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Abstract Many methods of materi- 
al characterization by rheologicaI 
methods lead to ill-posed problems. 
The nature of ill-posedness is 
discussed. In this light, some such 
new problems appearing in molecu- 
lar weight characterization of 
homopolymers as well as in the 
characterization of size distribution 
of  dispersed phases in polymer 
blends by rheological techniques are 
analyzed. The working capability of 
a nonlinear regularization method 
is demonstrated with examples of 
blend rheology. The role of Pro- 
fessor Meissner in motivating the 
research in the field of ill-posed 
problems as well as his important 
contribution to rheology of 
polymer blends is outlined. 

Key words Ill-posed problem - 
nonlinear regularization - 
viscoelasticity - polymer blend 

Introduction 

In 1987, as one of the authors (J. H.) got to know Pro- 
fessor Meissner, first at a rheology meeting, later on a 
visit to Ztirich, he still though as a theoretical physicist 
does: theoreticians should develop mathematical models 
and compare their consequences with experimental data. 
The meetings with Prof. Meissner were, however, the 
starting point for a new way of  thinking about what else 
the task of a theoretician could be. Such a new task was 
arising because of a problem, which at the first glance ap- 
peared incidental, namely the critical analysis of  the 
determination of  a relaxation time spectrum from ex- 
perimentally given moduli. However, contemplation 
about this led to the recognition of an interesting, nearly 
ubiquitous problem, the ill-posed problem. 

Methods were already well developed for the treatment 
of  such a problem (Groetsch, 1984; Morozov, 1984). That 
there is a problem with the usual least-squares method 
was already discovered by Tanner (1968) some basic 
papers treating the ilt-posedness were given in the rheolo- 
gy literature also (Wiff et al., 1975; Wiff, 1978; Friedrich 
et al., 1983). The way from the mathematical formulation 
of the proposed methods to the adaptation to rheological 
problems was however in no way obvious. This way 
demanded knowledge of  stochastic as well as numerical 
methods and also familiarity with rheological ex- 
periments. 

The problem soon proved as so general that one recog- 
nized it also as an important question in many different 
areas, in NMR-spectroscopy, NMR-tomography, light- 
scattering and pharmacokinetics. The problem was even > 
recognized as a special case of a more general question 2 
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which appears in almost all sciences, namely, how can one 
infer not only parameters but functions from experi- 
mental data, in order to characterize the system under in- 
vestigation? 

The basic situation is everywhere the same. That  what 
you want to know, cannot be measured directly. However, 
there always exists a nontrivial relationship between the 
unknown function - this may be a particle size distribu- 
tion, a relaxation time spectrum, a tissue density or a 
stochastic process - and an experimentally accessible 
quantity, for example, the dynamic modulus. Further- 
more, which is also very important, all experimental data 
are noisy. 

The basic relationship between experimental data 
Y(ti)  and the function X(T) to be determined is called 
observation equation and can be formulated in the fol- 
lowing way: 

Y(ti)  = I K(ti ,  r ) X ( r ) d r +  e(ti) (1) 

where e(ti) represents the experimental noise. The 
kernel function K(ti,  r) may be given completely by the 
special problem as in the case of theology or light-scatter- 
ing. It may contain some parameters yet to be determined 
by the data as in NMR-spectroscopy or rheology (see later 
on). There are also problems outside the polymer science, 
where the kernel function is unknown and at first an esti- 
mate of it has to be established on the basis of a calibra- 
tion procedure. The analysis of  sensor array data is such 
an example. Finally, in analyzing some complex systems 
one may encounter problems of the type (1) where the 
kernel function is unknown and can also not be estimated 
by a calibration; only some information about the experi- 
mental noise is given. 

The observation equation (1) is therefore a general pat- 
tern and the problems connceted with it differ in the in- 
formation which is given for the quantities on the right- 
hand side. 

Coming back to rheology the question arises of 
whether the knowledge of  the kernel function is sufficient 
to determine function X ( r )  from the data pf(ti)i  = I,M}. 
The answer is that this is not sufficient. This is because 
the kernel function K(ti,  r) in theology is a singular 
operator. The manifest consequence of this can be seen if 
one tries to estimate the function X ( r )  on a lattice of 
points {rj, j = 1,N} with the normal least-squares meth- 
od. The estimated error become larger, the larger one 
chooses the number N of these points, for N-~ oo the esti- 
mated error even tends to infinity, too (see e.g. Hlavacek 
et al., 1975; Honerkamp and Weese, 1989). This 
demonstrates that the better one wants to resolve the 
function X ( r )  with increasing N, the more sets 
{X(Tj)j  = 1,N} can be found which are compatible with 
the data. That means, that there are many functions 
fulfilling Eq. (1) and the information from the experimen- 
tal data is not sufficient to separate a special one. 

This is the reason to call such a problem ill-posed. The 
introduction of further information, to find out a unique 
solution of the problem, is called a regularization 
method. 

In this paper, we introduce some new ill-posed prob- 
lems which arise in theological material characterization, 
present an especially robust regularization method and 
demonstrate its capabilities with an example taken from 
polymer blend rheology. 

Ill-posed problems in rheology 

Now, some of  the most important ill-posed problems in 
rheology will be presented and their peculiarities will be 
discussed. The authors are aware that not all ill-posed 
problems will be addressed. This is merely an attempt to 
show the complexity and variety of the different pro- 
blems. The problems that will be discussed can be at- 
tributed to two fields in rheology: firstly the field of 
rheometry and secondly the field of  rheological con- 
stitutive equations. 

Let us start with the rheometry. Representative for a 
group of similar problems, we will follow the question of 
how the deformation rate distribution 9)(r) in a rotational 
rheometer depends on the gap-radius r. We assume that 
the outer cylinder of radius R o is at rest, the inner of 
radius R i rotates with the angular speed f2 i and the ratio 
of both radii K = R i / R  o is smaller than 0.99 (wide gap). 
Substituting the radius r by the shear stress r, the un- 
known function ))(r) depends on the experimentally 
detected quantity f2 i in the following way: 

T i 

Oi = ~ ) ) ( r )dr  . (2) 
r ° 2 r  

The actual important value ?)(ri) = ))i (z i  is the shear 
stress at the inner cylinder) can be estimated as the 
boundary value of the distribution to be determined. The 
peculiarity of this problem is, that the corresponding vari- 
able t i (see Eq. (1)) is missing in the kernel, but it appears 
as the upper boundary of the integral. This allows to 
resolve the integral by differentiation and to transfer it in- 
to the equivalent differential equation. To determine the 
unknown function, we have to carry out numerical dif- 
ferentiation of noisy experimental data. This is also an ill- 
posed problem and requires the use of a suitable algo- 
rithm. Approximate solutions are well-known (see e.g. 
Yang et al., 1978). A direct solution is possible on the 
basis of a regularization method to be discussed. 

Similar problems are to be solved in the case of the 
determination of the distribution of  the first normal 
stress difference in a Couette viscometer from the pres- 
sure-difference between outer and inner cylinder or in the 
case of  determination of  the deformation rate distribu- 
tion in a capillary experiment (Macosko, 1994). 
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In the field of rheological constitutive equations the 
variety of ill-posed problems is even larger. Therefore, it 
turns out that one has to analyze different ill-posed prob- 
lems of different complexity. 

We begin with one of the oldest tasks which attracted 
the attention of rheologists for a long time: the deter- 
mination of the relaxation time spectrum from measured 
material functions. Here we would like to analyze how the 
logarithmic relaxation time spectrum H(2) can be infer- 
red from the storage module G'(0) )  and the loss-module 
G"(0) )  of the complex shear module G* (0)) = G ' + i G " .  
The relationship between these functions is given by the 
following integral relations (see e.g. Tschoegl, 1989): 

T 
G'(0))-Ge = ] H(2) dln,l , (3a) 

_ ~ I + (co2)2 

T (coX)~ 
G"(co) = ] H(2) d ln2  . (3b) 

- co 1 + ( 0 ) 2 ) 2  

In this case as well as some other cases, also material 
parameters have to be adapted. Another example is the 
determination of the retardation time spectrum from 
measured creep function under adaptation of the spon- 
taneous creep compliance and the Newtonian viscosity. 

It is characteristic for rheological measurements that 
the measuring points are given over many decades and, 
therefore, they should be presented logarithmically. Spec- 
tra spreading over many decades are the consequence. 
That is why the transformed function/~r = log H must be 
determined instead of the function H itself. The 
nonlinear relationship that must be solved instead of 
Eq. (3) then reads: 

G'(0))-Ge = ~ l0 B (co2)24dlnit , ( 4 a )  
_= 1 +(co,l) ~ 

G"(0))= ~ 10 B (co~')l)~dlnit . (4b) 
_ = 1 + (0) ;~  

At the first moment the difference between a linear 
and nonlinear variant of this problem seems to be unim- 
portant. From the point of view of a numerical method 
to be implemented it represents a considerable difference. 

A further problem is related to the interconversion of 
different material functions given within the theory of 
linear viscoelasticity. If the function G* (co) is given, for 
example, and you are interested in the relaxation function 
G(t) ,  an inverse Fourier transform has to be performed: 

G *(co) = ico ~ G( t )  e -iox dt  . (5) 
o 

This is also an ill-posed problem (see Morozov, 1984) 
whose direct solution can be avoided by the calculation of 

the relaxation time spectrum and the subsequent recalcu- 
lation of the relaxation function. In other words, instead 
of solving Eq. (5), Eq. (4) has to be solved an knowing the 
relaxation time spectrum, the relaxation function G(t )  -- 

~ H  (2) exp ( -  t / 2 )  d i n  2 can be calculated straight- 
- - o o  

forwardly. At any rate, an ill-posed problem has to be 
solved. 

Another group of ill-posed problems in rheology that 
was advanced in recent years is the calculation of the mo- 
lecular weight distribution from rheological data. At the 
moment there is no generally accepted model which 
relates the rheological material function (e.g. the dynamic 
module G*) to the molecular weight distribution w ( M ) .  
Therefore, special rheological constitutive equations are 
used which quantitatively correctly describe the rheologi- 
cal behavior of blends of monodisperse polymer fractions 
or of polydisperse polymers. The double reptation model 
of deCloizeaux (1990) and the model of Tsenoglou (1987) 
belong to the first category. In principal, these models are 
mixing rules for the relaxation function G(t )  and can be 
presented in the following way: 

Jeff(t)  = w(M)  gl ( t , M )  with 
0 

J e f f =  L G0 J " 

G o is the plateau modulus and the Ansatz 
gl = exp [- t /2o (M)] is often used to describe the kernel 
function. The dependence of the terminal relaxation time 
20 of the molecular mass follows the well-known scaling 
relation 20 oc M 3.4. Other empirical relations can also be 
used to describe the integral kernel. They have no in- 
fluence on the ill-posedness of the problem and little in- 
fluence on the solution (Wasserman, 1995). In the case of 
Eq. (6), we have to solve a non-linear problem, because 
the right-hand side of this equation is quadratic. 

The second category of constitutive equation prob- 
lems is even more complicated. As an example, we give the 
constitutive equation, which was developed by McLeish 
(1992) for polydisperse polymers. Its agreement with ex- 
perimental results has not yet been checked. The model 
reads as follows: 

Jeff(f)  = w ( M )  e -(I; e~&')d~')/M 3 . 
0 

(7) 

Additional to the nonlinearity known from Eq. (6), the 
experimental data appear now in the kernel function, too. 
Up to now we assumed that the kernel is given indepen- 
dent of the data. 
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A further class of ill-posed problems belongs to the 
group of  rheological constitutive equations of emulsions 
or suspensions with spherical inclusions. In this case, the 
experimentally determined material function depends 
crucially on the amount  and the size distribution of 
dispersed material. Introducing the size distribution func- 
tion v (R) fulfilling the condition I v (R) dR = ~b (= vol- 
ume fraction of disperse polymer), the Palierne model 
(1990) - at the moment the best model - reads as 
follows: 

1 +3 l P [ G *  (co), G~(o)),n,p] v(R)dR 
c ~ ( ~ o ) = o ~ ( c o )  o 

c ¢  

1 - 2  l P [ G *  (eg), G~(o)),R,p] v(R)dR 
o 

(8) 
In this relationship, G ff(og) is the complex shear 

modulus of the blend, G*(o) )  that of the matrix, Gff(~o) 
that of dispersed material, and P represents the integral 
kernel of Palierne's model. The peculiarity of this ill- 
posed problem consists in the fact that P depends on un- 
known parameters p (this may be the interfacial tension 
a, or an interfacial shear modulus fl) which have to be 
determined during the solution procedure. Friedrich et al. 
(1995) showed that in the case where only the interfacial 
tension is unknown the problem can be transformed to a 
problem with an exactly given kernel. 

Certainly, the list of ill-posed problems in rheology is 
not complete. But to the best of our knowledge, these are 
the most important tasks at the moment. In the following 
we will show principally, how these problems can be 
solved. 

A special regularization method 

The application of regularization methods in rheology 
was discussed and tested in different papers: Wiff  et al. 
(1975), Wiff (1978), Friedrich and Hoffmann (1983). 
Some improvements and the generalization to the case 
where the experimental quantity depends nonlinearely on 
the spectral function has been given by Honerkamp and 
Weese (1989, 1990) and Weese (1993). As an example, we 
will solve Eq. (4) using a special Tikhonov regularization 
method and infer H from the experimentally given G'  and 
G". The solution of this problem can be found by 
minimization of  the following functional: 

n 1 
v(,~R) = ~ (G~°-C~(~r, coi)) 2 

.= l 1 

i= 1 (9"i ' ~  (G} ' °  - V y ( H ,  09i)) 2 

- =  \ d 2 2  j d l n 2  . (9) 

G ~ H7 t t G  ttG • . . ,Gn ,G1 . . . . .  Gn are the measured values 
for the dynamic module G'  (~o) and G" (co) respectively, 
which are characterized by the relative error cr via the 
equation a ~ = a G 7  G and a} '=crG} 'a. G}(/~r,o)i) and 
G}'(H,o)i) are the values of the model at the frequency 
co i which can be calculated using/~. The first two terms 
on the right-hand side of Eq. (9) insure that the result is 
consistent with the data. They correspond to a functional 
that has to be minimized using a least square method. 
The third term, which is a result of application of 
regularization theory, stabilizes the inverse and prevents 
experimental errors from having an inordinately large ef- 
fect on the result. This term is weighted by the so-called 
"regularization-parameter" 2R, which has essentially the 
same effect as the band width of a filter used in smooth- 
ing noisy data. When this parameter is too small, the 
results include artifacts caused by experimental error and 
when this parameter is too large, the results are smoothed 
to an excessive degree. The optimal value of this parame- 
ter can be determined using the SC method developed by 
Honerkamp and Weese (1990). 

The relaxation time range ~. ~ [2min, "~max] in which the 
solution is valid can be inferred from the frequency range 
in which the experimental data were measured: 2mi n = 1/ 
(Dma x and "~'max = 1/60min" However, the numerical calcu- 
lation demand to enlarge the interval by two decades on 
both sides. By this, the accuracy of the spectra po in t s  
close to the interval boundary is increased. The number 
of points of the spectrum can be varied largely without 
having any effect on the accuracy of the numerical meth- 
od. The algorithm was published by Weese (1993) and is 
implemented in the computer program NLREG. 

In many cases it is meaningful to consider further con- 
ditions for the solution and to use them for numerical 
calculations. NLREG also contains this option, which 
can be activated if desired. The numerical method for 
determining the spectrum will not be considered here due 
to its complexity. However, the examples discussed in the 
following section were calculated using this computer 
program. 

Before switching to the next section, we will compare 
the different methods for solving ill-posed problems in 
rheology. Methods that are based on the numerical 
realization of approximation formulas for the solution of 
Eq. (4) e.g. will be excluded from the considerations. 

There are two large groups of methods to solve that 
problem adequately. The first group deals with the ill- 
posedness and uses regularization methods to determine 
the distribution functions. To this group belong the com- 
puter programs developed by Provencher (1982), Weese 
(1993), Mead (1994), and Wasserman (1995). The second 
group avoids the problem of ill-posedness by determining 
a sparse discrete distribution function. In this case, not 
more than three points per decade can be calculated using 
the conventional methods of linear algebra. Two represen- 
tatives of this group are Baumgaertel and Winter (1989), 
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as well as Laun  (1978). The difference between the two 
groups consists in the fact that by the help of  the methods 
of the first group a continuous distribution function is es- 
timated (100 and more points per decade is no principal 
problem), whereas the methods of the second group pro- 
vide discrete spectra. 

Among the programs dealing with the ill-posedness of 
the problem, Tikhonov regularization is the widely used 
procedure. Starting with Provencher (1982) who used at 
first this idea for inferring diffusion time distributions 
from dynamic light scattering data, all the following 
methods minimize the same functional equation (9). 
Mead's program is even based on Provencher's program 

CONTIN. The differences between the procedures used 
within this group come mainly from the method used for 
the determination of the regularization parameter. Pro- 
vencher uses the old discrepancy principle (see e.g. 
Morozov, 1984) whereas Weese uses a more modern, very 
robust procedure that leads to the optimum regulariza- 
tion parameter depending on the error level of the prima- 
ry data. Wasserman (1995) determines the regularization 
parameter in an empirical way that brings in to the solu- 
tion some arbitrariness. It is worth mentioning that 
Weese's program, NLREG, is the only one available that 
solves nonlinear ill-posed problems, too. 

Fig. 1 Master curves of the 
storage moduli (a) and loss 
moduli (b) of the polymer 
blend (7.5°7o PS in PMMA), 
the matrix polymer (PMMA) 
and the dispersed polymer 
(PS) 
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Results of certain problems 

The rheology of polymer blends offers a lot of  different 
ill-posed problems. With the example of  a blend contain- 
ing 92.5 wt% PMMA ( M  w = 31 kg/mol,  M w / M  n = 1.19, 
Newtonian viscosity r/0= 92kPas) and 7.5wt% PS 
(Mw= 100kg/mol,  M w / M  n = 1.03, r/0= 9.45kPas), we 
will discuss this variety. Using a modified variant of 
Eq. (8), we will show that besides the particle size distri- 
bution function the interfacial tension of both polymers 
can be determined. Let us start with the theology of the 
blend and blend's components. 

Figure 1 shows the master curves of  the storage 
modules G'  and the loss modules G"  of the matrix 
polymer (PMMA), of the dispersed polymer (PS) and of 
the blend at a reference temperature To = 190°C. Ex- 
pecially the storage module of the blend (Fig. I a) shows 
the relaxation shoulder at small frequencies that cor- 
responds to the form relaxation time ,~e of  the spherical 
inclusions. The exact determination of  this characteristic 
time is possible using the relaxation time spectrum of  the 
blend as given in Fig. 2. Professor Meissner (see e.g. 
Gramespacher and Meissner, 1992 and Meissner, 1992) 
appears to be the first who referred to the importance of 
the relaxation time spectrum for the determination of 
that time. They showed that the knowledge of this charac- 
teristic time together with a simple rheological model and 
the knowledge of  a mean particle diameter is sufficient to 
determine the interfacial tension. Certainly, the use of 
one Maxwell mode for the description of the interfacial 
rheological properties of  a polydisperse blend represents 
a strong simplification. Nevertheless, Graebling et al. 
(1992) could show that the volume averaged radius is a 
sufficient morphological characteristic value in the case 
of narrow particle size distribution. Using the 
Gramespacher-Meissner procedure, in our case (volume 

averaged radius R v =  102nm, )LF= 6.5 s) an interracial 
tension a = 2 . 5 2 m N / m  can be determined for our 
P MMA /P S  blend. 

This procedure demonstrates clearly that mor- 
phological information is necessary to determine inter- 
facial tension. However, the Laplace pressure - the ratio 
of interfacial tension and a characteristic radius - can be 
estimated through theological measurements only. Then 
the independent determination of  particle dimensions 
allows the c.alculation of  a from the Laplace pressure. 
This situation is also prescribed by the structure of the 
emulsion models. 

Using Eq. (8) for the case that only the isotropic inter- 
facial tension determines the interracial properties 
(p = a) ,  the Palierne model can be written in the follow- 
ing form: 

i + 3  ~ P[G*(co),G,~(co),R']u(R')dlnR' 
- - Q o  

1 - 2  P [ G *  ( c o ) , G ~ ( c o ) , R ' l u ( R ' ) d l n R '  
- -  O o  

(lo) 

In this equation, R ' ( =  R / a )  is a transformed radius 
(in principle, the inverse Laplace pressure) and u (R' )  is a 
new size distribution function that can be inferred from 
the size distribution v (R)  by 

u(R ' )  = a v ( a R ' )  . (11) 

The result of  the calculation of the corresponding distri- 
bution function is given in Fig. 3. 

Fig. 2 Relaxation time spec- 
trum of the polymers given in 
Fig. t. The spectra are deter- 
mined solving Eq. (4) by a 
nonlinear regularization meth- 
od (Weese, 1993) 
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Fig. 3 Modified sphere size distribution function u(R') as deter- 
mined from Eq. (10) by a nonlinear regularization method (Weese, 
1993) 
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Fig. 4 Sphere size distribution function v (R) as determined from 
solving the "tomato salad problem" (see Gleinser et al. 1993) by a 
nonlinear regularization method (Weese, 1993) 

Now we will discuss two cases. First, if the interfacial 
tension is known, the particle size distribution can be 
determined from rheological data directly. Knowing the 
material functions of the blend and blend's components 
and using Eq. (11), the unknown particle size distribution 
v (R) can be estimated. In this case, rheology appears to 
be a tool for a morphological characterization. 

In the second case we will assume that the distribution 
of profile radii is known from TEM pictures. Then, by 
solving another ill-posed problem, called tomato salad 
problem (how large is the tomato knowing only some 
slices?), the volume weighted size distribution of inclu- 
sions can be estimated as shown by Gleinser et al. (1993). 
Here, we dispense with mathematical presentations of 
this problem and refer to Gleinser's paper. Their solution 
of our problem for the blend system under consideration 
- the distribution function v(R) - is given in Fig. 4. 
Now, the morphological information is given in- 
dependently and we can try to determine the interfacial 
tension by "shifting" the distribution u(R') on v(R). 
Choosing the coincidence of the first moment of both 
distributions as criterion of agreement, the interfacial 
tension is given by the following equation: 

~ R v(R) dR 
o 

a - ( 1 2 )  

I R '  u(R') d R '  
o 

Using this equation, a value of  a = 2.2 m N / m  is deter- 
mined which is in good agreement with the Grame- 
spacher-Meissner procedure. Our method is more com- 
plicated but leads to interfacial or to morphological in- 

formation from rheology depending on what else is 
known. 

Outlook 

The number of inverse problems alone in rheology is im- 
pressive. Actually one can assume that whenever one is in- 
terested in a function that cannot be measured directly, an 
inverse problem arises, and in most cases it is ill-posed. 
This is the case as we have shown for the determination 
of the deformation rate distribution, for the determina- 
tion of relaxation time spectra, the molecular weight dis- 
tribution and the distribution of sphere radii. The for- 
mulation of the problem starts always with the precise 
statement for the observation equation of the form (1) or 
its nonlinear version. 

It requires not much fantasy to imagine further, even 
higher dimensional inverse problems in material science. 
One can think about a position and time-resolved materi- 
al characterization. The time variable in Eq. (t) may stand 
for any series of measuring points, be it a single frequency 
or a single position or be it position and time. At all such 
applications, some new considerations are necessary to 
find a robust estimate of the function X(r) .  

At Freiburg now a cooperation with scientists from 
other disciplines is planned to solve higher dimensional 
inverse problems. Experience made in rheology will be 
very helpful in this respect. 

It can be seen that the development in this field is still 
strongly growing and becomes more interdisciplinary. For 
us, the starting point is associated with Professor 
Meissner. 
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