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w Introduction 

Let ~ be a bounded simply-connected domain in R 2 of class C 2'~ for some 
> 0. Let ~ be a diffeomorphism of class C 2'~ from 0s onto the boundary of 

a convex domain & C ~2. Assume that kv is so oriented that its degree is one. 
We consider the variational problem of minimizing the functional 

(1.1) ~(u)  = / s ?  F(DU)dX 

in the class 

= {U E wl'2m(s ]~2) . U = i / /on  0,(2}. 

A theorem of RAD6 [R] states that for the Dirichlet integral with F(P) = [P[e 
and m = 1, the minimizer is a homeomorphism from s onto ~ .  In this paper, 
we prove that minimizers for a class of integrands F(-) given in terms of IP[ 
and de tP  are homeomorphisms. 

We consider 

(1.2) F(P) = G(IP[ 2, detP) _= (# + [p]2)m q_ ~(]p]2, detP) 

for 2 • 2 matrices P. Our structural hypotheses are 

(1.3) 
(1.4) 

(1.5) 
(1.6) 

(1.7) 

/ z > 0 ,  m >  1, 

e C3([0, oz) x R) and G > 0, 

G(s 2, d) is a convex function of s and d for (s, d) e [0, ~ )  x R. 

a,28>o, 
OdG(S 2, O) = 0 for  s > 0, 
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(1.8) there is a constant C > 0 so that 

lim IPI 2-2m- IDZ(F(P) - CIpI2m)l = O. 
[pI--+oo 

Under these conditions minimizers are known to exist. Moreover, they are locally 
Lipschitz continuous in X2. 

Our principal result is 

Theorem 6.1. Assume F satisfies (1.2)-(1.8) and U is a minimizer for ~V(.) in 
~ .  Then U is a homeomorphism from Y2 onto 2~. Moreover, 

f 
(1.9) lim --/- detDU > O for all X ~ s 

~ 0  JBR(X) 

This work is motivated by problems from two-dimensional nonlinear elas- 
ticity where one considers an image set dR and seeks a univalent mapping 
U: ~ --+ dR such that U: as ---> 0dR is prescribed and U minimizes a stored- 
energy functional 

f 
(1.10) ~(U) = J~ E(DU)dX. 

One of the most elementary integrands considered is a perturbation of the neo- 
Hookean model 

(1.11) E(P) = 8(1 + ]PI2) m + IPl 2 + H(detP)  

where ~ > 0, H > 0, H is convex, limd~0+ H(d) = oc and H(d) = eo for 
d < 0. If H blows up sufficiently rapidly at d = 0, BALL has shown that a 
univalent minimizer for % in d exists ([B]). To date, though, neither is there 
a regularity (i.e., a differentiability) theory for this solution, nor is it known to 
satisfy the Euler equation 3pE(DU) = O. 

For these reasons, one considers a sequence of approximate variational prob- 
lems with 

Fk(P) = ~(1 + ]p[2)m -t- ]p[2 + Hk(detP) 

' [dH'~(d) < w h e r e 0  <= Hk(d) < oo for a l l d  ~ 1R, Hk is convex, [H~(d)[+ [ = 
C(k) < oo and Hk j" H as k --+ oc. It is not hard to show that given a sequence 
{Uk} C a~ of minimizers for ~V with F = Fk, there is a subsequence converging 
in Wl'am(a'2; 1t{ 2) whose limit is a minimizer for the elasticity problem (1.10), 
(1.11). Moreover, each Ue satisfies its corresponding Euler equation. In general, 
though, the Uk were not known to be one-to-one. 

In Theorem 6.2, we apply Theorem 6.1 and results on null-Lagrangians to 
prove that the conclusion of Theorem 6.1 holds if G is replaced by G + H(d),  
where H is smooth and convex, but H'(0) is not necessarily zero. An immediate 
consequence is: 
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Corollary. If  JR is convex and m > 2, then minimizers for 

~Vk(U) = J~ Fk(DU)dX 

are homeomorphisms. Moreover, (1.9) holds. 

The main difficulty that we encounter in this paper is that minimizers for ~ 
are not known to be classical (although partial regularity is known). The paper 
is organized as follows. In w we collect the known properties of minimizers. In 
w we show that the Euler equation for W(.) uncouples into elliptic equations 
for the components of U separately. Minimizers are shown in w to be one-to-one 
on a large subset of Y2. In w property (1.9) is established, and Theorems 6.1 
and 6.2 are proved in w 

w Preliminaries 

A function F(P) that can be expressed as a convex function of the minors of 
P is called polyconvex. In two dimensions, a function is invariant to rotations 
of the image and domain if 

F(P) = F(QP) = F(PQ) for all Q E SO(2). 

Such a function can be given in terms of [P[ and detP. A class of functions both 
rotationally invariant and polyconvex are of the form F(P) = G(IP], detP) when 
G(., .) is convex and increasing in its first variable. Functions F satisfying (1.2)- 
(1.6) are of this class. Existence results for minimizers of ~W in d ,  assuming 
(1.2)-(1.6) can be found in DACOROGNA [D]. The assumption m > 1 implies 
that U ~ C I - I ( ~ ; R  2) for minimizers. Condition (1.8) is a strong statement 
of convexity at infinity. GIAQUINTA & MODICA [G-M] have shown that (1.8) 
implies minimizers are locally Lipschitz continuous 

(2.l) [IDUIILoo(~,) ~ C(~2, ~',  W(U)) for all s ~ ~2. 

A fundamental result that follows from (1.2)-(1.8) is that a minimizer is classical 
(of class C 2'a) on an open set s C s such that l~2 \ $20] = 0 (due to EVANS 
[E-l]). We need the following criterion. Denote the average of DU on BR(X) 
by 

(DU)x,R ---- ~BR DU. 
(x) 
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From w in [E-l] (or w in [E-2]), given M < ec there exists a constant e(M) > 0 
so that 

f 
if BR(X) C ,.(2, [(DU)x,R] < M and 4 -  IDU -- (DU)x, RI 2m < 8, 

(2.2) JsR (x) 

then X c Y2o. 

Notation. Denote 

Os2G =- G,1, OdG =-- G,2. 

From (1.2)-(1.7) there is a constant v(/z, m) > 0 such that 

(2.3) G,1 _-> v, d �9 G,2 _-> 0. 

The second inequality follows from the facts that G is convex in d for s 2 fixed, 
and G, 2 (s 2, 0) = 0. 

We use ]v[k,r to denote the norm of v c Ck'~(~; R s) and Ilvllz,p,e to denote 
the norm of v c WZ'P(G; Rs). 

w Elliptic Equations for the Components 

Let X = (x, y) and U(X) = (u(x, y), v(x, y)) be a minimizer. From the 
hypotheses (1.2)-('1.8) it follows directly that the first variation, O~W(U + e45), 

iM1,2m ((9. at e = 0 exists for all ~ c ,, 0 ~,,, I~2). (See GIAQUINTA [G].) Thus U is a 
weak solution to the equilibrium equations 

(3.1) 
(2G, 1 Ux)x + (2G, 1 Uy)y 

(2G, 1 Vx)x + (2G, 1 Vy)y 

-~- (G, 21)y)x - (G, 2 Vx)y : O, 

- (G,2uy)x  q- (G,2ux)y  : 0  

in s Using (1.7), we first show that (3.1.1) can be rewritten as a homogeneous 
elliptic equation for u, and (3.1.2) as a homogeneous elliptic equation for v. 

L e m m a  3.1. The components u and v satisfy the equations 

(3.2) 
(al.uxl)xj ---- 0 in s 

(a}vxl)xj = 0 in s 

where [a 1] and [a 2] are positive definite and the a~j and a } are locally bounded. 

Proof. We define g by 

G,2 = d .  g(s 2, d) = (UxVy - VxUy)g for d ~: 0 
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with g(s 2, 0) = G,22 (s 2, 0). From (1.4) and (1.7), the function g is of class 
C I for s 2 ___> 0 and d c IR. From (2.3) we see that g > 0. Using this in (3.1), 
we have 

([2G,1 § g]Ux § [--VxVyg]Uy)x 

§ ([--VxVyg]Ux § [2G, 1 2 § : 0 in S-2, 
(3.3) 

([2G,1 +uf g]vx + [-UxUyg]Vy)x 

§ ([--UxUyg]Vx § [2G,1 § : 0 in s 

These can be viewed as linear equations in divergence form for u and v, re- 
spectively. Since DU is locally bounded, the coefficients are locally bounded. 
Moreover, since G, 1 ~ 1) > 0 and g > 0, it follows that the coefficient matrices 
[a~] and [a 2] are positive-definite. Thus the equations are uniformly elliptic with 
bounded measurable coefficients on compact subsets of s [] 

Corol lary  3.2. A component of U cannot be constant on an open subset of I2. 

Proof. Consider (3.2.1). From this equation it follows that there is a function q) 
such that 

~)Xl = al2Uxl + a~2Ux2, -q)x2 : ~7/~lUx1 @- a~lUx2 in $2. 

This is a first-order elliptic system for (q), u) of the type analyzed in [B-J-S, 
Part II, Ch. 6, Eq. (t)]. For these systems, it is shown that a solution which is 
constant on an open subset of S-2 is identically constant on all of s Since u is 
not constant on OS2, the assertion holds for the component u. 

The same argument applies to v as well. [] 

Definit ion.  Let V ~ WI'P(s R 2) for some p > 2 and let A be a component of 
R 2 \ V(O;2). Then the degree of V in A is 

deg(V; A) = / s ?  p(V(X)) det DV(X)dX 

where p is any nonnegative element of Cc (A) with fA pdU = 1. 

It follows that deg(V; A) is integer-valued and depends on V only through 
Vlos~. 

The rotation or translation of a solution through either the x, y or u, v variables 
is again a solution to an equivalent problem. We use this together with the 
uncoupling of the system (3.2) to show that U(s = A/~. 

L e m m a  3.3. U ( ~ )  = 3L 
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Proof .  By hypothesis, deg (U;N)  =- 1. Let ~ = {Y 6 N �9 U-a(Y) ~= 0}. 
By requiring the support of p to be in a sufficiently small neighborhood of 

an arbitrary point in N ,  it follows from the definition of deg(U; 2~) that ~ is 
dense in ~ .  The continuity of U and the fact that U(312) = 0 H  then imply that 

d~ = ~ .  Hence, d/t C U ( ~ ) . I  
Since N is convex, to prove that U(~2) C d~, it suffices to show that 

U(s C 2s where 2s is an arbitrary open half plane containing d~. By rotat- 
ing and translating the u, v variables, we can assume that 2g = {(u, v) �9 v < 0} 

and U(3~)  c ~s Thus we have v < 0 and v ~a 0 on 3~2. We must show that 
v < 0 in ~ .  From Lemma 3.1, v satisfies an equation of the form 

(a2(X)vx,)xj = 0 in 

where (x, y) = (xl, X2), the a 2 are locally bounded and [a 2] is positive-definite. 
Thus by the strong maximum principle, v < 0 in s [] 

We remark that weak maximum principles for related polyconvex problems 
can be found in [F-H] and [L-l]. 

Let 

w The  Structure of U on {X c Y20 " detDU(X)  ~= 0} 

~'-~1 ~ {X E ~2 0 �9 det DU(X) ~= 0}. 

In this section, we prove that U is one-to-one on ~1 (Theorem 4.5) and as a 
consequence that det DU > 0 in s It will be clearer if the ideas are outlined 
first. 

By translating the solution if necessary assume there are two points X~, 
X2 E a'?l such that U(XD = U(X2) = 0. Since these points are in ~1 C f20, 
there are disjoint disks B4~(X1) and B4~(X2) on which U is of class C2,C Set 

e ~ = ( c o s 0 ,  sin0), e 2 = ( -  sin 0, cos 0) f o r 0 < _ 0 < r r .  

Let Vo =- U �9 e 2 and note that 

(4.1) {X1, X2} C {X " vo(X) = 0} for all 0. 

If, in fact, U ~ C 2 ( ~ ;  I~2), then we have a continuity argument which shows 
that (4.1) leads to a contradiction. Since it is not known if U is globally regular, 
we approximate it by a function U c C 2'~ (~ ;  R 2) such that U = gr on 0$-2, and 

is close to U, both in W1'2~($2; R 2) and in C2(B3~(X1) U ~ ;  1I{2). N o w  
is not an equilibrium. To adjust for this, we set 20 ~ U -  e I and define ~0 as 



Univalent Minimizers of Polyconvex Functionals 

the solution to the scalar minimum problem: 

167 

W0(v0) = inf W0(z) 
ZC~o 

where 

~Wo(z) ---- N/'(ze~ + {toe~), 

,~o =--- {z ~ Wl'2m(s " z = vo on OI2}. 

We prove that the minimizer exists, that it is unique and of class C2'~(~) and 
that it varies smoothly with 0. Our idea is to work with ~0 in place of vo. 
Now, {X1, X2} is not necessarily contained in the zero level set of 90 as in (4.1). 
Nevertheless, if 8 is small enough and U is sufficiently close to U, it follows that 
{X �9 v0 = 0} intersects both B2~(XI) and B2,(X2) for all 0 in a simple way. The 
continuity argument mentioned above is then adapted to derive a contradiction. 

We begin by showing that the mapping: U c C2'"(~; ]Rz)NM --+ v0 6 C2'~(~) 
is well defined. 

Lemma 4.1. Let U ~ C2'~(~; I~ 2) such that -U = tP on Of 2. For each 0 in [0, rr] 
there is a unique minimizer, f~o, for  ~ ) in ~ o .  Moreover, f~o ~ C2'~(~) for  
all 0 and f)o = -vJr. 

Proof. For 0 fixed, since {el, eo 2} is a positively oriented orthonormal basis of 
R 2, we have 

where 

Ig'o(z) = J~ Go(Vz, X) dX 

(4.2) G0(Vz , X )  ~- G(z2x + z 2 ~- ~12x(X) + Lt2~y(X), Zybr -- Zxl-lOy(X) ) 

and u0 ~ U .  @. Since G is polyconvex, it is rank-1 convex. Hence Ge is a 
convex function of Vz. From (1.2)-(1.8), we have 

(4.3) Go >-_ O, 

(4.4) Go E C2'ee(I~ 2 )< ~ ) ,  
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(4.5) there are constants A = A(lVfiolo;x2) < oc and 

)~ = )~([Vfiolo,s2) > 0 so that 

O2Go(p, X) )~(/Z-~-[pl2) m-11~12 < _ _  ~i~j < A(IA q-[p12)m-l[~12 
= OpiOPj = 

for a l l X E ~ ,  p 6 R  2, ~ 6 I ~  2, 

(4.6) there is a constant A1 = Al(IV~oll;S~) < oe so that 

02Go =< AI(/Z q-[p[2) m-1 

for a l l X = ( x l , x 2 )  c ~ ,  p E R  2. 

It follows from the standard theory for convex multiple integrals that ~ 0 has a 
unique minimizer in ~0 and that this function, ~0, is the unique weak solution 
to the elliptic equilibrium problem 

(4.7) OxG% (V vo, X) + OyGop2 (V vo, X) = 0 in g2, 

(4.8) v0 = q/" e2 on 3f2. 

Under conditions (4.3)-(4.6), this problem has a classical solution in C2'C~(~). 
(See GILBARG & TRUDINGER [G-T, Theorem 15.11].) Since a classical solution 
is also a weak solution, we have ~0 ~ C2'~(~). This proves the first part of the 
lemma. 

- 1 _ .eo To prove that -vo  = v~, we note that by definition, r~ = U- e~ = = 
-rio, Thus, Go(-p ,  X) = G:r(p, X) and M,r = {v �9 - v  c ,~o}. It follows that 
-v0  ~ ~ and minimizes ~/'~(-). E? 

Remark. It follows from the above proof that two minimizers for W(.) which 
agree in one component must agree in the second component as well. 

L e m m a  4.2. v0 e C([0, 7r]; C2(~)) .  

Proof. We first derive a number of a priori estimates. From (4.2) we have 

VpGo .p  = 2G, t ]pl 2 + G,2 .(p2rex - plroy) 

where G,I and G,2 are evaluated at s z = Ipl 2 + IVu012 and d = p2rox -p lro~.  
Thus, from (2.3), 

VpGo.p >_ vlpl 2. 
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Let q~ = max(~o, max vo )  - m a x  vo.  Using ~o as a test function in (4.7), we have 
0S2 aS? 

.)f{• I V 00[ 2dX < Jra Vp Go" Vq)dX = O. 
o > max  Vo } 

o,f2 

Thus, 

vo < max vo <= ~Plo;as~. 
0s 

A similar statement holds for -~o,  and we find that 

(4.9) [Volo;s~ ~ I~1o:0~. 

Now Go depends upon 0 only through/~o, for which we have 2o ~ C([0, 7r]; 
C2'~(~)) and 1~ol2,<~ _-< [UI2,~;~. Thus, using (4.4)-(4.6), we apply the a priori 
estimates from [G-T, Theorems 13.2, 14.1, 15.9] to conclude that 

m 

IVo12,<x2 ~ C([UI2,<s~, I~olo;x2). 

Since (4.7), (4.8) has a unique solution, it follows from compactness, elliptic 
estimates, and the smooth dependence of  Go on 0 that ~0 6 C([0, zr]; C2(~)) .  [] 

Assume that 0 ~ ~ .  Since ~ is convex for each 0, the line through e~ 
intersects 0~t at two points. As ~P is a diffeomorphism of 0S2 onto 0H,  there 
are exactly two points {X01, X 2} c 0S2 such that ~o(Xao) = f~o(X~) = 0. Set 

No = {X ~ f2 " vo = O}. 

m 

L e m m a  4.3. Assume that 0 E A/t and that U is as in Lemma 4.1. Then for  each 
O, No is a connected imbedded C 1 curve with endpoints {X~, X~}. Moreover, No 
varies continuously with respect to 0 in the sense that given tc > O, there exists 

> 0 so that if  ]0 - 0'[ < O, then 

m 

No, C {X c 12 �9 dist(X, No) < to}. 

Proof.  As in the derivation of (3.3.2), it follows from (4.2) and (4.7) that v0 
satisfies the Dirichlet problem 

(4.10) ([2G,1 +{t~yg]f~ox + [--btOxbtoyg]l)Oy)X 

+ ([-{%?%g]f)ox + [2G,1 +FtZxg]f;Oy)y = 0 in I2, 

(4.11) v0 = q/" e~ on 0S2 
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where G, 1 and g are evaluated at 

s 2 = IVg012 + IVY012, 

Note that (4.10) is of the form 

d=UoxgOy-~OygO x. 

(4.12) (aij(X)gG)x; = 0 in 

where the equation is elliptic and the aij(X) are of class C 1 (~) .  We use (4.11)- 
(4.12) to study the zero set of 00, namely No, 

We have No C) OD 1 2 = {X o, Xo}. Let Oqt/Os denote the derivative of q /wi th  
respect to the arc length of Oa'2. Consider OqJ/Os evaluated at X01. Since q* is 
a diffeomorphism Oq,'/Os q= O, and since d/t is convex, the tangent line to ON 
determined at qffX 1) by OvP/Os cannot pass through 0 ~ ~ .  Thus, or w~0J is not 

a~0 (Z 1) = e~. 0 ~ ( y l ' ~  0v0 ( y 2 ~  parallel to e 1. Hence -gTs -gv-~0J 4 = 0. Similarly, ~-~ ~0~ q= 0. Thus, 
No is a C 1 curve in neighborhoods of X~ and X02, respectively, intersecting as 
at these points nontangentially. 

Since 90 satisfies the elliptic problem, it follows from HARTMAN & WINTNER 
[H-W] that 9o has at most isolated critical points in No A s Moreover, in a 
neighborhood of any such point, No is made up of 2k (k > 2) arcs meeting 
at this point. If a critical point exists, then since No A 0s consists of just two 
points, it follows that No must contain a closed loop, that is, some component 

of {v0 =t = 0} has 0~ C No. Since 9o satifies (4.12) on ~ ,  it follows from the 
maximum principle that ~0 -- 0 on ~ ,  which is a contradiction. Thus, V Vo 4= 0 
on No. Hence, No is an imbedded C 1 curve. It must be connected since if not, 
then as before, it would contain a closed loop. 

The last assertion of the lemma follows from the fact that the mapping 0 -+ 9o 
is of class C([0, zr]; C2(~)) .  [] 

m 

We now show that we can choose U sufficiently close to U to ensure that 90 
is close to U �9 e 2 for all 0. 

L e m m a  4.4. Let U be a minimizer, K a compact subset of  I-2o and 6 > O. Then 
there is a function -U c C2"~(~; I~ 2) with -U = qJ on 3S-2 such that i f  we denote 

(4.13) Wo = ?2o e2 + {toe~ for 0 <_ 0 <_ 7r, 

then 

I U -  Wol2;K < 8, 

llU - Wolll,2m;S~ < 6. 
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Proof. Let X? ~, ~2" be open sets such that K C s �9 ~ r  ~ s For each 
integer n (using a partition of unity) we can define 

U~ - T, + 4~ where 4~, @ C2'a(~; R 2) A .~ ,  

1 
suppT,  cS2,  U ~ = U  on ~2 ' ,  HU-Unlll,2m;~<-. 

g/ 

Let (T,)c be a mollification of T,. Fix ff = r sufficiently small so that 
g .  - (rn)~ + ~ .  c ~ ,  

1 
(4.14) [ U - U ,  I2,~;~,, < - ,  

1 
(4.15) ]]U - Unlll,2m;S? < - .  

gt 

This is possible since Tn E C2'c~(~ ', N2). For n sufficiently large, U~ satisfies 
the lemma. To see this, let W~ be defined via U~ as in (4.13). It suffices to show 
that 

lim ] U -  n 0,  Wol2;K = lim IIU - W~lll,2m;~ = 
n ----)- OO ~ - - +  OO 

where the limits are to be uniform in 0. To this end, let {Oni } C [O, ]~], Jim 0hi = 
l - + o 0  

O0 and Wi =- W~ i . Assume first that there is a 8o > 0 so that 

(4.16) [[U - WilI1,2m;s ~ 8 0 f o r  a l l  i .  

m 

From (4.15) it follows that {U~} is a minimizing sequence for ~V(.) in s/. 
By construction {Wi} C ~ and W(Wi) < ~ ). Hence, {Wi} is a minimizing 
sequence as well. It follows from EVANS & GARIEPY [E-G, w 1] that a sub- 
sequence (still denoted {Wi}) converges in w1'Zm(s to a minimizer Z. Now 
lira e~ = e~0 and by definition 

i---~ O 0  ni 

Z .  elo = lira Wi e 1 = lim Un~. e 1 
i--+oo " Oni i--+oo On i ~ U �9 e~o 

where the limits are taken in W l'2m. Thus Z and U agree in one component. It 
follows from the remark following Lemma 4.1 that Z ---- U. Hence (4.16) is not 
possible. 

Assume next that 

(4.17) IU - Wi]z;g ~ 80 for all i. 

2 ~ - - I t  From (4.14), ui ------ Uni .e~,, = Wi.e  1 converges to U.elo as i --+ oc in C ,5(;2 ), 
�9 Oni 

and 1)i ~- W i  " e 2 satisfies (4.7). From a priori interior estimates, we find that 
On i 
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for K G f2" ~ f2", 

< C(luil2,~;x2", I�9 l�9 ,,, = 

Using (4.9) we have 

H e n c e  {[vi]2.~;s2,',} is uniformly bounded. From the first part of this proof, we 

can assume that {~i} converges to U �9 e2o pointwise. Thus from compactness a 

subsequence {fie} converges to U.  e0Z ~ in C2(K). This contradicts (4.17). [] 

Now using our approximations, we show that U is one-to-one in ff21. 

Theorem 4.5. Let U be a minimizer and {X1, X2} C ff21 such that U(Xa) = 
U(X2). Then Xa = X2. 

Proof. Assume that X 1 :~= X2 and without loss of generality that U(X1) = O. 
Choose g0, 8 > 0 so that 

(4.18) 1) 108 < I X 1 -  X2[- 
2) U " B4~(Xi) --+ U(B48(Xi)) is a C 2 diffeomorphism for i = 1, 2. 
3) For each v ~ IR 2 with [v] = 1 and each function W such that [U - 

W]2; ~ < e0 we have 0 ~ W(B~(Xi)) and the set {X ~ B2a(Xi) " 

v .  W( X)  = 0} is a connected C 1 curve for i = 1, 2. 

Note that U is of class C 2 in a neighborhood of {X1, X2} and the detDU(Xi)  =1= 
0 for i = 1, 2. Thus, (4.18) can be verified for sufficiently small g0 and 8 by 
applying the inverse function theorem. 

We apply Lemma 4.4 to fix U by setting K = BBa(X1 ) (3 B3a(X2) and 
g = go- We obtain Wo from (4.13), which, by Lemma 4.2, is of class 
C([0, zr]; C2(~;  R2)) and satisfies (4.18.3) for each 0. 

Let q~ = (7q, ~P2). By Lemma 3.3 we have 0 ~ d~. Since ~ is convex, there 
are unique points {X 1, X~} C OX2 so that 

t/-/(X 1) = (1fll ( x l ) ,  0), t//(X 2) = (1/.r I (X~), O) 

with gq(X~) > 0 and grl(Xo 2) < 0. We write 3f2 \ {Xo 1, X 2} = /"1 U/"2 where 
each F/ is a connected curve. We can assume that ~P2(X) > 0 for X ~ F1 and 
~2(X) < 0 for X E/"2. Thus, q~ determines a homeomorphism 

Y ( o )  �9 [o, rr] - - ,  7"1 

such that X(0) = X~ and X(zr) = X0 2. 
For 0 ~ [0, Jr], we have No = {v0 = 0} and v0 = Wo.e~. By Lemma 4.3, No is 

a connected non-self-intersecting C 1 curve with two endpoints, one in F~ U {Xo 1 ) 
and one in F2 U {X~}. We define an orientation for No such that its initial point 

is ~(o). 
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Fix 0. From (4.18.3) with v = e 2 and W = We, we find that No NBa(Xi) + 
0 and that No N B2a(Xi) is connected for each i. Thus, starting at ~'(0) and 
moving along the curve No, one enters each B23(X1) and B2a(X2) once and only 
once. Moreover, due to (4.18.1) the disks are passed through in a well-defined 
consecutive order. Finally, using the stability of 0 --+ No proved in Lemma 4.3, 
we prove (in Lemma 4.6 below) that the order remains the same for all 0 '  near 
0. 

Since a locally constant function defined on a connected set is globally con- 
stant, we see that the order remains for all 0 c [0, re]. Without loss of generality, 
we may assume that each directed curve No first intersects B2a(X1) and then 
intersects B2S (X2). 

From Lemma 4.2, we have ~ = -~0.  Thus, Nu is just No with the reverse 
orientation. This would mean that N,~ first intersects B2a(X2) and then intersects 
B2a(X1), a contradiction; thus, X1 = X2. [] 

L e m m a  4.6. For 0 ~ [0, re] and all O' sufficiently close to O, the curves No and 
No, intersect {B2a(X1), B2a(X2)} in the same order. 

Proof.  Assume that No intersects B2a(X1) first. Let X(t) for 0 < t =< i be a 
parametrization of No. Let 0 < t] < t 2 < { be such that 

Q2 ~ {x(t )  �9 tl < t < t2} c Ba(X~), 

and set 

Ol ~ {X(t) " 0 ~ t ~ tl} , 

03 - { x ( t )  "t2 < t __< i}, 

' (  ) tc = ~ min dist(Q1, Q3), dist(Q1, B2a(X2)), ~ > 0. 

Let 7 = 7(�88 be as in Lemma 4.3. Thus, for 1 0 - 0 / I  < 7, No, is in a �88 
neighborhood of No. Finally, we set 

@K = {X" dist(X, Ol) < K}. 

We assume that 0 '  is so close to 0 that 

l e -  e ' l  < ~, IX(O) - x < o ' ) l  < < 

where X(.) is the homeomorphism from [0, re] into 0X2 defined in the proof of  
Theorem 4.5. 

Let No, be given by Y(r) for 0 < T _< ~-. We have IY(0) - X(0)] = IX(0') - 

X(0)] < K. Thus, Y(0) 6 @~. We shall show at the first r* for which Y(r*) c 0~K, 
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one has Y(r*) E B2~(X1) as well. By construction, {Y(r) �9 0 _< r _< v*} C ~ 
and ~K (~ B2s(X2) = 0. Thus, the lemma will be proved. 

By the choice of 7, there exists X* E No such that IX* - Y(v*)I _-< ~. Now 
X* must belong to exactly one of Q1, Q2, Q3. Since Y(r*) ~ 0 ~ ,  it follows that 
X* r Ol. If X* E Q3, then since Y(v*) E OPt, there exists X** 6 Q1 such that 
IX** - Y(r*)I =/c .  Hence 

dist(Q1, Q3) _<- IX* - X**l ~ 2K ~ ~ dist(Q1, Q3) 

which is impossible. Thus, X* 6 Qe c Bs(X1). By the choice of z, Y(r*) E 
B~(X1). [] 

Remark. Our proof of Theorem 4.5 was inspired by an argument of PAYNE [P]. 

Corollary 4.7. DetDU(X) > 0 in s 

Proof. If not, there are disks B~ C s and B~ C ~ so that detDU < 0 on B~ 
and B~ C U(B~). From Theorem 4.5, we have s (~U-I(B~) C Bs. Let p => 0 be 
as in the definition of deg(U; ~ )  with supp p C B~ and fB~ pdU = 1. Recalling 
that detDU = 0 almost everywhere on s \ s we find that 

1 : ~ p(U(X))detDU(X)dX= fB p(U(X))detDU(X)dX < 0 
s 

which is impossible. [] 

w Positivity of the Jacobian 

From w we have detDU __> 0 almost everywhere in s In this section, we 
prove that 

(5.1) lira ~ detDU > 0 for all X ~ s 
R-+O ,I BR(X) 

Definition. We say that V is a relative minimizer in a bounded open set G if 
V c WI'2m(G) and 

f F(DV)dX<=JF(D(V+~))dX 

for all 4) c wI'Zm(c, ~2). 

We first use this to show 
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Lemma 5.1. I f V  is a relative minimizer on G and detDV = 0 almost everywhere 
on 0, then V E C2"~(G). 

Proof, The function V satisfies the system (3.1) in G. But since G,2 ([DVI 2, 0) 
0 in G by (1.7), we see that (3.1) reduces to the Euler equation for the functional 

J(~O; C) ----- ~ G(IDO[ 2, O)dX. 

Since F satisfies (1.8) and the function s --+ G(s 2, 0) is strictly convex, a result 
of UI-ILEN13ECK implies that a local minimizer is classical (see [U] and [G-M]). 
Thus, V is of class C 2'" on ~. [] 

Next we use the partial regularity theory for minimizers to show that if 
X c s \ 22o, then f~,(x) detDU is bounded away from zero. 

Theorem 5.2. Let 22' ~ 22. There exists ~(X2') > 0 such that if  BR(X) C 22' 
and 

f~R det DU < ~, 
(x) 

then X c ~2o. 

Proof, We give an indirect argument. Assume there is a sequence {BR, (Xn)} such 
that BR,(Xn) C s f~R,,(x,) detDU __< ~ 1 and Xn ~ s Consider the normalized 
sequence of functions 

1 
U,,(X) = -X--[U(RnX + Xn) - U(X,)] for X E B1. 

Kn 

By hypothesis, IIDUlloo;a, < M < oo. Thus, IIDUnlloo;~ < M for all n. Each 
Un is a relative minimizer in B1. It follows from [E-G, Theorem 2] that for 

1 / 7 1 , 2 m  I ' D  . a subsequence, U~ --+ 0 in ,, ~oc t~ R2) where 0 is a relative minimizer. 
Moreover, det DO -- 0. To see this, note that 

l i m ] ~  d e t D U n =  l i m ~  d e t D U = 0 .  
n--+~ n-+eo d Be,, (X.) 

Since detDUn => 0 almost everywhere, we have detDUn -+ 0 in LI(B1). But 
DUn -+ DU in L]oc(&), and hence detDU = 0 almost everywhere in B1. Thus, 
from Lemma 5.1, U ~ C2'~(B1/a;R2 ). 
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We now invoke EvANs' partial regularity criterion. Let 8(M) be as in (2.2). 
Since U is of class C ~, we may choose 0 < r < �89 such that 

IDIJ -- (DU)o,~I 2rn 8.  
3(0) 

Since Un --+ ~] in WI'2m(BG ~2), we see that 

fB IDU= - < e (oen)o,r] 2m 
3(0) 

for n large enough. Thus, 

f~  (DU)x~176 < 8, IDU 12= 
~=. (xn) 

and it follows from (2.2) that Xn ~ $2o. This is a contradiction. [~ 

It follows from Theorem 5.2 that (5.1) holds for all X in $2 \ $20. To prove 
(5.1) for all X in g20, we need the following lemma: 

L e m m a  5.3. Let f and g be nonconstant and harmonic on an open connected 
set ~. Assume there is a function k such that 

(5.2) Wf = k(x, y)Vg 

for all (x, y) such that Vg :~ O. Then k ~ constant and V f  = kVg in G. 

Proofi  Since the zeroes of Vg are isolated points in G, it is sufficient to prove 
the lemma by assuming that Vg :~ 0 in ~. Taking the divergence of (5.2), we 
have Af  = Vk �9 Vg + kAg. Thus, 

kxgx + kygy = 0 in G. 

Now taking the curl of (5.2), we obtain 

kygx - kxgy = 0 in ~. 

These two equations imply that Vk -- 0 in ~. [] 

Theorem 5.4. Det DU > 0 in $2o. 

Proof .  Assume that 0 6 $20 and that de tDU(0)  = 0. By a translation and 
rotation of the u, v variables, we can also assume that u(0) = v(0) = 0 and 
Vv(0) = 0. Now U is a classical solution to (3.1) in some disk Be(0) = BR. 
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From Lemma 3.1, u and v satisfy 

(al (X)uxi)xj --~ 0 in BR, 
(aZ(X)vx~)xj = 0 in BR. 

By Corollary 3.2, neither u nor v can vanish identically on BR. We split our 
argument into two parts. 

Case L Assume that Vu(0) = 0. Thus, DU(O) = 0, and it follows directly 
from (3.3) that ab(0) = a2(0) = 2G,1 (0, O)3ij. We apply a result from [H-W] 
stating that there are positive integers I and n so that 

u(X) = f l(X) + o(IXlZ), 

Vu(X) = V/z(X) -4- o(IXlZ<), 

v(X) = g~(X) + o(IX["), 

Vv(X) = Vg~(X) + o(IXI "-~) 

in Be where f l  and gn are nontrivial homogeneous harmonic polynomials of 
order l and n, respectively. We have 

d e t D U  - -  3(u, v) _ O(fl, gn) + o(]Xln+l_2)" 
O(x, y) a(x,  y)  

0(f~,go) is a homogeneous polynomial of o(u,v) > 0 (by Corollary 4.7) and Since o(-ZT, y~ = 
o(f~,g~) > O. order l + n - 2 in Be, it follows that o(-TZT-,y) = 

Suppose that l =~ n. The components of Vfl and Vgn are of the form 
(ar l-1 c o s ( l -  1)Oq-br l-1 s i n ( l -  1)0) and (cr n-1 c o s ( n -  1)O+dr n-1 s i n ( n -  1)0), 
respectively. The integral of the product of such functions over Be(0) is zero. 
Thus, oO'~,g,) = 0. This implies that VJ) = k(x, y)Vg~ for (x, y) such that O(x,y) - 
Vgn =~ O. From Lemma 5.3, k is constant. Thus, fz = kg~, which is impossible 
since f l  and g~ are of different order. 

Assume now that 1 = n. From [H-W] 

(5.3) Qfll = fCll C121 (FlCOS(IO)'~ 
gl [ C21 C22 F l sin(/0) J " 

Let C = [cij]. We have o(fz,g~) = d e t C .  121XI 2l-z. Thus de tC > 0. If detC = 0, 3(x,y) = 

w e c h o o s e A E S O ( 2 )  s u c h t h a t A C =  [ ~  1 b ~ 2 ] . I f w e s e t U = ( ~ , v ' ) s o t h a t  



178 P. BAUMAN 85 D. PHILLIPS 

then U is another solution with leading terms j~ and gn such that the order of 

j~ equals l, and the order of ~, is greater than l. This is just as in the previous 
case and leads to a contradiction in the same manner. 

If det C > O, then we have 

detDU = d e t C .  12IX121-2 + o(IXI 2l-2) in BR 

where l > 1. Thus, detDU > 0 in Br(O) \ {0} for r sufficiently small. Hence, 
Br\{0} C s By (5.3), (fl, gl) is an/-to-one map from Br\{0} onto a punctured 
neighborhood of the origin with 1 > 1. Also, 

r - l l ( f t ,  gl)l > c > 0 and r-llQft - u, gz - v)l = o(1) on OBr as r --+ O. 

Thus, by degree theory for r sufficiently small, U is an/-to-one map on Br\{0} Q 
$21. This contradicts Theorem 4.5. 

Case II. Assume that Vu(0) =~ 0. Let L be a 2 • 2 matrix with de tL > 0. 
Set X = LY and U(Y)  = U(LY) .  This can be done so that equation (3.2.2) 
transforms t o  (aij~)yi)yj = 0 with aij(O) = 8ij. From [H-W], 

t~(Y) = j~(Y) + o(IYI), 

Vfi(Y) = V~(Y) + o(1), 

9(Y) = gn(Y) + o(IYl~), 

Vg(Y) = V~(Y) + o(IYln-1), 

where n > 1 since Vv(0) = 0. Again, gn is a homogeneous harmonic polynomial 

of order n and f l  is linear (hence harmonic). We then arrive at a contradiction, 
just as in Case I. [] 

Remark. Our proof is similar to the one of LEwY [L-2] where he proves the 
nonvanishing of the Jacobian of a homeomorphism whose coordinate functions 
are harmonic. 

f 
Corollary 5.5. For all X in Y2, lira --]- det DU > O. 

R--->O JBR (X) 

Proof. If  X ~ s \ 120, the assertion follows from Theorem 5.2. If  X 6 s this 
is just Theorem 5.4. [] 

We remark that by Corollary 5.5, we have s = 1-21. 

w Univalent Minimizers 

In this section, we apply the results of w167 4, and 5 to prove: 
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Theorem 6.1. A minimizer U for W(.) in s~ is a homeomorphism from s onto 
M that is locally Lipschitz continuous in F2 and satisfies 

(6.1) lim - ~  detDU > 0 for all X ~ F2. 
R-+0 ,]BR (X) 

m 

Proof. By Lemma 3.3, U is a continuous mapping of s onto ~ and U(F2) = ~ .  
Since U(0s = qff0t'2) = 0H, it suffices to prove that U is one-to-one from s 
onto ~ .  

Let Y c ~ .  It follows from BALL [B, Theorem 1] and Corollary 5.5 that 
U-I(Y) is a compact connected subset of s Suppose U-I(Y) contains more 
than one point. First, we point out that U-I(Y) N s = 0. Indeed, if not, let 
X E U-I(Y) n ~20 = U-I(Y) n ~"~1. Since U is locally one-to-one near X ~ s 
we deduce that U -I(Y) admits a separation, which is a contradiction. 

Second, we remark that a connected set in I~ 2 with more than one element 
has positive one-dimensional Hausdorff measure. Thus, there is a constant I > 0 
such that ~)~I(u-I(Y)) > l. 

For each e > 0 we cover U-I(Y) by a finite family of disks with centers in 
U -I(Y), {B~(Xi)}, such that 

(6.2) E X~(x,~ (X) =< C, 
i 

where C is independent of s. Note that 

(6.3) E IB~(X~)I _-> ~ls 
i 

for all s sufficiently small. 
Now, since U is locally Lipschitz continuous and dist(U -I(Y), 3s > O, we 

have 

[[DUIIoo;B~(X,) < M < oo 

for all i and for all e sufficiently small. Thus U(Be(Xi) ) C BM~(Y) for all i. 
From this and Corollary 5.5, it follows that 

fv  = IU(UiB~(Xi))l < detDUdX 7r M 2  82 " 

iBe(Xi) 

On the other hand, since each Xi ~ s \ s it follows from Theorem 5.2 that 
there exists cr > 0 (independent of e for s small enough) so that 

f~ detDUdX > ~[B~(Xi)I. 
~(X~) 
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Hence, using (6.2) and (6.3), we have 

= --  det DUdX 
B~(Xl) = C ~(xi) 

7ral 

for all 6 sufficiently small. This is a contradiction. [] 

We now show that we can adjust F(P) so that we can treat approximate 
energies f rom nonlinear elasticity. Let  H c C 3 (IR), H > 0, H be convex and 
assume that 

l im Idll-m(lH'(d)[ + ]dH"(d)]) = O. 
d--+ 4-00 

Let F(P) satisfy (1.2)-(1.8) and set 

F(P) = F(P) + H(de tP ) .  

T h e o r e m  6.2. Assume that m > 2. A minimizer for 

~ (V) = .fa F ( DU) d X 

in ~ is a homeomorphism from Y2 onto J~. that is locally Lipschitz continuous 
in f2 and satisfies (6.1). 

Proof .  Consider the functional 

W(V) = f detDVdX for v ~ ~ .  

Then X(V) is constant on a~ (cf. [D]). Thus for V 6 ~ ,  the functional 

@(V) = Is? (F(DV) - H ' (0)  det DV) dX 

differs f rom ~W(V) by a constant. Moreover,  since m > 2, its integrand satisfies 

(1.2)-(1.8). As a result, N/'(.) and %1/'(.) have the same set of  minimizers in ,~, 

and we can apply Theorem 6.1 to any minimizer for ~ [] 
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