Jaxusz - Sentential Logics
CZELAKOWSKI and Maechara Interpolation Property*

Abstract. With each sentential logic O, identified with a structural consequence
operation in a sentential language, the class Matr™(0) of factorial matrices which
validate U is associated. The paper, which is a continuation of [2], concerns the con-
nection between the purely syntactic property imposed on O, referred to as Maehara
Interpolation Property (MIP), and three diagrammatic properties of the class Matr* (0):
the Amalgamation Property (AP), the (deductive) Filter Extension Property (FEP)
and Injections Transferable (IT). The main theorem of the paper (Theorem 2.2) is
analogons to the Wroheki's result for equational classes of algebras [13]. It reads
that for a large class of logics the conjunction of (AP) and (FEP) is equivalent to
(IT) and that the latter property is equivalent to (MIP).

§1. Preliminaries

A sentential language is an absolutely free algebra

S = (85 8 $2y--0)

freely generated by an infinite set V(%) = {p,¢,r,...} of seniential
variables and endowed with countably many finitary operations 815 82y -0y
the connectives of &. The members of §, the underlying set of the algebra
&, are called sentential formulas. If a is a formula, then V(a) denotes
the set of sentential variables occurring in a. For any X < § we set V(X)
={J{V(a): a e X}. We shall often use the notation X(Piy.ooyp,) to
indicate that X i3 a set of formulas such that V(X) = {p,, ..., p,}. The
endomorphisms of & are customarily called subsmum(ms mSL I X(py, ...,
P,) 18 a set of formulas of & and e is a substitution in & such that
ep; = o, for ¢ =1,...,n, then often the more explicit notation

X(agy ..oy 0p)

is used to denote the set eX, the image of X under ¢. Thus X (ay, ..., a,)
denotes the set of formulas which result by the simultaneous substitution
of a; for p;, ¢ =1,...,n, in all formulas in X.

If V is a set of sentential variables of &, then we let &, denote the
(rudimentary) sublanguage of & which consists of formulas containing
only variables in V.

* The author is indebted to the referee for several suggestions which have helped
to simplify the original exposition to its present form; and for a careful reading of
the manuscript which uncovered certain minor errors.
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By a sentential logic we understand a pair
(#,0),

where & is a sentential language and C is a structural consequence on &,
that is, O satisfies the following conditions:

(a) X < 0(X)

(b) it X< Y then 0(X) < C(Y)

(c) C(C(X)) = C(X)

(d) e0(X)  C(eX),

for all sets X, ¥ = 8 and for every substitution ¢ of &.

If no confusion is likely we shall identify a logic (&, C) with its con-
sequence operation €. Moreover, if X a finite set of formulas, then instead
of 0(X) we shall often write C(ay,..., a,), where aj, ..., q, is a fixed
arrangement of the elements of X. We also use ('(X, a) as an abbreviation
for C(X v {a}).

Given a logic (&, 0), the least infinite cardinal x such that

0(X) =U{0(X): Y X and ¥ < u},

for all X < 8, is called the cardinality of ¢ and denoted card(C). € is
standard if card(C) =

A logic (&, Q) is equivaleniial (see [8] and [1]) iff there exists a set
A(p, q) of formulas of &, hereafter referred to as a C-equivalence, such
that the following conditions are fulfilled:

i)  Alp,p) s C(9) ,
(i)  A(p, ) = C(Ag, p))
(i)  A(p,n) s C(A(p, g)U4(g, 7))
(iv) for each n-ary connective § of &, n > 0, and any variables p,, .
Dns G1y o5 Gns
A(§(P1 e Pa)s §(s - ) € O(A(D2, @)U .. VA (D, 4,)
v)  geC(dp, 9uir})

The class of equivalential logics includes a great many of the more
important sentential logics, among others all implicative logics in the
sense of Helena Rasiowa [9]. More information concerning equlvalentlal
logics can be found in [1] and [2].

A logic (&', ¢") is an extension of a logic (%, C) iff & is a subalgebra
of ¥ (i.e. V(¥) < V(¥') and both & and &' have the same stock of
connectives) and €(X) = €'(X)n8, for all X = 8. An extension (&', C')
of a logic (%, 0) is said to be natural when card(C) = card(C’). It is easy
to see that any natural extension of an equivalential logie is again an equi-
valential logic. The following result is due to Shoesmith and Smiley [10,
Lemma 2]: for every logie (&, C) and for every language &' including
& as a subalgebra, there is a consequence (' on &' such that (¥, ')
is a natural extension of (&, ().
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A {logical) matriz is & pair
M= (A, D)a

where .o/ is an algebra, referred to as the algebra of I, and D is a subset
of A called the set of designated elements of 9. (In the sequel, algebras
will be denoted by Script letters &, 4, &, etc., while their universes by
the corresponding Ttalic characters 4, B, §.) It will often be convenient
to denote by g, the algebra of the matrix Tt and by Dy, the set of desig-
nated elements of IN. Thus

M = (M,SUHD‘JR)

If the algebra of a matrix I is similar to a sentential language &, then
M is called o matrix for &.
Given a class K of matrices for &, we define the logic

Ong

in & as follows: a € Ong(X) iff for every matrix M = (&, D) in K and
every homomorphism » from & into </, va € D whenever vX < D. (The
homomorphisms from & into the algebra of a matrix M are usually called
valuations in M.) A eclass K of matrices is strongly adequate for a logic ¢
iff ¢ = COng.

A matrix 9N is said to validaie a logic (&, C) (or, I is a model for C),
if 0(X) € COng(X), for all X < 8. (We use here the symbol Cngy, instead
of awkward Cngyy.) The symbol

Matr(C)

denotes the class of all matriees which validate the logic €. The members
of Matr(C) are also called C-matrices. Matr(0) is the largest class of ma-
trices strongly adequate for C. If € is standard, then Matr(C) is & quasi-
variety (= an implicative class).

Since the notion of a matrix falls under the more general concept
of an algebraic structure, we can apply to matrices all the model-theoretic
operations which are performed on algebraic structures. For example,
2 mapping & i3 2 homomorphism from a matrix M == (&, D} into N
= (4, E) iff h is a homomorphism from the algebra « into # and kD < E.
A homomorphism % from 9N into N is sirict if moreover h(4 —D) < B—H.
A one-to-one strict homomorphism is called an embedding or, an injection.
By an isomorphism we understand an onto embedding. The concept of
2 strict homomorphism is closely related to the eoncept of a strict con-
gruence of a matrix. We ghall say that a congruence @ of the algebra &
of a matrix MM = (o7, D) is striet iff for any a,b e 4, a@b entails a € D
iff b € D. In other words, the strict congruences of 9 do not paste together
the designated elements of I with the undesignated ones. If € is a strict
congruence of M = (&, D), then the canonical map from I onto the
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quotient matrix /O = (# [0, D|O) is a strict homomorphism. Con-
versely, if & is a strict homomorphism from 9t into N, then @, the kernel
of h, is a strict congruence of It and if A is “onto” then M /@, is isomorphic
with 9. In every matrix IR there exists a greatest strict congruence,
denoted by Og. If C is an equivalential logic and A(p, ¢) is a C-equivalence,
then it is easy to prove that for every matrix M = (&7, D) in Mair(C),
a@qy b iff for every 1ed, A (a,b) eD. (1, is the polynomial over the
algebra o/ corresponding to the formula 1. The polynomial 1, will be
also denoted by 14, whenever the matrix I is fixed.) A matrix It is called
simple (or factorial), iff the greatest strict congruence of It coincides
with the identity relation in 9. Every quotient matrix I /@y is simple
The class of simple C-matrices is denoted by

Matr+(C).

For instance, if ¢ is the classical logic then Maftr*(C) may be identified
with the class of Boolean algebras. If ¢ is the intuitionistic logic then
Matr*(C) may be identified with the class of Heyting algebras (see [1]).
For every equivalential logic C the class Matr*(C) is closed under the
formation of direct products and submatrices. The reader also easily
verifies that if ¢’ is a natural extension of C, then Matr=(C') = Matr*(0).
Our interest in simple matrices lies in the fact that for every matrix I,
the logics induced by I and M /Oy, respectively, coincide.

Let (&, C) be a fixed equivalential logic and let A(p, g) be a C-equi-
valence. Then, given a matrix I = (&, D) in Matr*(0) whose cardinality
does not exceed the cardinality of &, we define the description of I, DS (M),
in the language &. Let z: A—V(8) be a fixed one-to-one mapping. Then
we set

DSI) = {A(§(20, -+ 2a,) s s ptagmay) T E @)
§ is an m-ary connective in & and ay,...,a, € A}
U{z,: a e D}.
DS (M) is a subset of § and every formula in DS(I) contains at most

the variables z,, a € 4.
The following two lemmas come from [2]:

LevmA 1.1. Let (&, O) and D = (£, D) be as above. Let X = C (DS (M)}
Then the matriz I is isomorphically embedded in (¥, X)[Ox by means
of the mapping

a—~[2,], ac 4,

where O is the greatest strict congruence of (&, X) and [y] is the equivalence
class of y relative o Gx.
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Lemma 1.2, Let (&, C) and I be as above, Let (2. 2,) be a for-
mula of & in the variables 2, , ..., 2, , where ay, ..., a, € A, and lel v be
a valuation of & in M such that v(z,) = a, for all a € A. Then

aeC(DS(M) iff vaeD.

Let (&, C) be a sentential logic and let <7 be an algebra similar to &.
A subset V of 4 is called a deductive filter on of (relative to O) if the matrix
(&7, V) 18 a member of Mair(C). The set

Fols)

of all deductive filters on o/ is a complete lattice under the set-theoretic
inclusion. It should be stressed that the notion of a deductive filter is
relativized to a given logic ¢ — for that reason the members of F, (%)
are also called C-filters on «/. Let us also note that for the sentential
language &, Fy(¥) coincides with the family of theories of C, i.e. subsets
X of 8 such that 0(X) = X. For instance, if C is the classical logic and </
is a Boolean algebra, then F, (&) is the family of “usual” filters of 7.
If M = («, D) is a matrix for ¥, then we let

Fo(I)

denote the lattice of all deductive filters on M, F (M) = {V e F():
D < V. Fy(IM) is a complete sublattice of F (/). The members of F (M)
are referred to as deductive filters on k.

The following two lemmas can be found in [37]:

LeMMA 1.3. Given an equivalential logic C, let M and N = (&, E) be
matrices in Matr(C) and let h be a homomorphism from I onto N. Then

or overy Ve Fy (W), if h(B) < V, then bV € Fy(R).
(In fact, Lemma 1.3 is valid for a much broader class than the class of

equivalential logics.) k(E) is the preimage of E by h.

The above lemma is the C-filter counterpart of a fairly obvious al-
gebraic fact: if h: &/~ is a homomorphism from an algebra s/ onto #
and @ is a congruence of .« such that ker(h) < @ then {(ha, hb): (a, b) € &}
is a congruence of 4.

LevMA 1.4, Let € be an equivalential logic. Then for every matriz M
in Matr(C), the lattices Fy(IM) and Fo(M|Og) are isomorphic. The iso-
morphism is established by means of the mapping v, where

p(V) = V[0,
Jor all V e Fo(M).

We admit the following notation:

I PN {or Smx—.f-»iﬁ) whenever f is a homomorphism
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from a matrix IR into N;

I Pu->N (or u-L>9) whenever f is an embedding
of M into N;

I M—-»>N (or Mi-»N) whenever f is a homomorphism
from Pt onto N.

Let K be a class of similar matrices closed under isomorphisms. We
shall say that K has the amalgamation property (AP, for short) if for any
matrices M, N and P in K the following condition is fulfilled: for any
embeddings f: Pu->N, ¢: M—+P, there exist & matrix R in K and embed-
dings u: N>R, w: P>R such that wof = wog. Graphically:

m—7I—s g
T

g :u
Y ¥
Blr-————- > R

The system (R, %, w) is then referred to as a common extension of the.
matrices RN, P over M in K.

The second diagrammatic property we are interested in is that of
injections transferable. Let K be as above. K is said to have injeciions
transferable (IT, for short), if for any matrices M, N and P in K the follo-
wing condition is fulfilled: for every embedding f: >N and every
homomorphism g: P->P, there exist a matrix R in K, a homomorphism
w: N>R and an embedding w: Pi—>R such that uof = wog. This property
can graphically visualized by means of the following diagram:

1L f

=
) -

Let O be a logic in a language & and let K be a subclass of Matr(0).
K is said to have the (deductive) filier extension property (FEP, for short)
with respect to C if for each matrix % in K, every deductive filter V,
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on a submatrix M = (g, Dgy) of N can be extended to a deductive
filter on M, i.e., there exists a deductive filter V e F(N) such that V,
= Vndgy.

We are mainly interested in the case when the whole class Mair(C)
bas the filter extension property relative to €. We shall show that if ¢
is equivalential and the narrower class Matr*(C) of simple C-matrices
has (FEP), then Matr(C) has (FEP). Moreover in the cage of equivalential
logics there is another property closely connected with (FEP). The follo-
wing lemma makes these remarks precise.

LeyMA 1.5, Let C be an equivalential logic. The following assertions
are equivalent: :

{1) the class Matr(C) has (FEP) relative to C

(ii) the class Matr*(0) has (FEP)
{iii) Jor any three matrices M, N, P in Matr*(C) and any mappings f
and g such that f: M—N and g: Mi—»P there exists o malriz RN in
Mair*(C) and mappings u: N—»R, w: P>R such that uof = wog.

The property expressed by condition (iii) can be visualized by means
of the following diagram:

f
M ik > N
T
i
1
g Y
é
1 w Vv
Blr—————— »>R

Proor of Lemma 1.5. (i) = (ii). This is trivial because (ii) is a par-
ticular case of (i).

(ii) = (). Let I = (A gy, Dyy) be a submatrix of N = (L, Dy), where
both I an N belong to Matr(C). In view of Lemma 1.4, the lattices Fy (M)
and Fg(M/Ogy) are isomorphie. Similarly, the lattice Fy (M) is isomorphic
with Fo(R/0g).

Now let V, e F,(IM). Then, by Lemma 1.4, Vy/@y € Fu(M/Og). Since
C is equivalential, the mapping ¢, where

p(lalog) = [#]og;

for all @ € Ay, is an embedding of M /Oy, into N[Oy. As the class Matr*(C)
hag (FEP), there is a deductive filter V* e #,(N/Oy) such that

6y VEp(dg/On) = ¢(Ve/Om).
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Furthermore, there exists a deductive filter V € F(N) such that
{2) V* = {[aley: @€ V}.
(1) and (2) yield

VﬁAﬂR = VO'
Indeed, let aedy. M aeV, then [aley, € Vo/@y whence [aly,
= ¢([¢]oy) € p(Vo/Om). Hence, by (1), [ale, € V*. Thus, by (2), there
is b e V such that [ale, = [ble,. Hence Ag(a,b) < Dy< V, where A
is a fixed C-equivalence. Thus {d}UAdy(a, db) = V whence, by clause (v)

of the definition of an equivalential logic, @ € V. Conversely, let a € Vndg.
Then [ale, € V* and clearly [aly, € 9(Ap/Og). Thus (1) yields [a]le, €

€ ¢(Vo/Ogp), le.,
(3)  p(aleg) € ¢ Vo/Om).

Since ¢ is an isomorphism between the algebras /g /@y, and ¢( g /Og),
it follows from (3) that [aley, € Vo/@p whence a e V.

Thus V is an extension of V, onto N.
(ii) = (iii). Assume (ii) and let M = (Hy, Dy)y, N = (Hg, Dy),
P = (g, Dg) and f, g be as in (iii). Define

iVo = 9(Dg).
Then ¢ is a strict homomorphism from (&/y, V,) onto P whence
Vo e Fo(M).

Since f is an embedding, the matrix f(IM) =4 ( f(#w), f(Dg)) is isomorphic
with 9. Clearly, f(IM) is a submatrix of N and f( V,) € Fy(f(IM). In view
of (ii), there exists a deductive filter V e F;(N) such that

(4) Vof(dg) = F( Vo).
Let
R =df(‘9{ﬁt/@v’ V/@v);

where O is the greatest strict congruence of (o, V). Clearly R is a mem-
ber of Matr+(C). Since O is equivalential, it follows that the mapping «
defined as follows:

u(b) = [blg,

for all b € A4, is 2 homomorphism from N onto R. ([b], is the equivalence:
class of b with respect to 6,.)
On the other hand, the mapping w defined by means of the formula

w (g(“)) =ar [f(a)]v ’
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for all a € 4g;, is an embedding of B into R. Indeed, if ¢, d € Ay, then
there exist a,b e Ay such that ¢ = g(a) and d = g(b) whence ¢ = d iff
g(a) = g(b) iff Ad%(g(a), g(b)) € Dy itf Ay (@) b) = Veiff/lfwm(f(a),
FB) = F( Vo) iff (by (4)) Ay (f(a),F(0) € V it [f(@)], = [f(B)],- Thus
w is well-defined and one-to-one. We also have that ¢ = g(a) € Dy iff
a € V,itf (by (4)) f(e) e Viff [f(a)]; € V/O,. Hence g is also an embedding
of B into R.

It follows from the definitions of 4 and w that wof = wog. Thus (iii)
has been proved.

(iil) =(ii). Let M = (A, Do) be a submatrix of N = (g, Dy) where
both 9t and N belong to Matr*(C). Clearly, the identity map f is an em-
bedding of M into N.

Now if V, is a deductive filter in Fy(IN), then the factorial matrix

'ZB =ar (&fma/@ v /@Vo)
where 6, 1s the greatest strict congruence of (Agq, V), belongs to Matr*(C)
and the meuppmg g defined as follows:

g(a) = [a]Vo’

for all a € Ay, is 2 homomorphism from 9% onto P.
According to (iii), there exists a matrix
= (& W D §R)

in Malr*(C) and mappings

w: R-»R, w: PR
such that wof = wog. Leb

V =4 {beAg: u(d) € Dg}.

Clearly Dy < V and the mapping « is a strict homomorphism from
(o/q, V) onto R. Consequently V e F(R).

We claim that Vndgy = V,. Let a € V,. Then g(a) € VO/@VO whence
wog(a) = uof(a) = u(a) € Dgy. Thus a € V. Conversely, let a e Vndy,.
Then, by the definition of V, u(a) € Dg. Since %(a) = uof(a) = wog(a)
we thus have that wog(a) e Dy. But w is an embedding of P into R
whence g(a) & V,o[0, ie., [aly € Vo/Og . Thus a € V,.

This completes the proof of (ii), m

In a quite analogous manner one proves the following lemmas.
LevvA 1.6. Let € be an equivalential logic. The following two asser-
tions are equivalent:

{1) the class Matr(C) has the amalgamation property
(it) the class Matrs(C) of simple C-matrices has the amalgemation

property.
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LEMMA 1.7. Let C be as above. The class Matr{C) has injections tran-
sferable if so has the class Mair*(C).

We omit the proofs.

Finally, let us note that logies ¢ for which the class Matr(C) is known
to have (AP) or (IT) are relatively rare. For instance, there are only seven
nontrivial equational classes of Heyting algebras with the amalgamation
property. We refer to [6] and [2] for more information. On the
other hand, there are many logics C for which the class Mair (C) (or Matr*(C))
has the filter extension property. Partial justification of this fact can
be carried out as follows. There are many sentential logics which admit
deduction theorems. (By the deduction theorem for ¢ with respect to
a binary connective — we understand the following statement: for any
set X of formulas and for any formulas e and g, e C(X, a) iff a—f € C(X).)
For instance, every intérmediate logic, i.e., every axiomatic strengthening
of the intuitionistic logic admits deduction theorem with respect to the
implication connective. It can be easily shown that if a logic ¢ admits
deduction theorem, then the class Matr(C) has the filter extension pro-
perty. (In fact, Matr(C) has (FEP) under much weaker assumptions,
More information can be found e.g., in [4].)

§2. Machara Interpolation Property

Let ¢ be a logic in a language &. O is said to have the Maehara in-
terpolation property (MIP, for short) if for any sets of formulas X, Y = §
and for any formula a of & the following condition is satisfied: if V(Xu
U{a})nV(Y) # @ and a e ((XUY), then there exists a set of formulas
Z such that V(Z) < V(Xu{a})nV(X), Z = C(Y) and aeC(XUZ).

Let us note that if ¢ is standard, then we may demand the above
set Z to be finite. Moreover, if C has conjunction connective, that is,
there exists a binary connective A in & such that C(aaf) = O(a, f),
for all formulas a, 8, then forming the conjunction of the members of Z
we may even demand Z to consist of a single formula. In this case (MIP)
reduces to the following property:

(MIP)* for all sets X, ¥ < 8 and for every formula a of &, if V(XU
V{ah)nV(Y) % @ and ae((XVUY), then there exists a for-
mula & such that V(8) < V(Xu{a})nV(Y), de0(Y) and
aecC(X, d).

(MIP)* is the exact formulation of a lemma proved originally by Maehara
for the intuitionistic sentential logic (see [5] and [11]). The significance
of (MIP)* in the more general context of proof theory is described in
detail in Takeuti’s book [11]. Some similar forms of the interpolation
property in the domain of equational logic have been investigated, e.g.,
in Pigozzi [T].



Sentential logics and Machara ... 275

The infuitionistic logic is clearly standard and is endowed with con-
junction. Thus, sinee in view of the Maehara’s result it has (MIP)*, we
see that it has also (MIP).

We now turn attention to another purely syntactic property imposed
on sentential logics. We call it property (I). This property as well as some
econsequences of it were examined in [2]. Let ¢ be a logic in a sentential
language . Then O is said to have property (I) if for all X, ¥ < § and
all aef, if aeC(XUY) and V{e) € V(X) and V(X)nV(Y) £ & then
Z<cS VD) s V(X)AV(Y)&Z < O(Y) &acO(XUZ). Tt is a fairly
trivial matter to show that the Maehara interpolation property (MIP)
implies property (I). As the referee pointed out, for a wide class of logics
the (MIP) and (I) properties are actually equivalent.

Levma 2.1, Let (&, C) be a logic such that C(B) # @. Then (MIP)
i¢ equivalent o (I).

Proor. To see that (I) implies (MIP) we argue as follows. Assume
V(X V{a})nV(Y) £ @ and a e (X UY). Let X’ be any set of formulas
such that V(X') = V(X U{a}) and C(X’) = C(X). (X’ can be obtained
from X by adjoining theorems of € that contain the variables in a.) Then
V(X)AV(Y) £ @ and « esmx AC(X'UY). Thus by (I) aeC(X'u

V(S pxy 8y nC(T))) = (Xu SV(XU{aj)mSV(Y)mO(Y))) Thus  there
exists a Z such that V( )€ V(Xu{a)nV(Y),Z < 0(Y) and a € C(XUZ).
So (MIP) holds.

The purpose of the present paper is to determine semantic equivalents
of the purely syntactic Maehara interpolation property. The basic result
of the paper, Theorem 2.2, states that given an equivalential logic C,
(MIP) is equivalent to Injections Transferable for the class Mair*(0)
of simple C-matrices.

THEOREM 2.2. Let C be an equivalential logic in a sentential language
&. The following assertions are equivalent:
{i) C has the Maehara interpolation property (MIP)
(ii) the class Matr*(C) has the amalgamation property (AP) and the
(deductive) filter ewtension property (FEP) with respect to ¢
(i) the class Matr(C) has injections transferable (IT).

Proor. (i)=(ii). Since (MIP) implies (I), applying Theorem 2 of [2]
we obtain that the class Matr*(0) has the amalgamation property.

We shall now check that (MIP) implies that the class Matr*(C) has
the filter extension property (relative to ).

Agsume (MIP) and let M = (Zgy, Dyy) be a submatrix of R = (g, Dy),
where N e Matr*(C) and let Ve Fy(9N). Since ¢ is equivalential, M is
also a member of Malr*(C).
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Let us assume first that the matrix % has a cardinality not exceeding
the cardinality of &. Let DS(IM) and DS(M) be the descriptions of M
and 9 in & in the variables {z.: a € Ay} and {2}: a € Ag}, respectively.
We assume that 2L = 22, for all @ € Agy. Then DS(M) < DS(N).

Cranr. Let § be o formula in variables from {z,: a € Ap} such thal
B e G(DS(M). Then B O(DS(M)).

Indeed, if §eC(DS(M)), then (MIP) implies that there is a set Z
of formulas of & such that

V(Z) < {zl: a e Ay},
(8) Z < O(DS (M)
and
(6) B € C{DS(M) VZj.

Let v be a characteristic valuation of & in R, i.e. ve} = a,foralla e 44.
Then, in view of (5),

(7)  9(Z) < Dy.
Since V(Z) < {z.: a € Ay} and M is a submatrix of R, (7) yields
8)  (Z) < Dy.

But v is at the same time a characteristic valuation in 9. Recalling once
more Lemma 1.2, on the strength of (8) we get

Z <= O(DS(M)).
Hence O(DS(I)vZ) = C(DS(M)), whence, by (6},
g e C(DS(M)}.
This proves our claim.
Let » be as above and let
V = 40 (8o OO (DS (N)Ufz,: a € Vo})).
We shall show that V is the required extension of V,, i.e.,
(a)  VeF (%)
and
(b) VNAg = V.

As to (a) notice that Dy < V. Indeed, if @ € Dy then 2; € DS(N) =
< SposmyNC(DS(M)). Since vl =a, it follows from abeve that a e
& 0(Syiosmy NC(DS ().
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In order to show that V is a deductive filter with respect to C, we
shall make use of Lemma 1.3.
The matrix

P =4 (5‘7 V(D) SV(Ds(m))ﬁC(@));

being a submatrix of (¢, (Q)), is also a member of Mair(C). Moreover v,
restricted to Sy pgmy, 18 & homomorphism from P onto . Let

X =4 8y sy "C(DS M) Ulz,: aeVy}.
Then clearly X € Fo(B). We shall check that
SV(DS{ER)) “%(Dm) c X.

Lot 3 v (Dy), i.e. vf € Dy. Since § € Sppsmy We apply Lemma 1.2
which yields §eC{DS(R)) whence §eX.
Thus Lemma 1.3 gives that

V = 0(X) e Fo ().

As 1o {b) notice that from the definition of V and the properties of »
it follows that V, < Vndg,.
Let b e VnAy,. Hence b = va, where

(9) a € Sppsuy NC (DS (M Uiz, ac V,}).

Since also b e Ay < Ay, we have that b = vz,. Thus b = va = vz, in
o . Whenee

(10) v(4{a, 2)) = Ag(va, v2) < Dg.

Since every formula in A(e, z,) is built-up by means of variables from
V{D8(%), Lemma 1.2 and (10) yield

(11)  Ala,z) < C(DS(M) < O(DS(RyUiz,: ae Vo).
9), (11) and the fact that 4 is a C-equivalence give
% € O(A(ay 2)V{a}) € C(DSMU{z,: ae Vo).
Applying (MIP) we obtain
2y € 084 aevguy N0 (D8 (M) Viz,: a e Vol
Sinee 8, :geyupy S S}(Dsm)) we thus have
% & O{(8 ypsay N0 (DS (W) Uiz,: a e Vo).
In view of our Claim
SV(DS(fm))nC(DS(%)) < C(DS ().
Consequently
(12) 2 cCO(DS(MMUfe,: ae V).
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Since (g, Vo) € Matr(C) and
v(DS(M)U{z,: ae Vo}) = V,,
(12) entails that
b =uwvze V,.
This proves (b).

If the matrix 9 has a cardinality greater than the cardinality of &,
we form a natural extension (&', C’) of (&, C) such that the cardinality
of &' is equal or greater than the ecardinality of 9t. Then Matr*(C) =
= Matr*(C’) and, as is easy to check, the logic (¥, (') has also (MIP).
Further we argue as above, taking the logic (%, 0') instead of (&, ()
as the point of departure.

Thus (ii) Las been proved.

(ii) =(iii). Assume (ii). Let M, N, P be matrices in Matr*(C) and let f, g
be mappings such that '

f: PM->N and  g: M-P.

There exists a submatrix B’ of P such that ¢ is a homomorphism from
9 onto P'. Clearly P’ is also a member of Matr*(C). Since the class Maty*(C)
has (FEP), there exists a matrix Q in Matr*(C) and mappings

w: Ni—»Q, w: P=Q
such that
{13) #of = wog
(See the diagram below.)

f
I n
T
|
(FEP) ! u
v ¥
gl P remmmm » Q
=
1
!
in (AP) 1 k
]
v
ve oo R

Thus w is an embedding of P’ into Q and P’ is a submatrix of P. Since
Mair+(C) has the amalgamation property, there exists a matrix R in
Matr*(C) and mappings k, k such that

h: PR, Ek: QR



Sentential logics and Maehara ... 279

and
(14) kow = hoid,

where id is the identity map from P’ into B. (13) and (14) imply that
kow is a homomorphism from 9t into R and

hog = (kou)of.

Thus Matr+(C) has (IT).

(iii) =(i). Assume that Mair*(C) has injections transferable.

Let aeC(XUY), where V(X u{a})nV(Y) # O. Consider the rudi-
mentary sublanguages Fpx), Sy 204 Ly =4 LpxuEynr@) -

Let

gﬁ zdf (yg, SonC(Y)}
N =4 (Lvir BrpynC(Y))
P =u (rixuay SrexomnC (X USNC(T))).

Since M iz a submatrix of N and C is equivalential, it follows that the
mapping f defined as follows

F(rleg) = [Y]log:

is an embedding of M/Og into N/Oy. On the other hand, as is easy to
check, the mapping ¢, where

9([7Jog) = [¥leg

and y €8, is a homomorphism from I /Og into P/Og.
According to (IT)-property, there exists a matrix R = (&g, Dy) in
Matr*(C) and homomorphisms

w: NOg->R, w: P/Og—R
such that
(15) uof = wog.

Since (15) holds true, the following valuation » of & into R is well-
-defined:

u({pley) i peV(Y)
v = jw(pley) i peV(Xuid)
arbitrary if p ¢ V(Xu{e})uV(Y),

Moreover, the definitions of 3, P and v yield
(16) XuY < 9 (Dg).

Since R is a model for €, a e (X UY) and (16) imply that va € Dg.
In turn, a € Sy x y implies that va = w([a]%). Thus w([a]%) € Dg.
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Since w is an embedding of P/0y into R, we obtain that [a]@m is a desig-
nated element in PB/Oy. Then the definition of P gives

(17  aeC(XUS8,nC(Y)).

Tt follows from (17) that there exists a set Z = C(Y) such that V(Z)
c V(X u{a})nV(Y) and a e C(XUZ). Thus C has (MIP).
This completes the proof of Theorem 2.2, =

REMARK. Note that the proof of (ii)=-(iii) in Theorem 2.2 does not
require ¢ to be equivalential. It can be easily shown that the equivalence
(ii)«>(iii) is valid for any class K of matrices closed under the formation
of submatrices and direct products. '

We close this seetion with three remarks and one open problem.

Note 1. It is well-known that each intermediate logic ¢ can be
assigned in a one-to-one manner the equational class Alg*(C) consisting
of Heyting algebras which validate the theses of €. Without loss of gene-
rality we may identify the classes Matr*(C) and Alg*(C) (see [1]). Since
every intermediate logic ¢ has (FEP), Theorem 2.2 implies that the
equational class Alg*(0) has (IT) iff it has the amalgamation property.
Consequently Theorem 2.2, Theorem 3 of [2] and Lemma 2.1 yield

COROLLARY 2.3. Let O be an intermediate logic. The following asser-

ttons are equivalent

i) for any formulas a and B8, if V(a)nV(B) # & and § € C(a), then
there exists o formula y such that V(y) < V(a)nV (p) and y € O(a), f € O(y)
(ii) for any formulas o and B, if V(a)nV () # O and a—f € C(D),
then there exists a formula y such that V(y) < V(a)aV(p) and a—y € C(D),
y—pB e 0(D), where — is the implication connective of C
(iii) O has the Maechara interpolation property
(iv) the equational class Alg*(C) of Heyting algebras has the amalgama-
tion property

(v) the equational class Alg*(C) has injections transferable.

In the light of the results obtained by Maximova [6] there are exactly
seven nontrivial intermediate logies with the Maehara interpolation
property. Let us also note that the equivalence of clauses (iii)-(v) of
Corollary 2.3 can be also easily derived from the main theorem of Wrosi-
ski [13].

—_

Note 2. Let Kr be the logic (i.e. the consequence operation) in the

modal language defined as follows: the Kripke's system Kr constitutes
—

the set of axioms of Kr and Modus Ponens for the material implication

—
is the only primitive rule of inference of Kr. Let []"a be an abbreviation
for [J... [Ja, with the box [ preceding a n-times. Thus im particular
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1% = a. The logic E is equivalential and the infinite set {{O"(p<9q):
— —

7 € w} is known to be a Kr-equivalence. The class Matr*(Kr) consists of
all matrices of the form (o7, D), where & is a modal algebra and D is a
Boolean filter in & with the following property: if 0"(a«b) e D for
all » € », then a = b. -

If ¢ is axiomatic strengthening of Kr, then clearly the deduction
theorem holds for ¢ relative to material implication. Consequently the
clags Matr*(C) has (FEP). Thus Theorem 2.2 and Theorem 1 of [2] yield

—
COROLLARY 2.4. Let C be an axiomatic sirengthening of Kr. Then the

following assertions are equivalent:

(i) for any formulas a and B, if V{a)nV(B) # @ and B € C(a), then
there exists a formula y such that V(y) < V(a)nV () and y € C(a), f € C(y)
(ii) for any formulas a and B, if V(a)nV(f) # @ and a—f € C(D),
then there exists a formula y such that V(y) € V{a)nV(B) and a—y € C(0),
y—B € 0(D), where — is the material implication
(iii) O has the Maehara interpolation property
(iv) the class Matr=(C) has the amalgamation property
{v) the class Matr*(C) has injections transferable.

— —_

Note 3. Let KvDU be the strengthening of the logic Kr obtained by
adjoining the rule of prefixing of [, a/[Ja, to the set of rules of inference

—> 3 —
of Kr. The logic Kr9, in contradistinction to Kr, is implicative in the

— —
sense of Rasiowa [8] and KrH (@) = Kr(9).
_—

For every axiomatic strengthening € of KrU, the class Matr*(C) can
be identified with the equational class Alg*(C) of modal algebras 7 (with
the unit of o7 as the only designated element) which validate the theses
of €. The equational class Alg*(C) is known to have (FEP) relative to ¢
{see [4]). Thus Theorem 2.2 and Theorem 3 of [2] yield

—_
COROLLARY 2.5. Let O be an axiomatic sirengthening of KrB. Then
the following assertions are equivalont:

(i) for every formulas a and B, if V(a)nV(f) # @ and § < C(a), then
there exists a formula vy such that V{y) € V{a)nV(B) and y € ({a)}, # € C(y}

(i1) O has the Machara interpolation property

(iii) the equational dlass Alg*(C) of modal algebras has the amalgamation
property
{iv) the equaiional class Alg*(C) has injections transferable.

4 — Studia Loglca
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Finally, we pose a proeblem which seems to be a natural cutgrowth
of the results of this section and the well-known Banaschewski Theorem
for equational classes of algebras (see [12], p. 397).

ProBrEM. Let C be a standard sentential logic. We shall say that
the class Matr*(0) is residually small if Maty*(C) contains only a set
of Mair(C)-subdirectly irreducible matrices, i.e., the matrices subdirectly
irreducible in the class Matr*(C) do not form a proper class. (We refer
the reader to [1] for some basic facts concerning subdirectly irreducible
matrices.) Call a matrix MM a C-injective if WM e Matr*(C) and for any
matrices N and P in Matr+(0), if N is a submatrix of P and f: N-MW is
a homomorphism, then there exists an extension of f to & homomorphism
g: P The class Matr*(C) is injectively complete (or, “has enough
injectives”) if every matrix in Matr*(C) is embeddable in a C-injective.
Let us notice that if Matr*(0) is injectively complete, then the C-injec-
tives constitute the class which is strongly adequate for C. Is it true that
~ the conjunction of (AP), (FEP) and residuall smaliness is equivalent to
the injective completeness of the class Matr+(0), for every standard
equivalential logie C?
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