0<t ], the estimate

baf1 1
le= g < Cm 343

holds. Then there exists C' > O suchthatforall 1 < p £ ¢ < x,0<t <1 we
have

1
e~y < 77407

Proof. In view of the estimate given in Theorem 4.1(b) it is sufficient to treat
the case py = 0.

Further, in view of Theorem 3.5 it is sufficient to treat the case 1 = Vdm, with
V € Loo(m), if the estimates for the || - ||,,;-norms only depend on the constants
a > 0,0g v < 1with ¢o(V) < v, given in Theorem 3.5.

(a) For t > 0 we define

Coi= e e

Choose 7,7 < v' < 1,5 > 1 such that ky" < 1, and — for later convenience —
such that the exponent k conjugate to & is an integer: % + % = 1withk € N,
Then —H; + kV generates a Cp-semigroup on L;{m), and there are constants
M 2 0,w € R depending only on &, kv, kv’ such that

et H==VN| 1 < Me*t (1 2 0);

sce Lemma 2.5.

Since we shall use complex interpolation, we need the field of scalars to be the
complex numbers. Thus, if K = R, we complexify the L,-spaces as well as the
operators. Note that complexifying does not change the norm of operators from L,
to L, for 1 £ p < g < oo; cf. [FIP].

Forz € ¥ := {2 € C,0 € Rez € 1},—H + zkV is the generator of a
Cg-semigroup in Lz(m ). For fixed ¢ > 0, define

F(z) = e WH—2Y) ¢ [(L[3(m)).

Then #' is continuous on ¥ and analytic in the interior S Llet0grgl,s e,
Then, for f € Ly(m),n € N we obtain

[(exiorV emmlH=reVIyn f] < o= H=reV)) ).

For n — oo, the Trotter product formula (cf. [Da; Theorem 3.301) yields

1e—t(H—(r+is)mV)f| < e—!(H-—rﬂV)lfL
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This shows that F' is also bounded on X. It further shows that, for z € ¥ with
Rez =0,

1F (N0 < 1EO)1,00 = Cis
and, for z € X withRez = 1,
IEE 1 < IF(Dlh € Me.
Now, the Stein interpolation theorem (see [Ste; p. 69]) implies

I8l < CLT3 (M),

1

1 _ _1—s sy : _1 . 1 .
where o- = s (= 22 + }), i.e, ps = §. In particular, for s = ., we obtain

”6 HH- VIIIK\C£1

1
with C! 1= CF M %™ recall t=1-41
Duality together with the Riesz—Thorin convexity theorem implies

e =V, < Cf

%: %.Choosingpoz l<p < - <pp =00

whenever 1 < p < ¢ < oo,
-L 1,...,k), we obtain

1
1 1 P
such that Fyeri =% j =

=~

rF_ L _ - _
e~ Ty 0 < [T e EV, < (CL)F = 0 MA-LetehD),
7=l

(b) The Riesz—Thorin convexity theorem implies that it is sufficient to show the
desired estimate forthe case p = 1, ¢ =

With the notation of part (a) we have Ct £ Ct™ 'd z < Chit1, ad

5.2. REMARK. The quantity € occuring in Theorem 5.1{(b) is known as the (local)
dimension of the diffusion semigroup (e ;¢ > 0); cf. [Co], [Va; Definition,
p. 241] forthecase p = 1,4 = o

6. Holomorphy of 1-Semigroups

Let pty € My, u_ € Sk.e e(p~) < 1,and Y, H, be as in Theorem 4.1. Then it
follows from the Stein interpolation theorem that for 1 < p < oo, the semigroups

Uy, u(+) are holomorphic of angle 7( ); this is shown as in the usual proof
for symmetric diffusion semigroups; see {Ste Chap. I11, sec. 2].
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In this section we study holomorphy in L, provided the unperturbed semigroup
is holomorphic. This investigation has its roots in Kato’s paper [Kal] and moreover
was stimulated by the results of Arendt and Batty [AB].

Thus, in the present section, we assume K = C, and we assume that Uy(-)
extends to a holomorphic semigroup of some angle. This assumption is equivalent
to requiring that there exist 7 > 0,¢ > 1 such that {A € C;Re A 2 0,[A| > r} C

p(H1)=

N+ )7 < o (Re X 2 0,[A] > r);

cf. [Na; A-II, Theorem 1.14].

6.1. THEOREM. Let u_ € Sic,c{p-) < 1,p4 € 8. Then Ui —py_quy(*): the
semigroup generated by Hy _,_4 .., is holomorphic.
Proof. (i) First we shall treat the case g4 = 0(cf. [Kal; proof of Lemma 13]).
There exists @ > Osuchthaty := ¢5{u-) < L.Let V € Lo(m)4,ca(V) € 7,
ie, [V(H + &) 11 € 7-For A € CwithRe A > o, we then have

WV(H+ M) € IVEH +Re ) g
< IV(H i+ o) o €.

Therefore, if additionally |A| > r, the Neumann series

(H = V)+ A7 = (H+ )™ i(V(Hl +A)71Y,

§=0
converges, and

c 1

1—7{3

N(CH - V)+ )~ < U+ X7 i”fj <
=0

Next, let it € Sk 0 Sp, calfi) < 7. By Theorem 2.1 there exists a sequence (V;,)
in Loo(m)s such that ¢o(V,) € 7 (n € N), and Hy — V,, — H; _j in strong
resolvent sense, by Corollary 2.4, From H, — V,, > —ya > —a we obtain

I((Hz = Vo) + X 22 € Reh = 7

forall n € N, € C with ReA > a, and therefore ((H, — Vo) + A)™! —
(Ha2_; + A)~! strongly. For f € Ly N Ly(X,m),A € CwithReA > a, |A] > 7,
these facts imply, by Fatou’s lemma,

I(H2,—z + 27 fll < liminf [|(Hz = Va + 2) 7' flls.
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From the representation of resolvents of the generator by the Laplace transform of
the semigroup one abtains

(Hyp+ N7 = (Hi—a+ X7,
and this leads to the inequality

|
Hi i+ N g —m (JAl>rRedza)
”( 1, I-l+ ) ”1-1 1_7I’\| (l | i )

Finally, the approximation procedure of Theorem 3.3 shows that this inequality
carries over to ff; _,_. (Note that in this step one has strong convergence of L-
operators at one’s disposal, which makes things easier than in the previous step.)
The above estimate can be weakened to

c 1
L-7|A-a

N(H1—pe + X7 € (I1A —al > r,ReA > a),

which shows that —H| _,_ — o generates a holomorphic semigroup.
(it) For the general case, let _, @,y be as in (i).
First,let V € Lo, (m)y. Itis shown in {AB; proof of Theorem 6.1], that then

2
< (ReA3 0,0 > 1),

(Hy+V + 27} 0

Note that h+V is again a Dirichlet form, and step (i) can be applied to this Dirichlet
form and yields

2c 1
1=7|x=-a

W Hp e +V 4+ 2 1 < (|A - al > r,ReX 2 a).

Next, suppose ji € Sx N Sy. By Theorem 2.1, there exists a sequence (V) in
Loo(m)y,ca(Vi) € ca(fi) =t 7 (n € N),and V,, — [ strongly in L(D, D*).
Therefore Theorem A.1 implies

HZ,—‘J_ + V., — HZ,—M—-HTL
in strong resolvent sense. Arguments as in part (i) of the proof yield the estimate

2c 1
-1
WH et X)) g € oo (JA—e| > r,Red 2 a).
(Note that, again, we do not have strong resolvent convergence of the I.;-operators
at our disposal.)
The system

K :={K C X; K compact, xx iy € S-'K U So}
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is directed by inclusion. We have

bh—p- +pus = ;};l?c(b = pe + XWp4)-
This is a consequence of Corollary 1.10: For u € D(p24) and compact K/ ¢ X

there exists a sequence (K,) in KX, K, € Ky C --- € K, such that
cap(K'\ U, en K=) = 0. This implies

[ (K'\ U I(n> =0,

neN

/, |u~’2du+ — \/' |U~12d/.£_|_.
Ay K’

u™|?dpy; K' € X compact} the asserted equality

From [ |u™[*dps = sup{ [z
follows.
Now Theorem 4.5 implies strong resolvent convergence

my _ e — Hy . .
y—h=tX K Lt Kek yib—t iy

This, in turn, implies that the previous estimate carries over,

2c 1
L—7[A-af

6.2. COROLLARY. Let p_ € Sy, c(u-) < 1. Let uy € My be such that there
exists an increasing net (p,),e1 in § such that u, = sup,.ru, (in the sense that
T w2 dug = sup,e; [ |w™ P di, (v € D); of Theorem 4.5). Then Uy _p_4,,(*)
is holomorphic. (Recall from Theorem 4.1 and Corollary 4.2 that Uy _,_ 1, ()
acts an L (Y, m) for suitableY C X.)

Proof. Using the notation in part (ii) of the proof of Theorem 6.1, we obtain from
Theorem 4.5 that, forRe A > a, !X — af > r, the resolvent (Hy _,_4,, + }\)_1 is
obtained as

[[C: Fu—— ’\)_]”1,1 S (|IA-—a|>rRedza) O

(Hl,—u—+;&+ + )\)_IP =35 ELU}(HI,—;L_+M + ’\)417

where P is the band projection onto L;(Y,m). (This follows from Theorem 4.5
for A with large real part, and carries over to all indicated A by [Ka;
Chap. VIII, sec. 1.1].) Therefore, the estimates carry over to the resolvent of

Hl,—u—+u+ . =

6.3. COROLLARY. Assume X to be second countable. Then for any p+ € My,
the semigroup Uy __4,., (+) is holomorphic.
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Proof. By [Sto3; Theorem 2.2}, the hypothesis of Corollary 6.2 is fulfilled. O

Appendix A, A Form Convergence Theorem

In this appendix we shall prove a simple form convergence theorem which we use
repeatedly; this result is implicit in [HS].

We fix a Hilbert space {H,(-|-)) and a closed symmetric form h = 1 on K
with dense domain H_.. For the inner product (-|-)4 := b[, ], the domain H is

then a Hilbert space. We consider the dual 7_ := HZ, the set of conjugate linear
continuous forms dualized via (+|-), i.e., with the embedding
J:H—-H_,
u > (ul).

A.1. THEOREM. In the above situation, let Yy be closed forms on H for k €
N U {oc} which satisfy the following conditions:

(1) There exists ¢ > 1 such that h € by < chforall k € NU {o0});
(ii) for every uw € Ho,hi[n,:] — hasslu, ] (k — 00), with respect to the norm
topelogy on H _.

Then Hy — H, in strong resolvent sense, where H, denotes the selfadjoint
operator associated with by, (k € NU {oc}).

Proof. We have to show Hk‘1 — HZ! (k — o00), in the strong operator
topology. _ B

For Hy : Hy — H_, Hyu = bifu, ] it follows that ||H '] < 1 forall &k €
NU {oc}. Further A1 = H7' (k € wU{co}), since forallu € H,v € Hy:

(H(H7 Tw)v) = 017 T,
(Ju)(v) = (ulv).

Consequently,
H' -0 = BV (He — HOHZ

Since H, — He strongly by condition (ii), the assertion of the theorem
follows. a

REMARK. Since (H}) is uniformly bounded, it suffices to check condition (ii) of
the preceding theorem for a dense subset of H.,.

Appendix B. On the Comparison of Symmetric Semigroups

In this appendix let (L2, ) be a localizable measure space without atoms of infinite
measure. Let H > 0 be a selfadjoint operator on L3(Q2, m) and denote by § the
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corresponding form. Then D := D(h) = D(H'/?) is a Hilbert space, with the
scalar product (+|-)g := b + (-|-). Further assume that e~*¥ is positivity preserving
forall? = 0, or equivalently, by the first Beurling—Deny criterion, that D is a vector
lattice (under the order of functions) and p[|u|] < blu] for all u € D (cf. [RSI;
Thm. XIIL.50], [Da; Thm. 7.16}).

Additionally assume that D is a closed ideal in (D, || - lg); “ideal’: i € D, v €
D, |v| < || implies v € D. For Dirichlet forms on second countable spaces X,
the closed ideals of [J have been characterized in [Sto3]; namely

D={ueD;u~ =0, qeonX\M}= Do(M),

for a suitable M C X.
The following proposition contains the main step of the proof of the subsequent
theorem.

B.1. PROPOSITION. In the previous situation let P : D — D be the orthogonal
projection. Then

Pugu (ueDy)

Proof. Letu € D,u > 0,%:= Pu. Then |ju — &||y < ||u— 3|, forall 5 € D,
with equality only for ¥ = %. SinceRe % € D and ||u—Re i|l = ||Re{u —4)|p <
[lw — ||y it follows that Re & = 4, i.e. & is real-valued. Further, u A @ € D and

llw —wAally = [I(w— @)+ = bl(v— a)*] + [(u - a)*|?

< flu— 4]+ flu— 2l =

..h,

where the estimate is taken from [RS1; Thm. XII1.50]. We conclude ¢ A @ = 1,
Le.u >z a. O

Before stating the main result we note that the closure of D) in L»(2, m) is of the
form

{feL,m); f=0 on O} = Ly(Q,m)

where ( is a locally measurable subset of £2, and the restriction of m to €} is again
denoted by m. Indeed, it is easily shown that I is dense in

{f € Ly(f2, m); there exists u € D such that | f| < u}.
Since the latter set is an ideal in L,(Q, m) containing D it follows that its closure,

and therefore the closure of D, is a closed ideal in Ly(, m), which implies that it
is of the asserted form (cf. [Sch; Ex.2 on p. 158]).
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Now the restriction # of hto D is a closed, positive, densely defined form in
Lg(fl, m). If we denote by H the corresponding selfadjoint operator, then the first

Beurling—Deny criterion implies that e =¥ is positivity preserving forall ¢ > 0.

B.2. THEOREM. With the previous notation we have
e—tE{ fg e~ tH f

forall f € Ly(Q,m)y,t = 0.
Proof. We are going to show

(H+a) ' f<(H+a)'f
forall f € Ly(£2,m)y, o > 0 which is equivalent to the assertion.
It is sufficient to treat o = 1 (replacing h by éh). We cbserve
i+ 'f=prPH+1)'f
forall f € Ly(£2,m). In fact, for all ¢ € D) we have
((# + D)7 flay, = (fli) = (A + 1)7" fliy

Now the desired inequality follows from Proposition B.1. a

B.3. COROLLARY. Lett > 0be another closed symmetric form in L2(Q2, m) (not
necessarily densely defined). Assume that D(t) C D is an ideal in D,

tlull <tu]  (v€ D)),
hiw, v} < ¥u,v] (u,v € D(¥)4).

Then D(E)L2 = 13(Q, m) for suitable (! C ; let K be the selfadjoint operator in

L2(§2, m) corresponding to t. Then
0g e gy

forall f € Ly(Q,m)4,t > 0.

Proof. Let D := D(t)". Then D is a closed ideal in D). (Ideal: Let 0 < v <
u,u € D,v € D. Then there exists (u,,) in 2(%), 4, — u in D; without restriction
ty, 2 0. Then v A u,, € D(¥),and v A u,, — v Au = v weakly in D)

Let h := p|D, H as previously. Then 0 e'tﬁf < e"tHf for all f €
L{Q, m)4,t 2 0, by Theorem B.2.

The assumptions imply et f > Oforall f e Lg(fl,m)+,t > 0.Foru €
D(K)4 (C D(e)),v € D(2)4 we have the inequality

blu, v](< ¥lu, v]) < (Kulv).
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This inequality extends to all v € D, and therefore
(u|Hv) € (Kul|v)

for all u € D(K)4,v € D(H ). This implies e=t% f < e~ H f (f € L($}, m)4,
t = 0), by [Na; C-1II, Proposition 4.8]). O

B.4. REMARK. Note that, in Proposition B.1, we did not state that P is positive;
this is not true in general. (If, however, P is applied to (H + 1)~ f with f €
L(€, m),, then the result (H + 1)~! { is positive.)

B.5. EXAMPLE. Let () = (} ¢ B™, D := W) (), the classical Dirichlet form,
D := W3 4(2). Then in the previous notation, H is the Neumann Laplacian — Ay

and A is the Dirichlet Laplacian —Ap. In this case one obtains ! = 0, since
W} () is dense in Ly(£2). The inequality obtained by applying Theorem B.2 to
this situation can also be obtained in a different way; cf. [AB], [Dal; proof of
Theorem 2.1.6].

The main results of this appendix, i.e., Theorem B.2 and Corollary B.3, have been
extended by Ouhabaz [Qu] to not necessarily symmetric forms.
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