
Sentential Logics 
and Maehara Interpolation Property* 

Abstract .  W i t h  each sentent ia l  logic C, ident if ied with  a s~ructural consequence 
opera t ion  in a sentent ia l  language,  the  class Matt* (C) of factor ia l  matr ices  which 
va l ida te  G is associated.  The paper ,  which is a cont inuat ion  of [2], concerns the  con- 
nection between the pure ly  syntac t ic  p rope r ty  imposed on C, referred to as Maehara  
In te rpo la t ion  P rope r ty  (~IIP), and three d iagrammat ic  proper t ies  of the  class Matt* (O) : 
the  Amalgamat ion  P r o p e r t y  (AP), the  (deductive) F i l t e r  Extens ion  P r o p e r t y  (FEP)  
and Inject ions Transferable  (IT). The main  theorem of the  paper  (Theorem 2.2) is 
analogous to the  Wrofiski 's  resul t  for equat ional  classes of algebras [13]. I t  reads  
t ha t  for a large class of logics the  conjunct ion of (AP) and (FEP)  is equivalent  to  
(IT) and tha t  the  l a t t e r  p roper ty  is equivalent  to (MIP). 

w Preliminaries 

A sententiat language is an absolutely free algebra 

: = ( s ;  w . . . )  

freely generated by an infinite set V ( 5 : ) =  {p, g~ r, ...} of sentential 
variables and endowed with countably  m a n y  f in i ta ry  operations w w . . . ,  
the  connectives of 5:. The members of S, the  under ly ing  set of the algebra 
~ are called sentent ia l  formulas. I f  a is a formula~ then  V(a) denotes 
the  set of sentential  variables occurring in a. Fe r  any  X ~ S we set V(X)  
: U ( V ( a ) :  a e X } .  We shall of ten use the  nota t ion  X ( p i , . . . ~ p n )  to 
indicate t h a t  X is a set of formulas such tha t  V(X)  = {Pl, . . . ,P~}. The 
endomorphisms of 5 ~ are customari ly  called substitutions Jn 5 ~. I f  X(:pl~ . . . ,  
p~) is a set of formulas of 5: and  e is a subst i tu t ion in 5: such t h a t  
ep~ = a~, for i = 1, . . . ,  n~ then  of ten  the  more explicit no ta t ion  

X ( a l ,  . . . ,  

is used to denote the set eX~ the  image of X under  e. Thus X(a l ,  . . . ,  a~) 
denotes the  set of formulas which result  by  the  simultaneous subst i tu t ion 
of a~ for p~, i = 1, ...~ n, in all formulas in X. 

If  V is ~ set of sentent ial  variables of 5:, then  we let 5: v denote the  
( rudimentary)  sublanguage of 5: which consists of formulas containing 
only variables in V. 

* The author  is indebted  to the  referee for several  suggestions which have helped 
to simplify the  original exposit ion to i ts present  form; and for a careful reading of 
the manuscr ip t  which uncovered certain minor  errors. 

-- Studla Loglca 
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By a sentential logic we unde r s t and  a pair  

( ~ ,  C), 

where  5: is a sentential  language and C is a s t ructura l  consequence on 5 p, 
t ha t  is, C satisfies the  following conditions: 

(a) x c(x)  
(b) if X _ I z t h e n  C(X) ~ C(Y)  
(c) c(c(x)) = c(x)  
(d) eV(X) C(eX), 

for all sets X, :Y _ ,~ and  for every  subst i tut ion e of S:. 
If  no confusion is likely we shall ident i fy  a logic (5 ~, C) with its con- 

sequence operat ion C. Moreover,  if X a f ini te set of formulas,  t h e n  ins tead 
of C(X) we shall of ten wri te  C(al, . . . ,  a,), where  al,  . . . ,  a n is a f ixed 
a r r angemen t  of the  elements of X. We also use C ( X ,  a) as an abbreviat ion 

for r  {a}). 
Given a logic (5:, C), the  least infinite cardinal  /~ such tha t  

C(X) = U { C ( : Y ) :  I z - ~ x  and  Y < # } ,  

for all X c S, is called the  cardinal i ty  of C and  denoted  card(C). C is 

standard if card(C) = No. 
A logic (St, C) is equiva~entiM (see [8] and [1]) iff there  exists a set 

A ( p ,  q) of formulas of 5:, hereaf te r  re fer red  to as a C-equivalence, such 
t h a t  the  following conditions are  fulfilled: 

(i) A ( p , p )  ~_ C(O) 
(ii) A ( p ,  q) c C(A(q,  p)) 

(iii) A ( p ,  r) c_ C(A(p,  q)uA(q ,  r)) 
(iv) for each n-a ry  connective w of 5:, n ~ 0, and  any  variables Pl ,  ...  

P~, ql, "" ,  q~, 
A(w . . . p , ) ,  w .. .  q,)) c C(A(pl ,  ql)w . . .  w A ( p , ,  q,~)) 

(v) q c (A (p, q) u {p}). 
The class of equivMential logics includes a grea t  m a n y  of the  more  

impor tan t  sentent ial  logics, among others  all implicative logics in the  
sense of Helena  l~asiowa [9]. More informat ion concerning equivMential  
logics can be found  in [1] and  [2]. 

A logic (5:', C') is an extension of a logic (5~ C) iff 5f is a subalgebra 
of ~ '  (i.e. V(5:) c_ V ( ~ ' )  and  both  ~ and  ~ '  have  the  same stock o f  
connectives) and  C(X) = C ' ( X ) n S ,  for all X _c S. An extension ( i f ' ,  C') 
of a logic ( ~ ,  C) is said to be natural when card(C) = card(C'). I t  is easy 
to see t ha t  any  na tura l  extension of an equivalential  logic is again an  equi- 
valential  logic. The following resul t  is due to Shoesmith and  Smiley [10, 
:Lemma 2]: for every  logic (5:, C) and  for every  language 5 ~' including 
5 ~ as a subalgebru, there  is a consequence C' on ~ '  such t h a t  ( ] '~  C') 
is a na tura l  extension of (Y', C). 
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A (logical) matrix is a pair  

= ( d ,  D),  

where  ~r is an algebr% refer red  to as the  algebra of !l~, and D is a subset  
of A called the  set  of designuted elements  of !}~. (In the  sequel~ algebras 
will be  denoted  b y  Script  le t ters  d ,  &, 5e, etc., while their universes b y  
the  corresponding I tal ic  characters  A,  B~ S.) I t  will of ten  be  convenient  
to denote  b y  d ~  the  algebra of the  matrix~g~ and b y  D ~  the  set  oi desig- 
na ted  elements  of !~. Thus 

= (o~'~ ,  D ~ ) .  

I f  the  ~lgebra of a mat r ix  ~ is similar to a sentent ial  language 5P~ then  
TA is called a ma t r ix  for  ~ .  

Given a class K of matr ices  for 5:, we define the  logic 

Cn K 

in 5: as follows: a ~ CnK(X ) iff for every  mat r ix  ~ = (~r D) in K and  
every  homomorph i sm v f rom 5 ~ into d ,  va e D whenever  v X  ~_ D. (The 
homomorphisms f rom ~ into the  algebra of a ma t i i x  ~ are usual ly  called 
valuations in 9~.) A class K of matr ices  is strongly adequate for a logic 0 
iff C ~ Cn~. 

A m a t r i x ~  is ~aid to validate a logic (5:~ C) (or~ !)~ is a model  for C)~ 
if C(X) ~_ Chine(X), for all X c S. (We use here  the  symbol  Cn~ instend 
oi ~wkward  Cn(~}.) The symbol  

Matt(C) 

denotes  the  class of all matr ices  which val ida te  the  logic C. The members  
of Matr(C) are also called C-matrices. Matr(C) is the  largest  class of ma- 
trices s t rongly  adequate  for C. I f  C is s tandard ,  t hen  Matr(C) is a quasi- 
va r i e ty  (----an implicat ive class). 

Since the  not ion of a mat r ix  falls under  the  more  general  concept  
of an algebraic s t ructure ,  we can apply  to matr ices  all the  model- theoret ic  
operat ions which are pe r fo rmed  on algebraic s t ructures .  For  exampl% 
a mapping  h is a homomorph i sm f rom a mat r ix  9~ = ( d ,  D) into 
= (~ ,  E) iff h is a homomorph i sm f rom the  algebra ~ '  into 2 and hD ~_ E. 

A homomorph i sm h f rom9~ into 9~ is strict if moreover  h(A--1))  ~_ B - E .  
A one-to-one str ict  homomorphism is called an embeddi~g or~ an i~jection. 
B y  an isomorphism we unde r s t and  an onto embedding.  The concept  of 

s t r ic t  homomorph i sm is closely re la ted  to the  concept  of a s t r ic t  con- 
gruence of a matr ix .  We  shall say tha t  a congruence 0 of the  algebra ~/ 
of a ma t r ix  9:R ~--(J~ D) is s t r ic t  iff for any  a~ b eA~ aOb entails a e D  
iff b e D. In  other  words,  the  str ict  congruences of 9:R do not  pas te  toge ther  
the  designated elements  of ~ with the  undes igna ted  ones. I f  0 is a s tr ict  
congruence  of ~ = (~r 1)), then  the canonical  map  f rom ~ onto  the  
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quotient matrix 9Jt/O = ( s ] / O , D / O )  is a strict homomorphism. Con- 
versely, if h is a strict homomorphism fromgjt into 9~, then Oh, the kernel 
of h, is a strict congruence of 9:~ and if h is "onto" then ~gt/O k is isomorphic 
with Yr. In  every matrix 93I there exists a greatest strict congruence, 
denoted by O~. If C is an equivalential logic and A (p, q) is a C-equivalence, 
~hen it is easy to prove that  for every matrix 9J~ -- (~' ,  D) in Matt(C),  
aOm~b iff for every 2 cA,  ~d(a,  b ) e D .  ( ~  is the polynomial over the 
algebra ~ corresponding to the formula 2. The polynomial 2~ will be 
also denoted by 2m~ whenever the matrixgjl is fixed.) A matrixgJt is called 
simpge (or factorial), iff the greatest strict congruence of ~ coincides 
with the identity relation i n ~ .  Every quotient matrix 9)l/O~ is simple 
The class of simple C-matrices is denoted by 

Matr* ( C) . 

For instance, if C is the classical logic then Matr*(C) may be identified 
with the class of Boolean algebras. If C is the intuitionistic logic then 
Matr*(C) may be identified with the class of Heyting algebras (see [1]). 
For every equivalential logic C the class Matr*(C) is closed under the 
formation of direct products and submatrices. The reader also easily 
verifies that  if C' is a natural  extension of C, then Matr*(C') = Matr*(C). 
Our interest in simple matrices lies in the fact that  for every matrix 9:~, 
the logics induced by ~ and fOllOw, respectively, coincide. 

Let (5:~ C) be ~ fixed equivalential logic and let A ( p ,  q) be a C-equi- 
valence. Then, given a matrixPJt ---- (~r D) in Matr*(C) whose cardinality 
does not exceed the cardinality of 5:, we define the description of gJt, DS(92it), 
in the language 5:. Let z: A ~ V ( S )  be a fixed one-to-one mapping. Then 
we set 

DS(93i~) = {A(w ...Zan) , Z~(a 1 ..... am)): n e w ,  

w is an n-ary connective in 5f and a~ . . . ,  a~ eA} 

u{z : aeD}. 

/)S(PYt) is ~ subset of S and every formula in DS(PY~) contains at most 
the variables %, a c A .  

The following two lemmas come from [2]: 

L E ~  1.1. Zet (9 a, C) and 9X ~- ( ~ , D) be as above. Zet X = C (DS (9X)). 
Then the matrix ~ is isomorphically embedded in (~ ,  X)[O x by means 
of the mapping 

a-+[z~], a ~ A ,  

where 0 x is the greatest strict congruence of (5 p, X)  and [?] is the equivalence 
class of ~ relative to 0 x .  
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L E ~  !.2. Let (:7, C) and 93t be as above. Let a(zal... Za~ ) be a for- 
mula of 5 ~ in the variables zaa, . . . ,  za, ~, where al, . . . ,  a~ e A ,  and let v be 
a valuation of Sf in 92;t sq~eh that v (Za) = a, for all a ~ A .  Theqs 

iff  w 2). 

Let  (Y,  C) be s sentent ial  logic and  let  d be an  algebra similar to ~ .  
A subset V oi A is called a. deductive filter on ~ '  (relative to C) if t he  mat r ix  
( d ,  V) is ~ member  of MaWr(C). The set 

 c(d) 

of all deduct ive filters on ~4 is ~ complete lat t ice under  the  set- theoretic 
inclusion. I t  should be stressed tha t  the  notion of a deduct ive  filter is 
relativized to a given logic C -- for tha t  reason the  members  of :Fc (~  ) 
are  also called C-filters on d .  Le t  us also note  tha t  for the  sententi~l 
l~nguage 5 ~ 2~c(Sz ) coincides with the  f~mily of theories of C, i.e. subsets 
X os ~q such tha t  C(X) = X .  For  instance,  if C is the  classical logic ~qnd d 
is a Boolean ~lgebra, t hen  2~c(d ) is the  family of "usuM" filters of ~4. 

I f  ~Jt = (~r D) is a ma t r ix  for ~ ,  t hen  we let  

denote  the  l~ttice of a~ll deduct ive  filters on OR,/~c(~) = {V e~vo(~r 
/ )  ~ V}. ~o(93t) is a complete  sublatt ice o f / ~ o ( d ) .  The members  of 2~c(~l) 
are  re fe r red  to as deduct ive filters on ffdt. 

The following two lemma.s can be found in [3]: 

LE~rj_~t 1.3. Given an equivalentia~ logic C, let 9J~ and ~ = (~ ,  E) be 
~natrices in Matt(C) and let h be a homomorphism from ?Or onto ~t. Then 

or every V e/~c(!IR), / f  h(E) _~ V, Shen hV  el~c(9~ ). 

(In fuct~ L e m m a  1.3 is vMid for a much  broader  class th~n the  class of 

equivalentiul  logics.) "h(E) is the  9reim~ge ~f /~ by  h. 
The ~bove lemmu is the  C-filter coun te rpa r t  of ~ I~irly obvious al- 

gebraic fac t :  if h: ~'-->2 is u homomorph i sm f rom un algebra ~ onto 
~nd @ is a congruence of ~ '  such tha t  ker(h) ~ q~ t hen  {(ha, hb): (a~ b) e q)} 
is ~ congruence of ~ .  

Im~YL~ 1.4. Zet C be an eq~ivalential logic. Then for every matrix 93t 
in Matr(C)~ the lattices ~o(92~) and ~'e(92i~/0~) are isomorphic. The iso- 
morphism is established by means of the mapping Yh where 

~ ( v )  = VlO~,  

for all V e ~ c ( ~ ) .  

We ~dmit  the  following nota t ion:  

f :  9Jt~->Yt (or ~ 9 % )  whenever  f is ~ homomorphism 
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from ~ matr ix  !fit into N; 

l :  ~I-~N 
of ![R into ~t~ 

f: ~1-+~ 
f rom ~ onto ~.  

(or !ff~tF-~) whenever f is an embedding 

(or ~l~l I--~) whenever jr is a homomorphism 

Let  K be a class of similar matrices closed under  isomorphisms. We 
shall say tha t  K has the  amalgamation property (AP, for short) if for any 
matrices ~}~, 9~ and ~ in K the following condition is fulfilled; for any 
embeddings f :  ~-~, g: ~l)~l-*~, there  e~ist a matr ix  !R in K and  embed- 
dings u: ~ - >~ ,  w: !~ll-,~ such tha~ u o f  = wog. Graphically: 

gi 
T 

i 
l u  
! 

The system (!R, u,  w) is then  referred to as a common extension of t h e  
matrices ~ ,  ~ over 2I~ in K. 

The second diagrammatic  proper ty  we are interested in is t ha t  of 
injections transferable. Let  K be as above. K is said to have  ~njeotions 
transferabZe (IT, for short), if for any  matrices !l~, 9~ and ~ in K the  follo- 
wing condition is fulfilled: for every embedding f :  !ff~l~!R and every 
homomorphism g: !ff~l-~!~, there exist a matr i~ ~ in K, a homomorphism 
u: !)ll-+!R and an embedding w: ~ll-+~ such tha t  u o f  = w o g. This p roper ty  
can graphically visualized by means of the  following diagram: 

f 
~11 l ,  

g I 
i u 
I 

w ~ 

Let 0 be a logic in a language 5 p and  let K be a subclass of Matt((7). 
K is said to have the  (deductive) fi~ter extension property (FEP9 for short) 
with respect to 0 if for each m~trix ~ in K, every deduct ive filter Vo 
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on a. subm~tr ix  93~ ~ (W~,  D~)  of 91 can be ex tended  to a deduct ive  
!ilter on Tt~ i.e., there  exists a deduct ive  filter V ~ Yc(91) such that V o 

V n A ~ .  
\u  are  mainly  in teres ted  in the  case when the  whole class Matt(C) 

has the  filter extension p rope r ty  relat ive to C. We shall show t h a t  if C 
is equivMentiM and  the  nar rower  class Matr*(C) of simple C-matrices 
ho~s (FEP),  then  Matt(C) has (PEP).  ~{oreover in the  case of equivalential  
logics there  is another  p rope r ty  closely connected  with  (I~EP). The follo- 
wing l emma makes these remarks  precise. 

LEPTA 1.5. .Let C be an equivaIential ~ogic. The following assertions 
are equivalent: 

(i) the c~ass Matt(C) has (FEP)  relative to C 
(if) the class Matr*(C) has (PEP)  

(iii) for any three matrices ~ ,  91, ?~ in Matr*(C) and any mappings f 
and g such that f:  OJ~!l~91 and g: ~J~l--~there exists a matrix 9t in  
Matr*(C) and mappi~gs u: 911---~.R, w: ?~11--->~ such ~hat ~ o f  = wog.  

The p rope r ty  expressed by  condition (iii) can be visualized by  means  
of the  following diagram:  

f 

"r" 

l ' 
g l u  

! 
! 

w 

PgooF of L e m m a  1.5. (i) ~ (if). This is triviM because (if) is a par-  
t icular ease of (i). 

(if) ~ (i). L e t ~  = ( d ~ ,  D~)  be a submatr ix  of 91 = (~m, D~), where  
both93~ an 91 belong to Matt(C). In  view of L e m m a  1.4, the  l~ttices LWa(~ ) 
and  ~ c ( 9 ~ / 0 ~ )  ~re isomorphic. Similarly, the  lat t ice/~c(9l)  is isomorphic 
with Fc(91/O~). 

Now let V 0 e Lw~(OJq). Then, by ~ e m m a  1.4, V0/O~ e / v o ( ~ / O ~  ). Since 
C is equivMentiM, the  mapping % where  

for all a e Am, is an embedding  ofg~/O~ into 91/0~. As the  class Matr*(C) 
ha, s (FEP),  there  is a deduct ive  fil ter V* e Fu(91/O~) such t h a t  

(1) V * ~ ( A ~ / O ~ )  = ~(Vo/O~).  
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Fur the rmore ,  the re  exists a deduc t ive  fi l ter V e 2' 0 (3) such t h a t  

(2) V* = {[a]e~: a ~ V}. 

(1) and  (2) yield 

Vc~A~ = Vo. 

Indeed ,  let  a e A ~ .  I f  a e Vo t h e n  [a]o~ e Vo/O~ whence  [aJo ~ 

---- ~([a]o~) e~(Vo/O~) .  Hence,  by  (1), [a]em EV*. Thus,  by  (2), t he re  

is b ~  V such t h a t  [a]o~ = [ b ] o ~ .  Hence  A~(a,b)_cD~_~ V, where  A 

is ~ f ixed C-equivalence. Thus  {b)uAm(a, b) _~ V whence,  by  clause (v) 
of the  defini t ion of an  equivalent ia l  logic, a e V. Conversely,  let a e V ~ A ~ .  
Then  [ a ] ~  e V* and  clearly [a]o ~ eg(A~/O~). Thus  (1) yields [aJe ~ e 

e ~(V0/O~),  i.e., 

(3) 9 ( [a ]e~)  e 9 ( V o / 0 ~ ) .  

Since 9 is an  i somorphism be tween  the  algebras ~r and  9(s/~/O~), 
i t  follows f rom (3) t h a t  [ale ~ e Vo/O ~ whence  a e V. 

Thus  V is an  extens ion  of Vo onto  3 .  
( i i)~(i i i) .  Assume  (ii) and  let  9 X = ( a c ~ , D ~ ) ,  9 ~ - ~ ( ~ 4 ~ , D ~ ) ,  

- - ( ~ / v ,  D~) and  f~ g be as in (iii). Def ine  

i r e  = 

Then  g is a s t r ict  h o m o m o r p h i s m  f rom (~/~,  Vo) onto  !~ whence  

Vo e 

S i n c e ]  is an  embedding ,  the  m a t r i x f ( ~ )  = a / ( f ( ~ ) ,  f(D~)} is i somorph ie  
wi~h 9X. Clearly, f ( ~ )  is a submat r ix  of ~ ~nd f(Vo) ~ 2"o (f(YJ0)- I n  v iew 
of (ii), the re  exists a deduc t ive  fi l ter  V e 2"0(9~) such t h a t  

(4) 

Let  

= f(re). 

9t =a(d /Ov, v / o r ) ,  

where  O v is the  grea tes t  s tr ict  congruence  of ( d ~ ,  V). Clearly 9t is a m e m -  
ber  of Matr*(C). Since C is equivalent ial ,  it follows t h a t  the  mapp ing  r 
def ined as follows: 

~(b) = [b]v , 

for all b e Am, is a h o m o m o r p h i s m  f rom !l~ onto  9t. ([b] v is the  equivalence: 
class of b wi th  respect  to Or.  ) 

On the  o ther  hand ,  the  m a p p i n g  w defined by means  of the  formula. 

w (g(a)) [ ] (a) ]  v,  
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for all a e A ~ ,  is an embedding  of ~3 into ~.  Indeed,  if c, d e a r ;  then  
there  exist  a, b s Am~ such t ha t  c = g(a) and d ----g(b) whence c = d iff 
g(a) =~ g(b) ifi  A j v ( g ( a ) ,  g(b)) ~ D v iif Azm ~ (a, b) c VoiffAs(<,m){f(a), 

f(b)) ~_ f ( r e )  iff (by (4)) Ad~( f (a ) , f (b ) )  ~ V iff [ f(a)]  v -~ [f(b)] v. Thus 

w is well-defined and one-to-one. W e  also have  tha t  e----g(a) e D m iff 
a ~ Voiff (by (4))f(a) ~ V ifi  [ f (a)]  v e V/G v. Hence  g is also an embedding  
of ~ into !R. 

I t  follows f rom the  definitions of ~ and w tha t  u o f  = wog .  Thus (iii) 
has been  proved.  

(iii) ~(ii).  LetgX = ( d ~ ,  D~)  be  a submat r ix  of 9~ = (rim,/gm) where  
bo th  9X and 9~ belong to Matr*(C). Clearly, the  ident i ty  map f is an  em- 
bedding  of 9J~ into !R. 

~ o w  if V o is a deduct ive  filter in Fc(OX), then  the factorial  ma t r ix  

=e l  (d~ /Ovo ,  re/Ore),  

where  Ore is the  grea tes t  s tr ict  congruence of (A~,  Vo), belongs to Matr* (C) 
and the  mapping  g def ined as follows: 

g(a) = [a]v0, 
for all a e A ~ ,  is a homomorphism f rom 9X onto ~ .  

According to (iii), there  exists a ma t r ix  

= (~/~, D~) 

in ~Ia$r*(C) ~:nd mappings  

such t ha t  ~ of  = w o g. Le t  

V =a l  {b e Am: ~(b) e D~}. 

Clearly Dm c V and  the  mmpping ~ is a s t r ic t  homomorphism f rom 
(~r V) onto 9t. Consequent ly  V e ivo(~). 

We  claim tha t  V ~ A ~  = Vo. IJet a e Vo. Then g(a) e Vo/Ov0 whence  
wog(a)  = uo f (a )  -~ u(a) eDm.  Thus a e V. Conversely~ let  a e V.~A~. 
Then, b y  the  definit ion of V, u(a) e Dm. Since u(a) = uo f (a )  = wog(a)  
we thus  have  t ha t  w o g ( a ) e D m .  B u t  w is an  embedding  of ~ into 

whence g(a) e Vo/Ovo ~ i.e., [a]v ~ e Vo/Ovo. Thus a e Vc. 
This completes  the  proof  of (if). [] 

I n  a quite  mnalogous manner  one proves  the  following lemiims. 

~E_~_A 1.6. .Let C be an equiva~ential ~ogic. The following two asser- 
tions are equivalent'. 

(i) $he c~ass MaWr(C) has the amalgamation property 
(if) the c~ass Matr*(C) of simple C-matrices has the amalgamation, 
~ro2erty. 
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I~E~MA 1.7. JLet C be as above. The class Matr(C) has injections tran- 
sferable if  so has the class Matr*(C). 

We omit  the  proofs. 
Finally,  let  us note  tha t  logics C for which the  class Matr(C) is known 

to have (AP) or (IT) are relat ively rare.  For  instance, there  are only seven 
nontrivial  equational  classes of Hey t ing  algebras with the  amalgamat ion  
proper ty .  We refer  to [6] and  [2] for more  information.  On the  
other  h~nd, there  are m a n y  logics C for Which the  class Matt (C) (or Matr* (C)) 
has the  filter extension proper ty .  Par t ia l  justif ication of this fact  can 
be c~rried out  as follows. There ure m a n y  sentent ial  logics which admit  
deduct ion theorems.  (By the  deduct ion theorem for C with respect  to 
a b inary  connective ~ we under s t and  the  following s t a tement :  for any  
set X of formulas and  for any  formulas a and fl, fle C(X,  a) iff a-+fl e C(X).) 
For instance, every  in te rmedia te  logic, i.e., every  axiomatic s t rengthening 
of the  intuitionistie logic admits  deduct ion theorem with respect  to the  
implication connective.  I t  can be easily shown thnt  if a logic C admits  
deduct ion theorem,  then  the  class Matr(C) hns the  filter extension pro- 
per ty .  (In fact,  Matt(C) has (FEP)  under  much  weaker  ~ssumptions.  
More informat ion can be found e.g., in [4].) 

w Maehara Interpolation Property 

Let  C be a logic in a language 90. C is said to have the  Maehara in- 
terpolatio~ property (MIP, for short) if for any  sets of formulas X,  :g c S 
and  for any  formula  a of 9 ~ the  following condit ion is satisfied: if V ( X •  
U{a})c~g(:g) r 0 and  a ~ C ( X u Y ) ,  then  there  exists a set of formulas 

Z such t h a t  V(Z) ~ V(Xu{a})c~V(Y) ,  Z c_ C(Y) and  a ~ C ( X u Z ) .  
Iaet us note  t ha t  if C is s tandard ,  then  we m a y  d e m a n d  the  above 

set Z to be finite. Moreover,  if C has conjunct ion connective,  tha t  is, 
there  exists a b inary  eOnlleetive A in 90 such tha t  C(aAfl) = C(a, ~), 
for all formulas a, fl, t hen  forming the  conjunct ion of the  members  of Z 
we m a y  even demand  Z to consist of a single formula.  I n  this ease (MIP) 
reduces to the  following p roper ty :  

(MIP)* for all sets X, I7 ~ S and  for every  formula  a of 90, if V ( X w  
w{a))r~V(Y) ~ 0 and  a ~ C ( X u Y ) ,  t hen  there  exists a for- 
mula  ~ such tha t  V ( $ ) ~  V(Xw{a})r~V(Y) ,  ~ e C ( Y )  and  
a e C(X,  ~). 

(MIF)* is the  exact  formulat ion of a lemm~ proved  originally by  M~ehara 
for the  intultionistic sentential  logic (see [5] and [11]). The s igni f icance  
of (MIP)* in the  more general  context  of proof theo ry  is described in 
detail in Takeuti ' s  book [11]. Some similar forms of the  interpolat ion 
proper ty  in the  domain of equational logic have been invest igated,  e.g., 
in Pigozzi [7]. 
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The intuit ionistic logic is clearly s t andard  and  is endowed with con- 
junction.  Thus, since in view of the  5{~ehara's resul t  it has (SIIP)*, we 
see tha t  it has also (NIP) .  

We now t u r n  a t ten t ion  to another  pure ly  syntact ic  p rope r ty  imposed 
on sentent ial  logics. We call it p rope r ty  (I). This p rope r ty  as well as some 
consequences of it were examined  in [2]. Let  C be a logic in a sentent ial  
language &P. Then  C is said to have  property (I) if for all X, IZ c S and  
all a e S ,  if a e C ( X u ~ Y )  and  V(a)c_ V(X)  and  V(X)c~V(Y)  r t9 t hen  
3Z c_ S V(Z) c_ V ( X ) n V ( I  r) & Z  cc_ C(~Z) & a e C ( X k p Z ) .  I t  is a fa i r ly  
tr ivial  ma t t e r  to show tha t  the  lV[aehara interpolat ion p roper ty  (NIP)  
implies p roper ty  (I). As the  referee pointed out, for a wide class of logics 
the  (~{IP) and  (I) propert ies  are ~ctu~lly equivalent .  

I~E~'[A 2.1. Let (5", C) be a logic such that C(O) r fit. Then (MIP) 
is equivalent to (I). 

PROOF. To see tha t  (I) implies (NIP)  we argue as follows. Assume 
V ( X u { a } ) n V ( Y )  :/: 0 and  a e C ( X u Y ) .  Let  X '  be any  set of formulas 
such tha t  V(X' )  = V(Xu{a})  and C(X') = C(X). (X'  can be obtained 
f rom X by  adjoining theorems of C tha t  contain the  variables in a.) Then 
V(X')cVV(Y)  : / :0  and  aeSv(x,)c~C(X'wlZ). Thus by  (I) a ~ C ( X ' u  

Thus there 
e~:ists a Z such tha t  V(Z) ~_ V ( X w ( a } ) n V ( Y ) ,  Z ~_ C(X) and  a e C(X~)Z). 
So (M/P) holds. 

The purpose of the  present  paper  is ~o determine semantic  equivalents 
of the  pure ly  syntact ic  ~ a e h a r a  interpolat ion proper ty .  The basic resul t  
of the  paper,  Theorem 2.2, states t ha t  given a.n equivalential  logic C, 
(3iIP) is equivalent  to Inject ions Transferable for the  class Matr*(C) 
of simple C-matrices. 

TKEOI~ES,[ 2.2. Let C be an equivalen~ial logic in a sentential language 
~f. The following assertions are equiq~alent: 

(i) C has the Maehara interpolation property (MIP) 
(if) the crass Matr*(C) has the amalgamation property (AP) and the 

(de&~etive) filter extension property (FEP)  with respect to C 
(iii) t'ne class Matr*(C) has injections transferable (IT). 

P~{ooF. (i) ~(ii).  Since (MIP) implies (I), applying Theorem 2 of [2] 
we obtain t ha t  the  class Matr*(C) has the  amalgamat ion  proper ty .  

We shall now check tha t  (3/lIP) implies t ha t  the  class Matr*(C) has 
the  filter extension p rope r ty  (relative to C). 

Assume (~s and  let 9I~ = ( d ~ ,  Dm~ ) be a submat r ix  of 9~ = (dm~ Dm) ~ 
where 9l ~ Matr*(C) and  let Vo ~Yc(!l)l). Since C is eciuivalential, ~ is 
also a m e m b e r  of Matr*(C). 
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Let  us assume first t ha t  the mat r ix  91 has a cardinal i ty  not  exceeding 
the  cardinal i ty  of 3'. Le t  DS(!rJ/) and  /)S(91) be the descriptions of grit 
and 9l in 3' in the  variables {z~: a e A~} and {z~: a e A~}, respectively. 
We assume tha t  Z~a = z2a, for all a e A~ .  Then DS(9)I) _~ DS(91). 

CLAI~. Net fl be a formula in variables from {Zla : a e A~} sq~ch tha$ 

Indeed~ if f le  C(DS(91)), then  (NIP) implies t h a t  there  is a set Z 
of formulas of 5 p such t h a t  

~(z)  _~ {z~: a eA~},  

z ~ c(Ds(91)) (5) 

and 

(6) 

Let  v be a characteristic valuat ion of 5 p in 91, i.e. vz~ = a, for all a e A~.  

Then, in view of (5), 

(7) v(Z) Z Din. 

Since V(Z) ~_ {z~: a e A~} and ~ is a submatr ix  of 91, (7) yields 

(8) v(z) z D~. 

B u t  v is a t  the same t ime a characteristic valuat ion in ffJ~. l~ecalling once 
more L e m m a  1.2, on the s t rength o f  (8) we get 

Z ~ C(DS(~)). 

Hence C(DS(gJI)t3Z) = C(DS(~Jl)), whence, by  (6), 

~ e(DS(~)) .  

This proves our claim. 

Le t  v be us above and  let 

v = ~ v ( S v m s m ) ) n c ( D Z ( ~ )  v { z ~ :  a e Vo})). 

We shall show tha t  V is the  required extension of Vo, i.e., 

v e _~ (91) (a) 

and  

(b) VnAm~ = Vo. 
2 As to (a) notice tha.t Dm ~ V. Indeed,  if a e/)m then  z~ e DS(91) ~_ 

~2 ~ SV(DS(~I))ChC(VS(91)):" Since w~ = a, it follows f rom above tha t  a e 
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In  order  to show tha t  V is a deduct ive  filter with respee~ to C, we 
shall make  use of L e m m a  1.3. 

The mat r i~  

being a. submzt r ix  of (5 z, C(O)), is also a member  of Matr(C). Moreover v~ 
res t r ic ted  to 5fv(Ds(~)) , is ~ homomorph i sm f rom ~ onto 9l. Let  

x u{ o: Vo}). 
Then  cle~riy X ~/~c(~).  We sh~ll check tha t  

Le~ fl ~ v  (D~), i.e. vfl e D~. Since fl ~ SV(DZ(~)) we al~ply L e m m a  1.2 
which yieids f i e  C(DS(9~)) whence fl ~ X. 

Thus Lemm~ 1.3 gives thn t  

v = v ( X )  

As ~o (b) notice tha t  f rom the  definit ion of V ~nd the  1)roperties of v 
i t  follows that V o ~ V(~A~. 

Let  b e VmA:v~. Hence  b ----v% where  

Since also b ~ A ~  _~ A~,  we have tha t  b -~ vza. Thus b ----va = vz o in 
d ~ .  Whence  

Since every  formula  in A(a,  %) is bui l t -ap by  means of v~riables f rom 
V(DS(!~)), Lemmu 1.2 and  (!0) yield 

9), (11) and  the  fact  ~hat A is ~ C-equiva, lence give 

Aioplying (MIP) we obtain 

Since ~(za:aevo}~{Zb} ~___ SV(DS(~)) We  thus  have 

In  view of ottr Claim 

Consequent ly 
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Since ( d ~ ,  V0)e Matr(C) and 

v ( D S ( ~ J ~ ) U { Z a :  a + Vo} ) _~ Vo, 

(12) entails that  

b ~ v z  b e V o. 

This proves (b). 
If the matrix 9l has a cardinality greater than the cardinality of J ,  

we form ~ natural  extension (:~'~ C') o f  (5 ~, C) such that  the eardinality 
of Sf' is equM or greater than the cardinality of 9~. Then Matr*(C) = 
= Matr*(C') and~ as is easy to check~ the logic (~ ' ,  C') has also (MIP). 
Further  we argue as above~ taking the logic (Sf', C') instead of (5~ C) 
as the point of departure. 

Thus (ii) has been proved. 
(ii) ~(iii). Assume (ii). Let 9J~ 9~ ~ be matrices in Matr*(C) and let f, g 

be mappings such that 

f :  9~1~+9l and g: !)~-gp. 

There exists a subm~trix ?p' of ~ such that  g is a homomorphism from 
9~ onto ~' .  Clea, rly !p' is also a member of Matr*(C). Since the class Ma~r*(C) 
has (FEP), there exists a matrix ~ in Matr*(C) and mappings 

such that 

(13) ~of = wog 

(See the diagram below.) 

I| 

g :~' TI" 

in 

f 

T 
I 
I 

(FEP) 
I 

w 

T 

{AP) 

h 

I 
I 
i k  
! 

Thus w is an embedding of ~ '  into ~ and ~ '  is ~ submatrix of ~.  Since 
Matr*(C) has the amalgamation property~ there exists ~ matrix ~ in 
Matr*(C) and mappings h~ k such tha t  

h: ~ l l ~ ,  k: ~lI-+~ 
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and  

(14) /cow = h o l d ,  

where ig is the ident i ty  map from ~ '  into ~ .  (13) and (14) imply tha t  
k ou  is a homomorphism from ~ into ~ and 

hog ---- (kou)of. 
Thus Matr*(C) has (IT). 

(iii)~(i). Assume tha t  Matr*(C) has injections transferable. 
Let  a ~ C(Xw:Y) ,  where V ( X u { a } ) n V ( Y )  :/: 0 .  Consider the  rudi- 

men ta ry  sublanguages ~fv(x), 5fv(~) a, nd  5~o =all 5fV(Xu{~})nV(~)" 
I Jet 

Yt = a  (~v(~  , ~ v(r) nC ( :~)) 

Since 9~ is a submatr ix  of 9~ und C is equivalentia,1, it follows thu,t the  
mnpping f defined as follows 

f([r]o,,) = [r]o~, 
is an embedding of ~/0~ into ~/0 m. On the other hnnd~ ~s is easy to 
check, the  mapping g, where 

and y e So, is a homomorphism from ~ / O ~  into ~ /O  m- 
According to (IT)-property,  there  exists ~ matr ix  ~ = (~/m, Din) in 

Matr*(C) and homomorphisms 

u: ~ / O ~ ,  w: ~ / O r  

such tha t  

(15) u o f  = w o g .  

Since (15) holds t rue  r the  following va.luation v of 5 ~ into ~ is well- 
-defined: 

[u([p]om) if p e V(Y) 

vp = /w(Ev]%)  if p ~ ( X u { a } )  

(arbi t rary  if p r V ( X w { a } ) w V ( Y ) ,  

Moreover, the  definitions of ~t, !5 and v yield 

(16) X u Y  c_ v (9~) .  

Since ~ is a model  for C~ a eC(X~:Y_) and (16) imply tha t  va ~ ,  
I n  turn,  a e Sv(zc~{.}) implies t ha t  va = w([a]ev). Thus w([aJom) e D  m. 
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Since w is an embedding of ~ / 0  v into 9~, we obtain tha t  [a]~v is a desig- 

nated element in ~[0~.  Then the definition of ~ gives 

(17) 

I t  follows from (17) that  there exists a set Z ___ O(~ r) such that  V(Z) 
~_ V ( X u { a } ) n V ( ~ )  and a ~ O ( X u Z ) .  Thus O has (~IP) .  

This completes the proof of Theorem 2.2. I 

R E ~ K .  ~-ote that  the proof of (if)~(iii) in Theorem 2.2 does not 
require C to be equivalential. I t  c~n be easily shown that  the equivalence 
(ii)~(iii) is valid for any class H of matrices closed under the formation 
of submatrices and direct products. 

We close this section with three remarks ~nd one open problem. 
Note 1. I t  is well-known that  each intermediate logic C can be 

assigned in a one-to-one manner the equational class Alg*(C) consisting 
of t teyt ing algebras which validate the theses of C. Without loss of gene- 
rality we may identify the classes Matr*(C) and Alg*(O) (see [1]). Since 
every intermediate logic C has (FEP)~ Theorem 2.2 implies that  the 
equational class Alg*(O) has (IT) iff it has the amalgamation property. 
Consequently Theorem 2.2~ Theorem 3 of [2] and Lemma 2.1 yield 

C0~0LLARY 2.3. .Let C be an intermediate logic. The following asser- 
tions are equivalent 

(i) for any formulas a and fl, i f  V(a)nV(fl)  r 0 and f ie  C(a), then 
there exists a formula y such that V(y) ~ V(a)(~V(fl) and y e C(a), fl e C(7 ) 
(if) for any formulas a and fi, if  V(a)nV(fl)  ~ 0 and a~f i  e C(O), 

then there exists a formula y such that V (~) c V ( a)n V (fl) and a-~y e C ( O)~ 
y-~fl ~ C(O)~ where ~ is the implication connective of C 
(iii) C has the Maehara interpolation property 
(iv) the equational class Alg*(C) of Heyting algebras has the amalgama- 
tion property 
(v) the equational class AIg*(C) has injections transferable. 

In  the light of the results obtained by ~Saximova [6] there are exactly 
seven nontrivial intermediate logics with the Maehar~ interpoI~tion 
property. Let us also note that  the equivalence of clauses (iii)-(v) of 
Corollary 2.3 c~n be also easily derived from the main theorem of Wrofi- 
ski [i3]. 

~Tote 2. Let Kr be the logic (i.e. the consequence operation) in the 
modal language defined as follows: the Kripke's system Kr constitutes 

the set of axioms of Kr and modus Ponens for the m~terial implication 

is the only primitive rule of inference of Kr. Let ~ ' a  be an abbreviation 
for [] ... []a~ with the box [] preceding a n-times. Thus in particular 
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~ ~  = a. The logic Kr is equivMentiM and  the  infinite set {[:]n(p~__~q): 

n ~ ~o} is known to be a, Kr-equivMence. The class Matr*(Kr) consists of 
M1 matrices of the  form (~v ~, D), where  ~ '  is ~ modM glgebr~ and  D is 
:Boolean filter in ~r with the  following p roper ty :  if K]'(a(--+b)sD for 
all n e ~o, t hen  a = b. _+ 

If C is ~xiomutic s t rengthening of Kr, then  clearly the  deduct ion 
theo rem holds for C relat ive to materiM implication. Consequent ly the  
chs s  Matr*(C) hns (FEP).  Thus Theorem 2.2 ~nd Theorem 1 of [2] yield 

COrOLLarY 2.4. _Let C be an axiomatic strengthening of Kr. Then the 
following assertions are equivalent: 

(i) for any formulas a and fl, i f  V(a)~V(f l)  ~ 0 and f le  C(a), then 
there exists a formula ~, such that V(7) ~- V(a)nV(f l )  and y e C(a), f le  C(7) 

(ii) for any formulas a and fi, i f  V(a)~V(f l)  =/: 0 and a-+fl e C(O)~ 
then there exists a formula y such that V(~) c V(a)c~V(fl) and a-*7 e C(O), 
y-*fl ~ C(O), where - .  is the material implication 

(iii) C has the Maehara interpolation property 

(iv) the class Matr*(C) has the amalgamation property 

(v) the class Matr*(C) has injections transferable. 

2v~ote 3. Let  Kr ~ be the  s t rengthening  of the  logic Kr obtained by  
adjoining the  rule of prefixing of [:], a/EJa, to the  set of rules of inference 

of Kr.  The logic Kr ~, in contrndis t inct ion to Kr, is implicative in the  

sense of R~siowa [8] and Kr~(O)  = K r ( 0 ) .  

For  every  uxioma, tic s t rengthening  C of Kr ~, the  clnss Matr*(C) tun  
be identif ied with the  equational  eluss Alg* (C) of modal  algebras d (with 
the  uni t  of d ~s the  only designated element)  which vMidute the  theses 
of C. The equntional class A~g*(C) is known to have (FEP)  relat ive to C 
(see [4]). Thus Theorem 2.2 nnd Theorem 3 of [2] yield 

COrOLLArY 2.5. _Let C be an axiomatic strengthening of .K_r D. Then 
the following assertions are equivalent: 

(i) for every formuMs a and fl, i f  V(a)c~V(fl) :/: 0 and fl ~ C(a), then 
there exists a formula 7 such that V(y) ~ V(a)~V(f l )  and ? e C(a)~ f i e  C(~) 

(ii) C has the Maehara interpolation property 

(iii) the equationa~ class Alg*(C) of modal algebras has the amaIgamation 
property 
(iv) the equational class Alg*(C) has injections transferable. 

4 - -  S t u d i a  Loglca 
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Final ly,  we Ppose a problem which seems to be a n~tural  ou tgrowth  
of the results of this section and  the  well-known Banuschewski Theorem 
for equational  classes of ulgebrns (see [12], 13. 397). 

P R O B ~ L  Let  C be u s t anda rd  sentent ial  logic. We shall say t h a t  
the clnss Matr*(C) is residually small if Matr*(C) contains only ~ set 
of Matr*(C)-subdirectly irreducible m~trices, i.e., the  matrices subdirectly 
irreducible in the  cluss Matr*(C) do not  form ~ pro13er class. (We refer 
the reader  to [1] for some basic f~cts concerning subdirectly irreducible 
matrices.) Cull ~ mat r ix  9~ n C-injective if !!~ e Matr*(C) und for nny 
m~trices 92 ~nd ~ in Matr*(C), if 92 is u submatr ix  of ~ and  f :  92~YJ~ is 

homomor13hism , then  there  exists an extension of f to n homomor13hism 
g: ~ .  The class Matr*(C) is injectivdy complete (or, "h~s enough 
injeetives") if every m~tr ix  in 'Matr*(C) is embeddable in ~ C-injective. 
Le t  us notice t h a t  if Matr*(C) is injectively complete, then  the  C-injec- 
t i res  const i tute  the  class which is s trongly adequate  for C. Is it  t rue  t h a t  
the  conjunct ion of (A_P), (FEP) a.nd residuall smallness is equivalent  to  
the  injective com131eteness of the  class Matr*(C), for every s t andard  
equivalential  logic C? 
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