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Abstract Relaxation of the second 
normal stress difference (N2) 
following step strain of a concen- 
trated monodisperse polystyrene 
solution has been studied using 
mechanical and optical rheometry. 
Measurements of normal thrust in 
a parallel plate geometry are cor- 
rected for strain inhomogeneity and 
combined with independent mea- 
surements of  the first normal stress 
difference (N 1) to determine N2. 
Optical experiments were pe r fo rmed  
using a novel configuration where 
flow birefringence data collected us- 
ing multiple light paths within the 
shear plane are combined with the 
stress-optical law to determine all 
three independent stress com- 
ponents for shearing deformations. 
This technique eliminates end ef- 
fects, and provides an opportunity 
to oversample the stress tensor and 

develop consistency checks of  ex- 
perimental data. N 2 is found to be 
nonzero at all accessible times, and 
relaxes in roughly constant propor- 
tion to N1. This reflects nonaffine 
distribution of  chain segments, even 
well within the regime of  chain 
retraction at short times. Data col- 
lected with the two techniques are 
reasonably consistent with each 
other, and with results of previous 
studies, generally lying between the 
predictions of the Doi-Edwards 
model with and without the in- 
dependent alignment approxima- 
tion. The normal stress ratio 
-N2/N1 shows pronounced strain 
thinning in the nonlinear regime. 
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Introduction 

The goal of  rheometry is a detailed characterization of  
the rheological response of complex materials to well 
defined deformation histories. In shearing flows, it is 
necessary to measure the shear stress and two normal 
stress differences to completely characterize the stress ten- 
sor. While there are well developed techniques for 
measuring shear stress and first normal stress difference, 
accurate measurements of the second normal stress dif- 
ference are difficult (Waiters, 1975). This is particularly 
true in transient flows, where transducer compliance ef- 
fects encountered in mechanical rheometry can severely 

complicate normal stress measurements. At the same 
time, it is recognized that the behavior of the second nor- 
mal stress difference can provide a sensitive test for con- 
stitutive models (Larson, 1988). Recent work further sug- 
gests that the second normal stress difference plays a criti- 
cal role in determining the likelihood of viscoelastic in- 
stabilities at high Weissenberg number (Shaqfeh et al., 
1992; Larson, 1992). These considerations provide ongo- 
ing motivation for developing techniques with the capa- 
bility to accurately measure the second normal stress dif- 
ference. 

Study of the relaxation of stresses following step strain 
has been a particularly important experiment in the 
rheometry of  polymers, since it generally facilitates a ~< 
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separation of the time- and strain-dependent constitutive 
behavior of materials. Such experiments are usually 
restricted to shear stress measurements. There is ample 
evidence that the Lodge-Meissner relationship is quite 
generally satisfied (with the notable exception of very 
highly entangled polymer solutions and melts, see Larson 
et al., 1988), so that N 1 measurements in single step 
strain are in some sense redundant. The same cannot be 
said of the second normal stress difference, however. 
There are no general constitutive guidelines as to how N 2 
should behave in step strain, and considerable variation is 
to be expected among different classes of materials 
(degree of entanglement, concentration, molecular weight 
distribution, chain architecture, etc.), and among various 
constitutive theories. To date, there has been only one 
report of measurements of N 2 in step strain, by Osaki et 
al. (1981), who characterized the ratio N 2 / N  l in a con- 
centrated, entangled polystyrene solution using flow 
birefringence techniques. 

Here, we describe measurements of N2 during stress 
relaxation following step strain, using both mechanical 
and optical techniques. Several issues motivate this work. 
First, the central importance of step strain measurements 
and the second normal stress difference provides impetus 
for further development of a database of material 
behavior. Second, this problem provides a convenient 
vehicle to illustrate a new optical approach to the 
characterization of the full stress tensor in shearing flows. 
This technique provides advantages that i) only a single 
flow geometry is employed, ii) optical end effects are 
eliminated, and iii) it is possible to over sample the stress 
tensor and develop internal consistency checks in the 
data. With respect to the mechanical measurements, we 
note that recent strategies for measuring N2 with 
mechanical rheometers have focused on specialized tech- 
niques using customized instruments. The measurements 
described here employ more readily available instrumen- 
tation (although it should be empbasized that con- 
siderable care must be employed in the experimental pro- 
tocols) and consequently may be adopted by a broader 
range of experimentalists. Of course, we are also in- 
terested in the extent to which very disparate techniques 
will lead to self-consistent results. Finally, we have been 
motivated to consider N2 relaxation in step strain ex- 
periments in light of some of the detailed predictions of 
fast time scale molecular relaxation processes in the con- 
text of the tube model. 

Background 

Definitions 

Taking "1" to denote the shear flow direction, "2" the 
gradient direction, and "3" the neutral direction, the 

stress tensor in polymers subjected to a shearing deforma- 
tion is given as: 

~TII 2"2i 1 
"t" = r22 

0 ~'33 

Full characterization of the stress tensor requires mea- 
surements of the shear stress, r21, and first and second 
normal stress differences, N 1 = r l l - r 22  and N2= 
-t-22 -- -r33 . 

For single step strain deformation, these material 
functions depend on time and the magnitude of the ap- 
plied strain, y. The nonlinear relaxation modulus G(y, t) 
is defined as: 

G(y, t) - r2~ (y, t) (2) 

In many polymers, the nonlinear relaxation modulus may, 
over certain time intervals, be factored into time- and 
strain-dependent terms: 

G ( ? , t )  = h ( y ) G ( t )  , (3) 

where h(?)) is known as the damping function, and G(t )  
is the linear relaxation modulus. In addition, most 
polymers have been found to obey the Lodge-Meissner 
relationship (1972) relating the shear stress and the first 
normal stress difference following a sudden step strain: 

N1(y,t) = yrzl(y,t) . (4) 

In concentrated flexible polymers under modest defor- 
mations, the stress-optical rule (SOR) relates the 
anisotropic refractive index tensor to the stress tensor: 

n --  C r ,  (5)  

where C is the stress-optic coefficient (see, for instance, 
Janeschitz-Kriegel, 1983). The SOR provides the basis for 
rheo-optical measurements of stresses using the technique 
of flow birefringence. 

Experimental approaches to N2 

Accurate characterization of the full stress tensor, and in 
particular the second normal stress difference, is a con- 
siderable challenge. N2 is smaller in magnitude than N1, 
and in the most widely used techniques to measure N 2, 
some combination of the two normal stress differences is 
actually measured, complicating the extraction of N 2. 
The first reliable mechanical measurements date back 
around 25 years. Ginn and Metzner (1969) combined 
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cone and plate and parallel plate flows to measure N2 in 
steady shear flows. Around the same time, Olabisi and 
Williams (1972) and Miller and Christiansen (1972) 
pioneered the quantitative measurement of the radial 
pressure distribution in cone and plate flows, from which 
both normal stresses may be determined. More recently, 
this technique has been adopted and refined by Magda 
and coworkers (Magda et al. 1991a, b, 1993, 1994; Baek 
et al. 1993 a,b). The radial distribution of normal pres- 
sure also provides the basis of a technique developed by 
Meissner et al. (1989) employing thrust measurements in 
cone and plate flow using sectored pIates of various radii, 
which has been applied to steady shear flow of polymer 
melts. The tilted channel method implemented by Tanner 
(1970) is rare in that the measured fluid height is deter- 
mined only  by the action of N2; however, it requires large 
quantities of test fluid, and is unsuitable for transient 
flows. 

In steady shear flows of entangled polymers, N2 has 
generally been reported to be in the range of -0.15 to 
-0.3 times Nl, with the normal stress ratio q/= - N 2 / N ~  
relatively independent of shear rate. Recently, however, 
Magda et al. (1993, 1994) have shown that q/is a strongly 
shear thinning function in steady shear flow. They suggest 
the constant values reported earlier may reflect poly- 
disperse samples or samples whose concentration and 
molecular weights result in elastic instabilities in rota- 
tional rheometers a t  high Weissenberg numbers. Step 
strain experiments are able to probe large strains with less 
interference from viscoelastic instabilities, so nonlinear 
phenomena in N2 might be more readily observed using 
this protocol. Studies of N2 in time-dependent flows 
using mechanical tests have been carried out by Chris- 
tiansen and Leppard (1974), Leppard and Christiansen 
(1975) and Ramachandran et al. (1985); in accord with 
their steady shear results, they found the normal stress 
differences basically tracked one another in both 
oscillatory flow and limited flow inception and relaxation 
experiments. 

Transient normal stress measurements using 
mechanical techniques may be severely compromised by 
transducer compliance (see the section "Mechanical 
Rheometry"). This provides one of the motivations for 
the use of flow birefringence, where the noninvasive op- 
tical probe effectively decouples stress measurement from 
the flow cell, which may be made quite rigid. With flow 
birefringence, particular projections of the refractive in- 
dex (and hence stress) tensor are selected by changing the 
light path relative to the shear flow direction. Measure- 
ments are typically conducted by sending the light down 
one of the three orthogonal axes defininig the shear flow. 
When light is sent down the vorticity (3) axis, the projec- 
tion of the refractive index tensor onto the 1 - 2  plane 
allows determination of T21 and N~. When light is sent 
down the shear gradient (2) axis, the measured bire- 
fringence is related to the th ird  normal stress difference, 

N3 = N1 +N2. Finally, it is possible to directly probe N 2 
by sending the light down the flow (1) direction (Wales 
and Philippoff, 1973), but this geometry has not been 
widely employed, and is expected to be particularly 
susceptible to end effects, since N 2 is generally small in 
magnitude. 

To fully determine the stress tensor using stress-optical 
methods, it is clear that at least two different projections 
of the refractive index tensor are required. Several in- 
vestigators have combined measurements in the 1 - 2  
plane with measurements in the 1 -3  plane. This ap- 
proach was followed by Philippoff (1961) in steady shear 
flow, by Osaki et al. (1981) in step strain measurements, 
and recently by Kannan and Kornfield (1992) in 
oscillatory shear flow. 

Relation of N 2 to rheological constitutive theories 

Integral constitutive equations provide a convenient 
means of describing the rheological behavior of entan- 
gled polymers and more recently have been in the simula- 
tion of complex flows of viscoelastic fluids (Luo and Tan- 
ner, 1986; Dupont and Crochet, 1988; Luo and Mitsoulis, 
1990; Goublomme and Crochet, 1993; Bernstein et al., 
1994; Feigl and Ottinger, 1994). Constitutive equations of 
the single-integral form can, for incompressible fluids, be 
written in the following general form 

t 

rij(t)= ~ [ ~ l ( t - r , I i , I z ) C t l ( ~ c ) i j  
- c o  

+ q~2 ( t -  ~,I1,I2) Ct(z) i  j }dr , (6) 

where Ct(T)ij are the components of the Cauchy-Green 
tensor at time r relative to the present time t; Ct -1 (r)i~ is 
the Finger tensor; and q~l and q}2 a r e  material functions 
that depend on elapsed time t - r  and the invariants of 
Ct(T2)i j given by: 

Is = t r [ C f l ( r ) i j ]  , I 2 = t r [Ct ( r )  U] . (7) 

The well-known, phenomenological K-BKZ theory (Lar- 
son, 1988) is a special case of Eq. (6) in which the func- 
tions q~l and q)2 are  derived from an unspecified strain 
energy function. For fluids where time-strain factorabili- 
ty, Eq. (3), is applicable, the material functions can be 
written as: 

~ i ( t - v , I i , I 2 )  - d G ( t - r ) h i ( I i , I 2 )  , i = 1,2 . (8) 
dr 

Even in cases when time-strain factorability is valid, 
determination of the damping functions h i over the en- 
tire deformation space is a formidable task. To simplify 
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matters, the following restrictions on the damping func- 
tions h i are commonly imposed 

hl(/1,Z2) = (1- t - f l )h( l l , /2 )  , h2(I1,/2) = f l h ( / 1 , / 2 )  , 

(9) 

leaving the function h(I1,I2) and the constant fl to be 
determined using data from shear and extensional flow 
experiments. 

For the step shear strain experiment described earlier, 
11 =/2 = 3+Y 2, so that h(II,I2) = h(y) and it is easy to 
show that Eqs. (6), (8) and (9) give Eq. (3). The apparent 
motivation for using the simplification in Eq. (9) is that 
the constant fl gives the ratio Nz/N1, which is generally 
regarded as small in magnitude and independent of 
strain. These assertions are based on the meager amount 
of N 2 data that have been reported and, in several of the 
cases (Luo and Tanner, 1986; Dupont and Crochet, 1988; 
Luo and Mitsoulis, 1990; Bernstein et al., 1994), the cons- 
tant/? is set equal to zero. 

The absence of N 2 data for entangled polymer 
systems has negative implications on both the formula- 
tion and utilization of rheological constitutive equations. 
For example, the assumption that fl is constant, or zero, 
has not in general been justified. Indeed, Goublomme 
and Crochet (1993) found that predicted extrudate swell 
ratios increased by nearly a factor of two as fl was in- 
creased from -0.3 to 0; Feigl and Ottinger (1994) found 
that the calculated vortex size for flow in a 10 : 1 contrac- 
tion increased monotonically as fl was increased from 
-0.21 to 0. Furthermore, it is well known that the strain- 
dependent behavior of other material functions (i.e., 
shear viscosity) can have a significant effect on the stabili- 
ty and accuracy of complex flow simulations. Clearly, the 
absence of N2 data, especially in step strain flows places 
severe restrictions on the advancement of complex flow 
modeling and simulation. 

The tube model for polymer dynamics introduced by 
de Gennes and developed into a constitutive theory by 
Doi and Edwards has been extensively invoked as a mo- 
lecular description of the linear and nonlinear rheology 
of entangled polymers (Doi and Edwards, 1986). For a 
nonlinear step strain, the initial deformation of the sam- 
ple is presumed to result in a strictly affine deformation 
of chain segments, resulting in i) an uneven distribution 
of stretching along the chain's primitive path, and ii) an 
average stretching of the chain by a strain-dependent fac- 
tor a. On a short time scale, "re, it is assumed that varia- 
tions in local chain stretching are relaxed, leading to a 
deformed chain that is uniformly stretched beyond its 
equilibrium length. Two distinct processes then lead to a 
relaxation of the polymer stress. The first is retraction of 
the chain to its equilibrium length within the distorted 
tube, on a time scale rR. Retraction results in a substan- 
tial reduction of the stress levels in highly deformed 
polymers, and is responsible for the pronounced shear 

thinning character of the reptation model. Following 
retraction, the remaining stress is associated with the 
orientation of chain segments within the deformed tube; 
this is assumed to relax by the reptation mechanism 
("disengagement") over a time scale ra. 

In the basic Doi-Edwards model, it is assumed that 
retraction is an instantaneous process, which along with 
the independent alignment approximation leads to a con- 
stitutive equation of the form given in Eqs. (6) and (8). In 
step shear strain, time-strain factorability is predicted, 
with a damping function h (y) that is characterized by the 
extreme strain thinning behavior resulting from the 
retraction process (Doi and Edwards, 1986). Experimen- 
tally, monodisperse polymers typically show nonfac- 
torable behavior at short times, which has been inter- 
preted as a consequence of incomplete retraction. Exten- 
sions of the Doi-Edwards theory incorporating chain 
stretching have been proposed (Doi, 1980; Pearson et al., 
1989), and seem able to capture the essence of short-time 
relaxation behavior in particular. 

An affine shear deformations does not impart any 
anisotropy in molecular orientation in the 2 -3  plane. 
Since flexible polymers are characterized by a propor- 
tionality of the polymeric stress to the second moment of 
the chain distribution function (the microscopic basis of 
the stress-optical rule), the initially affine shear deforma- 
tion following application of a step strain should be char- 
acterized by a zero second normal stress difference. In the 
tube model, intrachain relaxation processes such as 
equilibration and retraction ultimately lead to a nonaf- 
fine distribution of chain segments. Attention is generally 
focused on how retraction relieves the strong chain stret- 
ching that accompanies affine deformation, since this 
leads to the most pronounced rheological consequence, 
shear thinning. However, a more subtle form of nonaffine 
deformation concerns the configuration tensor describing 
the distribution of segmental orientation characteristic of 
the reptation model. Depending on whether the indepen- 
dent alignment approximation is invoked, the Doi-Ed- 
wards model predicts a nonzero second normal stress dif- 
ference, equal to either - 1/7 or -2 /7  of the first normal 
stress difference at small strains. The tube model thus 
predicts that N2 should equal zero immediately following 
a step deformation, and then grow in magnitude to some 
finite value during the course of intrachain relaxation 
processes. Doi (1980) recognized this inconsistency be- 
tween configuration tensors at early times, but did not 
pursue the issue since shear stress predictions are not sen- 
sitive to these subtle differences. Osaki et al. (1981) did 
not explicitly address this particular feature of the tube 
model, although their data suggest that N1 and N2 relax 
in constant proportion. Here, we are motivated to study 
the behavior of N 2 at the earliest times possible follow- 
ing application of a step strain. 
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Experimental 

Materials 

Experiments were performed on solutions of high molec- 
ular weight, low polydispersity polystyrene dissolved in 
tricresyl phosphate (TCP). Solutions were made indepen- 
dently for study by mechanical rheometry (IIT) and opti- 
cal rheometry (Northwestern), using polystyrene purchas- 
ed independently from Pressure Chemical Company, with 
a reported M w = 1.92x 106, and polydispersity M w / M  n 

< 1.30. The solvent TCP was purchased from Fisher 
Scientific and used as received. Appropriate amounts of 
solvent and polymer were weighed into a jar, whereupon 
several weeks were allowed to assure total dissolution of 
the polymer and homogenization of the solution. Both 
solutions studied had a polymer concentration of 12wt%. 

Mechanical rheometry 

Venerus and Kahvand have studied the 12% polystyrene 
solution extensively, including measurements of the com- 
plex modulus, linear and nonlinear relaxation modulus in 
single step strain, and double step strains studying both 
shear (1994a) and normal stress relaxation (1994b). In 
order to measure the second normal stress difference, the 
strategy of combining parallel plate and cone and plate 
rotational geometries, applied to steady shear flow by 
Ginn and Metzner (1969), is employed. 

In cone and plate flow with small cone angle F, an 
angular displacement O results in a very nearly homo- 
geneous applied strain 

y = o / F .  (10) 

Measurement of the relaxation of torque M(y, t) and nor- 
mal thrust F(y, t) following application of a sudden 
deformation allows direct measurement of the shear 
stress and first normal stress difference: 

r21 (y, t) = 3 M(y, t ) / 2  ~rR 3 , (11) 

N 1 (y, t) = 2F(y, t ) / ~ r R  2 , (12) 

where R is the radius of  the cone and plate fixture. When 
an angular displacement is applied using parallel plates 
with gap H and radius R, the applied strain is in- 
homogeneous, and varies linearly with radial position in 
the gap, 

y ( r )  = O r / H  , (13) 

such that the strain applied at the outer radius of the fix- 
ture YR is given by: 

y ( R )  = YR = O R / H  . (14) 

Due to the inhomogeneous distribution of strain, and 
hence stress, the resulting torque and normal thrust are 
not simply related to the corresponding stresses. The in- 
homogeneity may be accounted for by performing ex- 
periments over a range of applied edge strain. Data for 
normal thrust may be used to determine the difference be- 
tween NI and N 2 according to: 

NI (YR, t) --N2 (YR, t) 

= N O ' R ,  t )  [2 + 8 log N ( y  R, t ) /O  log YR ] , (15) 

where N ( y  R, t )  is the normal thrust per unit area mea- 
sured using parallel plates: 

N ( y R ,  t )  = F ( y R ,  t ) / r c R  2 (16) 

Equation (15) may be derived along the lines of those 
used by Soskey and Winter (1984) who used torque data 
from parallel plates to determine G(y, t). By combining 
step strain relaxation measurements using cone/plate and 
parallel plate geometries, it is possible to determine N2. 

The finite stiffness of mechanical transducers can lead 
to anomalous normal force data. In order to obtain 
reliable data, the axial response time of the transducer, 
rA, must be much smaller than the mean relaxation time 
of the fluid, Zm. Venerus and Kahvand (1994b) have 
discussed this issue extensively in the context of cone and 
plate measurements during step strain experiments on the 
same polystyrene solution studied here, which is deter- 
mined to have a mean relaxation time of 15 s. In cone and 
plate flow, the characteristic normal force response time 
(associated with the squeeze flow that results from un- 
wanted axial compliance) is: 

r A = 6 ~ r R r l o / F 3 K  , (17) 

where r/0 is the solution viscosity and K is the axial com- 
pliance of the transducer. The deleterious effect of com- 
pliance may be mitigated through the use of fixtures with 
small radius and relatively large cone angle. Venerus and 
Kahvand (1994b) show transient normal thrust data for 
four fixtures with VA ranging from 0.025 to 2.62 s. Pro- 
vided "CM/r A > -  102, excellent self consistency was 
found between different fixtures, indicating that com- 
pliance effects are negligible. In the case of parallel plate 
flows, the normal force response time is: 

"c A = 3 rcR 4 r l o / 8 H 3 K  . (18) 

At comparable edge separations H ~  R F ,  the effects of a 
squeeze flow are more severe in cone and plate geometries 
since the surface come much closer together. Consequent- 
ly, it is relatively easier to avoid compliance effects in the 
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parallel plate geometry; all data reported here are taken 
under conditions where rM/r A > -  t02. 

Another consideration is the effect of finite strain rise 
time on normal stress signals. Venerus and Kahvand 
(1994b) report experiments in which the strain rise time 
was systematically varied from 50 to 150 milliseconds. All 
normal stress data were found to superimpose beyond a 
time of 0.25 s, indicating the data collected following this 
time are independent of the details of how the strain was 
applied. 

10x, s 

Optical rheometry 
Fig. 1 Geometry used to compute birefringence as a function of 
optical path 

Flow birefringence geometry 

Optical approaches to the full refractive index tensor re- 
quire measurements in at least two geometries, each inter- 
rogating different projections of n. Past work has been 
restricted to situations in which light passes along the 
Cartesian axes used to define the shear flow geometry. 
Here, we explore an alternative strategy, where the projec- 
tion of  n is systematically varied by sending the light 
along a number of paths intermediate between the gra- 
dient (2) and shear flow (1) directions. A similar strategy 
was recently employed by Hongladarom and Burghardt 
(1994) to measure the full refractive index tensor in 
sheared liquid crystalline polymers. With the flexible 
polymer studied here, the stress optical rule allows a 
similar optical approach to probe relaxation of the full 
stress tensor following step strain. 

Figure 1 shows a schematic of a shear flow geometry, 
including a light path within the shear plane at an angle 
0 with respect to the gradient direction. For modest values 
of the birefringence, the ordinary and extraordinary rays 
may be assumed to be collinear, and the polarization- 
dependent refractive index experienced by light passing 
through the sample may be obtained by rotating the 
refractive index tensor characteristic of a sheared polymer 
(Eqs. (1) and (5) above) to the primed (1', 2', 3') coordinate 
frame: 

Equation (20) shows the birefringence varies as a func- 
tion of 0 and includes contributions from all three materi- 
al functions. When 0 = 0 ° or 90 °, the birefringence 
reflects ?43 or N2, respectively, recovering two traditional 
flow birefringence geometries; at intermediate angles, the 
shear stress also contributes. To determine all three mate- 
rial functions, three independent values of 0 are required. 
Like most methods for determining N2, the present tech- 
nique ultimately requires manipulation of large quantities 
to extract the desired small quantity. However, in this 
case, it is possible to collect extra data by using additional 
light paths, allowing a check of internal self-consistency 
in the measurements and yielding some objective measure 
of  the degree of  precision possible with this technique. An 
additional advantage of this approach is that it is possible 
to fully determine n with measurements at the same point 
in a single flow cell, in a geometry where there are no end 
effects associated with undesired flow disturbances along 
the light path (encountered with measurements in the 
1 - 2 and 2 -  3 planes). 

Flow cell 

The flow cell is built around a pair of specially fabricated 
prisms (Kappler Crystal Optics) illustrated in Fig. 2a. 

I 
T11 COS 2 0-1- 1-22 sin20+ 1"21 sin 20 

n = C -N~ sin 0 cos O+r2i cos20  
0 

With respect to this frame, birefringence is measured in 
the 1 ' - 3 '  plane. Since the optical anisotropy in this plane 
is oriented along the 1' direction, the optical orientation 
angle )¢ is fixed at 0 °, and the bireffingence may be 
calculated as A n = n H,-n3,3,, giving: 

A 17 = C [ N  1 c o s  2 0-k- T21 s in  2 0+Nz] . 

-NlsinOcosO+r21cos20 0 1 
1-11 COS20-}- T22 sin2 0-- r2~ sin 20 0 (19) 

0 r33 

Faces are cut at 0 °, 30 o and 60 ° which allow light to pass 
through the sample with minimal refraction. The relative 
contribution to N 2 to the birefringence signal increases 
with 0, so steeper angles enhance the ability to extract ac- 
curate N 2 values. The sample is sandwiched between the 
two prisms, and shear flow is generated by displacing one 

(20) relative to the other. Changing the direction of the flow 
is equivalent to experiments at - 0 °, - 30 °, and - 60 ° (of 
course, experiments at _+ 0 ° should be identical), so this 
design allows oversampling of  the stress tensor. The 

Following step strain relaxation, the birefringence will 
decay with time as the stresses in the sample relax. 
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Fig. 2 Schematic diagram of 
flow cell. a) Prisms used as 
optical windows, showing 
faces cut to facilitate multiple 
light paths, b) Illustration of 
flow cell construction 

(a) 0=30 ° 0 =o° 3- 

~ 2. 

1 ~ 5  ~ 
t paths 

1-  

0.5- 
m 

o 
o 

(1: 

/ / /  
I [ I [ 

0 . 5  1 1 .5  2 2 . 5  

Shim Thickness (mm) 

Fig. 3 Sample thickness as a function of spacer thickness. Closed 
symbols represent thickness measured directly by insertion of preci- 
sion gauges, open symbols represent thicknesses inferred from the 
ratio of N 1 to r n, assuming the validity of the Lodge-Meissner 
relationship (see Fig. 1 t). Lines drawn with slope of unity 

prisms are glued to aluminum holders, which in turn are 
mounted onto a precision linear motion stage (Parker- 
Daedal), driven through a pre-loaded ball screw and nut 
by a microstepping motor (Compumotor); Fig. 2b shows 
an illustration of  the flow cell construction. 

Since the prisms allow only a restricted range of  linear 
motion, the sample gap is adjusted to facilitate a wide 
range of shear strains; larger strains employ smaller gaps. 
Precision shims are used to vary the thickness in a well- 
defined fashion, but it proved difficult to accurately mea- 
sure the thickness in the assembled flow cell. A sequence 
of precision gauges of  known diameter were slid between 
the two prisms to measure the sample thickness as a func- 
tion of  shim thickness; results are indicated by the solid 
symbols in Fig. 3, where the line is drawn with a slope of 
1. Given the gap, the linear displacement L required for 
a given strain was converted to an angular displacement 
with the screw Pitch, and applied by the motor. 

Optical train 

Birefringence was measured using a polarization modula- 
tion technique as described by Frattini and Fuller (1984). 
Light from a HeNe laser is polarized with a Glan-Thomp- 
sen calcite polarizer oriented along the flow direction 
(Z= 0°) ,  and then passed through a photoelastic 
modulator (PEM, Hinds Instruments, carrier frequency 

42 kHz) oriented at 45 °. The flow cell was mounted on a 
large precision rotation table positioned so the same por- 
tion of the sample was illuminated as the flow cell was 
rotated relative to the light beam. Mounting of  the prisms 
resulted in a small parasitic birefringence oriented along 
the flow axis of the cell; a Babinet-Soleil compensator 
(Oriel) was positioned immediately behind the flow cell to 
cancel the optical effect of the static birefringence. The 
light beam then passed through a polarizer oriented at 
45 °, and light intensity was measured using a high speed 
photodiode (Hinds). The measured light intensity in- 
cludes de and harmonic components. By setting the 
modulation amplitude A such that Jo(A)= 0, the dc 
component is independent of any anisotropic optical 
properties of  the sample, and the light intensity takes the 
form: 

i = /0  [l + 2 J I ( A )  sin 0sin o) t+higher  harmonics] . 
4 

(21) 

J1 (A) is treated as a calibration constant, determined us- 
ing a sample of  known optical properties. A low pass 
filter measures the dc component of  the light intensity, 
while a lock-in amplifier is used to extract the first har- 
monic at the modulation frequency, co. Taking a ratio of 
these quantities allows determination of  the retardance of  
the sample: 

2hA nd 
= - -  , (22) 

2 

from which the birefringence may be calculated using the 
known wavelength, 2, and optical path length, d. Note 
that this design of  optical train allows unambiguous 
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determination of the sign of A n, important in the context 
of the present technique. Application of the strain and 
subsequent data acquisition are computer controlled; full 
details of the experimental procedures may be found in 
Brown (1993). 

The flow cell prisms are made out of BK7 optical glass 
with a refractive index of 1.5175, while the solution's 
refractive index was measured to be 1.566 using an Abbe 
refractometer. As a result of the mismatch, the laser beam 
is slightly refracted at the prism/solution interface. Snell's 
law gives the following propagation angles within the 
sample: 0 = +0 °, _+29.0 °, and _+57.2 °. These values are 
used when calculating the optical path length d for the 
different propagation directions for use in Eq. (22), and 
also when analyzing the data to extract the material func- 
tions according to Eq. (20). In addition, refraction 
through an oblique interface may also be accompanied by 
polarization effects. These are easily incorporated into 
the optical analysis through the appropriate Fresnel 
transmission coefficients. For the minor mismatch in 
refractive index here, however, refraction has virtually no 
impact on the light polarization state. 

Results 

Mechanical results 

Figure 4 shows measurements of the nonlinear relaxation 
modulus of the 12% polystyrene solution as measured in 
cone and plate flow. The behavior is typical of well en- 
tangled solutions of linear, monodisperse polymers. As 
y~0,  the data superimpose to given the linear relaxation 
modulus, G(t). As strain increases, pronounced strain 
softening is observed, where G (7, t) is seen to decrease by 

over an order of magnitude. At long times, all nonlinear 
modulus curves are parallel, and G(y, t) may be factored 
into time and strain-dependent terms, as in Eq. (3). Shif- 
ting the curves in Fig. 4 allows determination of the 
mechanically measured damping function, h(y), repre- 
sented by solid triangles in Fig. 5. Also shown are the 
damping function predictions of the Doi-Edwards model, 
with and without the independent alignment approxima- 
tion. As has been typically observed in similar system, the 
Doi-Edwards model provides an excellent description of 
the nonlinear viscoelasticity measured in step strain, in- 
cluding the severe strain thinning seen experimentally. 

At short times, the relaxation modulus clearly is not 
factorable, and there are enhanced stress levels relative to 
the Doi-Edwards prediction. As discussed earlier, it is 
believed that this extra stress results from partial chain 
stretching associated with incomplete retraction. Fac- 
torable behavior is seen for times greater than around 3 s, 
suggesting that retraction is still occurring at all times less 
than 3 s. Actually, this time scale is rather longer than 
estimates of T~ believed to be associated with Rouse-type 
relaxation of the entire chain within the tube, a fact that 
has been discussed previously by Osaki et al. (1982). It 
would appear that intrachain relaxation processes are 
somewhat more sluggish than basic scaling arguments 
suggest. 

To make measurements of N2 following the strategy 
described earlier, normal thrust measurements in cone 
and plate and parallel plate flows must be combined. 
Figure6(a) shows normal thrust data measured with 
parallel plates. To generate these data, step strain relaxa- 
tion experiments were conducted at a series of edge strain 
y~, and the data were cross-plotted at discrete time inter- 
vals as a function of strain. As seen in Eq. (15), it is 
necessary to differentiate these data as a function of 
strain. To facilitate this process, the data were fit to the 
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To extract N2, it is necessary to have an independent 
measure of 741 relaxation during step strain. Venerus and 
Kabvand (1994a, b) have studied shear and normal 
stresses of this sample extensively in cone and plate flow, 
and in particular note that the Lodge-Meissner relation- 
ship is satisfied. Since shear stress measurements are sub- 
ject to fewer artifacts than normal stress measurements, 
we use shear stress measurements in cone and plate flow, 
in conjunction with the Lodge-Meissner relationship, to 
produce the values of N1 (y, t) shown in Fig. 6(b), for the 
same times at which N I - N 2  is evaluated from parallel 
plate relaxation data. These data may also be very well fit- 
ted to an equation of the same form as (23), again to an 
accuracy within + 5 %. 

Finally, subtracting the two results enables isolation of 
the second normal stress difference. Figure 7 shows the 
results, in which the ratio - N 2 / N 1  is plotted as a func- 
tion of strain, evaluated at the discrete time intervals used 
in the analysis. As is characteristic of similar techniques, 
relative errors are considerably amplified by the subtrac- 
tion of two large quantities to extract the smaller N2. Us- 
ing error estimates of + 5 % for the representation of data 
in Fig. 6 with Eq. (23), error bars may be determined for 
the normal stress ratio. For the sake of clarity, only a few 
representative error bars are shown in Fig. 7. As con- 
siderable manipulation of data is required to reach these 
results, it is not surprising that there should be a fair 
amount of scatter in the data, and in fact the small strain 
limit of Nz/N1 ranges from -0.15 to -0.25. Never- 
theless, the data do show some important characteristics. 
First, the normal stress ratio is clearly seen to decrease 
with increasing strain for all measurement times. Second, 
within the accuracy possible with this technique, there are 

10 o 

following strain-dependent function having a sigmoidal 
form suggested by Soskey and Winter (/984): 

c(t)y  
N(yg ,  t) - 1 +a( t )  y~(t) ' (23) 

where a (t), b (t) and c (t) were adjusted to data obtained 
at a particular time, t. Beyond having the appropriate 
quadratic strain-dependence at small strain amplitudes, 
we do not ascribe any particular significance to this func- 
tional form, and adopt Eq. (23) solely on the basis of its 
ability to accurately represent the experimental data in 
Fig. 6 (a). In subsequent manipulations, Eq. (23) is used in 
place of the experimental data. Based on the scatter of the 
data around the curves and the expected accuracy of the 
normal force transducer, this representation of the data 
should be accurate to within +5%. Using Eq.(15), 
N1 (YR, t )-Nz(yR, t) was determined from these parallel 
plate measurements. 
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no systematic changes in the normal stress ratio with 
time. We will return to these points and make com- 
parisons of  these data with the Doi-Edwards model once 
the analogous optical data have been presented. 

Optical results 

Figure 8 presents typical birefringence relaxation curves 
measured along the six possible light paths in the optical 
flow cell: _+0 ° (degenerate), +30 ° and +60 ° . To under- 
stand these curves, it is necessary to recall that 
polystyrene has a negative stress optical coefficient. Thus, 
the curves measured with forward and backward applied 
strain at normal incidence (_+ 0 °) show a negative birefr- 
ingence, corresponding to a positive third normal  stress 
difference. As expected, there is excellent agreement be- 
ween these two curves. Changing the light path away from 
the normal  direction has two effects. The relative con- 
tributions of  NI and N2 to the measured birefringence 
change, and at the same time, the shear stress contributes 
to A n. As seen in Eq. (20), the shear stress contribution 
changes sign with 0; at the modest  strain levels in Fig. 8, 
the sign change of the shear stress contribution is suffi- 
cient to change A n from negative to positive values for 
the - 30 ° and - 60 ° experiments (hence the importance 
of  using an optical technique sensitive to the sign of the 
birefringence). 

To extract the relaxation behavior of  the individual 
stress components,  the following procedure was used. 
First, the data measured at _+0 ° were averaged to yield 
N l + N  2. I f  data taken at + 30 o and - 30 ° are subtracted, 
the normal stress contributions to the birefringence 
cancel one another, so that the shear stress may be 
isolated. I f  they are added, the shear stress contributions 
cancel one another, and the result reflects contributions 
from N1 and N2, but with a different relative weighting 
from the 0 ° data. By combining the 30 ° data with the 0 o 
data, it is thus possible to extract all three individual shear 
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shear  s t rain 7 = 1, us ing  indicated light pa th  angle  

material functions. A similar procedure may be followed 
with the data at _+ 60 °, to obtain an independent measure 
of  the shear stress, and, again in combination with the 0 ° 
data, a measure of  N 1 and N 2 individually. We adopt  a 
shorthand notation of "30 °" to designate normal stress 
components measured using the 30 ° data in combination 
with the 0 ° data. 

Figure 9 shows the results of  these manipulations using 
the birefringence data shown in Fig. 8. At a strain 7 = 1, 
the shear stress and normal  stress should be identical, as 
is very nearly observed. The second normal  stress dif- 
ference is found to be negative, and smaller in magnitude 
than N1, as expected. Comparing parts (a) and (b), there 
is generally rather good consistency between the stresses 
obtained from the different optical data, although the 
normal  stresses tend to be noisier when extracted from the 
30 ° data. This is to be expected, since there is relatively 
less contrast between the contributions of  N 1 and N 2 to 
the birefringence when combining 0 ° and 30 ° data than 
when combining 0 ° and 60 o data (Eq. (20)). 

Figure 10 compares the two shear stress relaxation 
curves measured optically with mechanical measurements 
at this strain level. The optical shear stress curves are very 
nearly indistinguishable, and there is excellent agreement 
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with the mechanically measured modulus, particularly in 
light of the fact that measurements were performed on 
solutions prepared independently. From these data, a 
stress-optical coefficient C = - 5 x 10-9 Pa-~ was deter- 
mined, in good agreement with previously reported values 
in solutions of PS in TCP (for instance Larson et al. 
(1988)). Optical measurements of the nonlinear relaxa- 
tion modulus yielded similar results to the mechanical 
data in Fig. 4 (Brown, 1993). Factorability is observed at 
long times, and there is excellent agreement between the 
mechanically and optically determined damping func- 
tion, seen in Fig. 5. 

Figure 11 (a) shows an experimental test of  the Lodge- 
Meissner relationship for the optical data at a strain 
y = 1. The ratio N1/'c21 is indeed found to be constant 
during the relaxation, until long times where the data 
become very noisy due to weak signals. Values derived 
from the 30 ° and 60 ° optical data agree reasonably well 
with one another, but are slightly below the theoretically 
predicted value of 1. Figure 11(b) shows the Lodge- 
Meissner ratio averaged over time 0.1 _< t<_ i0 s, plotted as 
a function of the applied strain. The negative deviations 
become more pronounced at higher strains, where thinner 
shims are employed. Particularly since this solution is 
known to obey the Lodge-Meissner relationship, this sug- 
gests a systematic error in sample thickness. By grouping 
the data in Fig. 11 (b) according to which shim was used, 
a "true" strain (and hence sample thickness) was deter- 
mined by enforcing the Lodge-Meissner rule (Brown, 
1993). Figure 3 shows the resulting thicknesses represent- 
ed by open symbols. The method originally used to mea- 
sure the prism spacing seems to systematically underesti- 
mate the thickness by a small amount. In Figs. 5 and 12, 
corrected strain values are used in reporting the strain. A 
small error in thickness also will result in slightly er- 
roneous values of  birefringence being extracted from the 
optical data using Eq. (22); however, these errors would 
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by and large be absorbed into the stress-optical coeffi- 
cient. In particular, the dimensionless ratio - N z / N  I is 
extracted from the optical data in such a way that it is 
completely independent of any uncertainty in thickness. 

Figure 12 shows the time dependence of the normal 
stress ratio at an applied strain y = 1; qualitatively similar 
results are seen at other strain levels. There is once again 
reasonable self consistency between the 30 ° and the 60 ° 
data, although there is a higher noise level associated with 
the extraction of N 2. The degree of  self consistency ob- 
served by comparing the 30 ° and 60 ° degree data pro- 
vides an indication of  the precision with which measure- 
ments can be made using this technique. Multiple realiza- 
tions of the entire experimental sequence allows the 
reproducibility of the normal stress ratio to be tested. For 
a strain y = 1, 30 ° data yield a standard deviation of  
16.3% around the mean value for times between 0.1 to 
t s, which grows to 32.2% for times between 1 and 5 s. 
For 60 ° data, the corresponding numbers are 4.7 and 
6.9%; these values are illustrated as representative error 
bars on the optical data in Fig. 12. At longer times, the 
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Fig. 13 Normal stress ratio, -N2/N 1, averaged from 0.1 _< t< 10 s, 
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of Doi-Edwards model shown with (solid line) and without (broken 
line) the independent alignment approximation 

data become less reproducible due to weak signals. It is 
not surprising that the 60 o data are considerably more 
robust, since there is significantly greater sensitivity to 
contributions from N 2 in the _+60 ° experiments (see 
Eq. (20)). Experiments at higher strain levels give better 
reproducibility, due to both higher signal levels and in- 
creased relative importance of normal stresses in the 
birefringence signal. 

Symbols in Fig. 12 give the corresponding mechanical 
measurements at this strain level. This representation of 
the data also demonstrates that the mechanical results 
show no systematic changes with time within experimen- 
tal error. The optical data, however, show a reproducible 
slight increase in the magnitude of  the normal  stress ratio 
throughout the course of  the relaxation. For instance, the 
60 ° data exhibit an increase in -N2/N1 from 0.21 at 
0.2 s to 0.24 at 5 s. This level of  increase is typical of  data 
at other strains (Brown, 1993). We typically find that the 
optical method yields somewhat higher values of  the nor- 
mal stress ratio than the mechanical technique. 

Figure 13 summarizes optical measurements of  the 
normal stress ratio as a function of strain, in which data 
are averaged over times from 0.1 to 10 s. For inclusion in 
this figure, the mechanical data have been similarly aver- 
aged. Finally, we include predictions of  the Doi Edwards 
model with and without independent alignment (with 
corresponding zero strain predictions of  2/7 and 1/7, 
respectively). As anticipated from Fig. 12, the optical data 
give systematically larger values of  the ratio. Generally 
speaking, the data lie between the two predictions, with 
the mechanical data closer to the rigorous predictions and 
the optical data in closer agreement with the independent 
alignment predictions. In addition, the optical data seem 
to exhibit a greater degree of shear thinning than the 
mechanical data, which seems to be in better qualitative 
agreement with the model predictions. Comparing the 

optical results at 30 ° and 60 °, the 30 ° data generally yield 
a larger value of the ratio. However, the 30 ° results exhibit 
a more erratic strain dependence than that derived from 
the 60 ° data. Since steeper angles enhance sensitivity to 
N 2 (see error bars in Fig. 12), we attach more significance 
to the 60 ° results. Bearing this in mind, the optical data 
suggest a low strain asymptote of  (-N2/NOo = 0.23, 
while the mechanical data yield (-Na/NOo = 0.17. 

Discussion 

The data in Fig. 13 are in good qualitative agreement with 
the observations of  Osaki et al. (1981). The reasonable 
self-consistency of the mechanical and optical data and 
the agreement with the results of  Osaki et al. demonstrate 
that both techniques employed here are suitable for 
measuring N 2 relaxation following step strain. Since the 
mechanical method uses standard instrumentation, it 
may facilitate study of the second normal stress difference 
in step strain for a wider class of  materials than is possi- 
ble with more highly customized techniques, such as the 
new optical approach described here. As is expected, the 
data manipulation required by the mechanical technique 
makes it quite susceptible to small errors. Nevertheless, it 
correctly captures some important  qualitative characteris- 
tics such as shear thinning of the normal  stress ratio. At 
the same time, the optical method appears to be quite 
robust, particularly for the case of  the ___60 ° data. Both 
data sets generally lie between the rigorous and approx- 
imate predictions of  the Dot-Edwards model, typical of  a 
wide range of results in the literature. It is interesting that 
the mechanical data in the present study are closer both 
to the rigorous Dot-Edwards predictions and to the bire- 
fringence results of  Osaki et al. (1981), while the present 
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optical measurements are closer to the independent align- 
ment prediction. 

Although much emphasis has been placed on the low 
strain (or shear rate) limit of N2/N: (Hassager, 1985) it 
seems unlikely that experiments conducted with a variety 
of techniques will exhibit sufficient consistency to 
definitively resolve this particular issue. Nonlinear 
viscoelastic effects on the normal stress ratio do, however, 
show clear trends. Consistent with recent experiments by 
Magda et al. (1993, 1994), our measurements show shear 
thinning of the ratio -Nz/NI, in agreement with the 
Doi-Edwards model predictions. In l~ght of this evidence, 
the commonly adopted form for the K-BKZ theory given 
in Eq. (9) is inadequate for these well characterized solu- 
tions, and perhaps more generally for entangled linear 
polymers. This has particular significance since the nor- 
mal stress ratio does have substantial impact on the 
predictions of numerical simulations based on integral 
models (see the section "Relation of N2 to rheological 
constitutive theories"). 

In Fig. 12, the normal stress ratio is seen to be nearly 
constant throughout the stress relaxation process, in- 
cluding the earliest times for which :reliable data may be 
acquired using these methods. While an increase in the 
magnitude of the ratio is qualitatively consistent with a 
transition from affine to nonaffine behavior, the strongly 
nonzero N2 observed at short times indicates that the dis- 
tribution of chain orientation is nonaffine during the en- 
tire observable relaxation process, including times well 
within the regime where nonfactorability of the relaxation 
modulus indicates retraction is still occurring. Care must 
be taken to distinguish between subtle', nonaffine effects at 
short times (N 2 ¢ 0) and the grossly nonaffine chain 
stretching present once retraction has acted to reduce ten- 
sion along the primitive path (h (y)~ 1 ). Apparently, the 
starting point of a rigorously affine deformation in the 
tube model description of step strain becomes quickly ir- 
relevant due to extremely rapid equilibration of chain 
stretching on time scales that cannot be resolved here. For 

practical purposes, the instantaneous response of physi- 
cally entangled polymers looks very much like that of 
crosslinked rubbers, where it has long been appreciated 
that the Mooney-Rivlin equation with nonzero C2 
(presumably reflecting nonaffine deformation of network 
strands; see Wagner, 1994) performs better than the 
classical affine phantom network model. 

Summary and conclusions 

Measurements of second normal stress difference relaxa- 
tion following step strain have been successfully per- 
formed using mechanical and rheo-optical methods. The 
mechanical data demonstrate that such measurements 
may, with care, be performed using relatively standard 
rheological testing equipment and protocols, and yield 
important qualitative information such as strain thinning 
of the normal stress ratio. The optical experiments have 
utilized a novel configuration in which multiple light 
paths within the shear flow plane are used to interrogate 
the full stress tensor. Since the stress tensor is over- 
sampled, this allows internal consistency checks on stress- 
optical measurements of N2 for the first time. Results 
from both techniques are in reasonable agreement with 
previously published data, and generally lie between the 
predictions of the Doi-Edwards model with and without 
independent alignment. In particular, the normal stress 
ratio -Nz/Nt shows considerable strain thinning. The 
normal stress ratio is nearly constant with time through- 
out the relaxation process, including the earliest accessi- 
ble times. The nonzero N2 reflects nonaffine deforma- 
tion of chain segments, even at times well within the 
retraction regime. 
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