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Abstract. The oriented aggregates of flake-like clay minerals, prepared in the laboratory
for X-ray identification purposes, are axially symmetric fabrics, with the axis of symmetry or
pole perpendicular the surface. The density of the vectors normal to the basal planes of the
clay particles has its maximum at the pole. A given number of particles is considered, and the
degree of orientation is assumed variable with one single parameter ¢, defined as maximumn
density over constant average density D. The decline of the basal vector density from the pole
to the equator may then be described by a power of the cosine of the polar angle ¢:

D(g, t) =t-D-(cos @)i—L (9)

This formula yields a quantitative description of orientation patterns measured on artificial
fabries by means of X-ray diffraction and on the universal stage.

In some cases, the description may be refined by using a function composed of two additive
cosine powers. The cosine power is by no means a mathematically unique solution but other
possible functions are less versatile and yield no better fit with the experimental data. The
Gauss distribution may be regarded as an approximation of (9) for very high degrees of
orientation.

Introduction

Oriented aggregates of flake-like clay particles are commonly prepared in the
laboratory in order to obtain enhanced basal reflections in X-ray diffraction for
identification purposes. An enhancement also of the diagnostically important
{0k 0) reflections may be achieved in a suitably aligned Guinier camera by the use
of oriented aggregates as well (Lippmann, 1968). These preparations, flake-like
themselves, albeit on a much larger scale than the individual particles, must be
expected to exhibit axial symmetry with the axis of symmetry perpendicular to
the flake surface. The various techniques of preparing oriented clay aggregates do
not deliberately aim at axial symmetry. It is more a by-product of the efforts to
obtain a homogeneous clay film with a constant thickness over the whole face.
To this end, nothing is done which might create a privileged direction within the
plane of the specimen. Such a direction, if present, would have to be described by
an azimuth angle, i.e. by an angle with some reference direction in the specimen
surface, e.g. with a slide edge. From the absence of any process which might bring
about an azimuthal dependence of orientation during specimen preparation we
may conclude that the resulting oriented aggregates are indeed axially symmetric.
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Thus, in order to produce oriented aggregates with as high a degree of reproduc-
ibility as possible the ¢ priori conditions for axial symmetry are carefully observed
in most clay laboratories. The most important condition is the exactly horizontal
positioning of the slides during sedimentation of the clay minerals from suspension.
When the direction perpendicular to the slide coincides with the direction of
gravity there exists obviously no cause for an azimuthal dependence of orientation.
Although at first sight horizontal positioning does not appear important in the
method of suction through a porous plate because the mean direction of suction
is by all means perpendicular to the surface it is nevertheless to be maintained as
far as possible in order to airive at a constant thickness of the clay film over the
whole plate.

In the method of producing preferred orientation by compression, axial sym-
metry is secured by the parallel alignment of piston surface and support as well as
by the direction of pressure perpendicular to both.

Some investigators (e.g. Jasmund, 1950) attribute an important réle to dry-
shrinkage in bringing about preferred orientation, in the techniques using wet
clays. Only if supports of excessively elongate proportions are used deviations
from axial symmetry may be expected. There is, however, one type of clay
aggregates, the smear mounts, in which a privileged azimuthal direction ensues
from the mode of preparation. They are perhaps the only type of artificial clay
aggregates for which axial symmetry does not apply, although much of their
azimuthal asymmetry may be expected to disappear by shrinkage on drying.

The following considerations apply also to orientation patterns encountered in
petrofabric analysis as far as they are axially symmetric. Although patterns
belonging exactly to this type seem to be extremely rare, judging from the many
petrofabric diagrams published by Sander (1950), axially symmetric patterns
should be of considerable interest in petrofabric studies because they constitute
the simplest type of preferred orientation as they are characterized by a sole
privileged direction. Moreover, many petrofabric patterns of more complicated
symmetry are conveniently described as axially symmetric for a first approxima-
tion.

Development of Density Funection for Axially Symmetrie Fabries

In a flat oriented aggregate the vectors normal to invidual clay mineral flakes
cluster around the normal to the layer. An analogous situation is encountered in
many axially symmetric (or nearly so) petrofabric patterns when the directions
of a suitably chosen crystallographic vector are concentrated around the axis of
symmetry. The maximum density of such vectors may then be used to describe the
degree of preferred orientation.

In order to quantify our considerations we follow Taylor and Norrish (1966)
and assign one vector to each particle in a fabric of uniform grain size. For non-
uniform grain size distributions, the number of vectors assigned to any one particle
may be thought proportional to its volume. The density of the vectors in a given
spot of the unit sphere may then be defined as the number of vectors per unit solid
angle, i.e. per unit area on the surface of the unit sphere. The position of a certain
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vector is described in spherical polar coordinates by the polar angle ¢, which
denotes the angular distance from the axis of symmetry or pole, and by the
azimuth angle p, which defines the position of the projection of a vector on the
equator. This latter coincides with the specimen surface in oriented clay aggre-
gates, and it is generally defined as the great circle perpendicular to the pole.

For a certain crystallographic vector, a given orientation pattern of any sym-
metry may be described by the density of the vector as a function of the spherical
coordinates y and . If this function D (yp, @) is known it is possible to calculate
the average vector density D on the unit hemisphere (area 2 7):

7y

2q7 /2
[ J D, ¢)-sinpdedy
D=2220 . (1)

2x

For a given material this average density is independent of the special type of
orientation pattern provided that a constant specimen volume is considered.
This condition is automatically satisfied in X-ray diffraction when operating with
a given slit system and when all of the primary beam is absorbed by the specimen
(Klug and Alexander, 1954). D then also determines the diffracted intensity
from a specimen with completely random orientation or uniform spatial distribu-
tion of the crystallographic vectors. In microscopic petrofabric work, D is either
equivalent to the number of grains measured and scaled to equal grain size, or to
the area of thin section studied.

For axially symmetric fabrics, D(p, ¢)=D(gp) is independent of y and is a
function only of the polar distance . (1) therefore simplifies to:

T2

17=6fD(¢)-Sin<Pd¢~ 2)

At this moment, all we know about D(gp) is that it assumes its maximum value
D .x(@) exactly on the axis of symmetry:

Dmax((P):D((p =0).

For fabrics consisting of identical material and studied under the same experi-
mental conditions, the magnitude of D (g = 0) (D (0) in the following) may be used
as a measure for preferred orientation. An orientation index f which is independent
of experimental set-up is obtained by referring D (0) to D:
) _ Do), . ) D(0)
for clays: {fgop= 5 in general: {= 5

For X-ray diffractometer measurements this procedure is equivalent to referring
the basal intensity of an oriented aggregate of clay minerals to the basal intensity
of a preparation with random orientation. In petrofabric studies the maximum
density is referred to the total number of grains measured per unit solid angle.

For varying degree of orientation the density distribution of axially symmetric
patterns may now be expressed as a function of the polar angle ¢ and of ¢, the

6*
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orientation index: D(g, t). Since for ¢ = 0 we have D(0,# = ¢- D one may
assume that the factors ¢t and D are contained in D{p, t) also for ¢ == 0, hence:

D(p,)=t-D-E(p,?) (3)

E (g, t), like D(p, t), assumes its maximum value for ¢==0, but this maximum is
identical to 1 regardless of ¢:
E,8) = 1.

Nevertheless, E(p, {) has to be a function also of ¢, to render possible a variable
decrease of the density with increasing ¢ for varying degrees of orientation. By
substituting (3) in (2) we have:

:1/2 B
D= [t -D-E(p,t)-sinpdeg.
0

Since ¢ and D are independent of ¢:

Ta iz
. 1 .
1=t [B(p,0)-singdg; = [ Blg,0) sinpdg. @)
0 0
The function (g, t) has now to be determined is such a way as to satisfy the
preceding relation (4). The substitution

0
d cos . 1
d(p(p = — sing; T=fE(<p,t)dcos<p (5)

n/z

suggests that F (g, ) may be replaced by a function of cos ¢:

0
E(g,0)=Fleos g, 8); += .[F(eos @, 1) d cos @, (6)
Tl2
1
cos @ = z; %= fF(z, f)dz. (7)
0

The desired value of 1/t for the integral results for:
Fz, t) =z (8)
Taking account of (8) and reversing substitutions (7) and (6) we obtain:
E (@, t)=F (cos ¢, §) = (cos @)

By substituting this in (3), the density function for axially symmetric fabrics is
expressed by:

D(g,t)=1t-D - (cos )'* (9)
or:

D{g, t) = D(0) - (cos @)~ (9a)

So far our considerations have been limited to the upper hemisphere where cos ¢
is positive. Since only positive real values of a density are meaningful in practice
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but since on the lower hemisphere (cos ¢)*~! may assume negative or imaginary
values for variable ({—1) we may write for the moment:
t—1
Dip,ty=1t- D - (cos? KR (9b)
or:

D(p,t)=1-D - |cos p|~t (9¢)

if we want to apply the density function also for the lower hemisphere. This
procedure is justified as long as the crystallographic vectors, of which we study the
distribution, are non-polar. Even if polar vectors do occur almost all of the current
experimental methods for determining vector densities are not sensitive to polarity.
Therefore, in general, the distribution on the lower hemisphere will be the mirror
image of that on the upper one, and exactly this is conveyed by writing (9b) or
(9¢) instead of (9).

When plotting D (¢, ¢} versus ¢ according to (9) or (9a—ac) we trace bell-shaped
curves which have their maxima at ¢ =0. They are different from Gauss curves,
which are zero only at + oo, in that the zeros of (cos <p)t"1 are at + %; with one
possible exception: for t =1, which characterizes random orientation, the zero at
J
2
of the bell-shaped curves become more and more pronounced, and the function
approaches almost zero at lower and lower values of ¢. Before entering into a
further discussion of the function, which up to now is of purely theoretical signi-
ficance, it is important to show to what extent it is capable of portraying ex-
perimental data.

may be smoothed out by an infinitesimal process. With increasing ¢ the maxima

Application of Developed Funetion to Experimental Data

Continuing the experiments of v. Engelhardt and Gaida (1963) on the compac-
tion of clay minerals, Thiem (1967) undertock a quantitative X-ray measurement
of the orientation of samples of kaolinite and montmorillonite. These clay minerals
had been subjected to various pressures in the piston-cylinder apparatus, which
had been used before by the former authors. The X-ray measurements were
carried out on a diffractometer of about the same type as that introduced by
Schulz (1949). The most important additional feature by which the diffracto-
meter is distinguished from ordinary X-ray diffractometers is a tilting mechanism
which allows to incline the specimen, in the direction perpendicular to the plane
of the focusing circle, from its regular position (¢ = 0°) by various g-angles. Since
the slits confining the primary beam were of such dimensions that it is absorbed
entirely by the specimen up to the maximum @-angles of 4 75° the basal intensi-
ties measured as a function of ¢, J(g, ), are proportional to the vector density
D(g, t). The same relations as have been defined and developed above for D may
thus be written for J as well. E.g., the average intensity J, i.e. the intensity of
a randomly oriented specimen, is related to the intensity function J(g, ) by
the analogue of (2):

Tl2

J= [J(p,t)-sinpdg (conf. Jetter et al., 1956).
0
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Therefore, Thiem multiplied his measured J(¢} values by sin ¢, plotted the resuls-
ing values versus ¢, and determined J by graphical integration. The degree of

orientation is then:
)
J
If indeed the above developed expression is valid then there are more convenient
ways of determining J and ¢. The following procedure yields, at the same time, the

possiblity of checking the validity of the analogue of (9):
J (@, t)=t-J - (cos p)t~1. (9d)
Instead, we may write:
log J (@, ty=1log (¢ - J)+ (¢ —1) - log cos ¢. (9e)

If we plot the logarithms of the experimertal J (@) values versus log cos ¢ a
straight line should result. This is shown for the data of Thiem in Figs. 1 and 2.
The measured points lie indeed on straight lines within the limits of experimental
accuracy for the montmorillonite and also for the kaolinite. Only for the more
pertectly oriented specimens of the latter, the measured intensities appear to be
somewhat high at higher @-angles. These deviations occur, however, at intensities
which are so low that their significance might be questioned. We shall, nevertheless,
give some more thought to these deviations later on.

- The straight lines, drawn through the experimental points of the logarithmic
plots, have (f —1) as their slopes according to (9e). This determination of ¢, which
involves the measurement of the angles of the straight lines with the horizontal
by means of a protractor, obviates the plotting of J (¢) - sin ¢ and the cumbersome
graphical integration to obtain J.

The plot of the function J(g@)-sing (not illustrated in this paper) offers,
however, an interesting way for an independent determination of #. The function
is zero for g =10°, raises to a maxiroum with increasing ¢, and gradually decreases
towards zero as @ approaches 90°. The angle ¢, of the position of the maximum
decreases with increasing perfection of orientation. This behavior of Thiem’s
plots suggested to search for a quantitative relationship. According to (9) we
may write:

t—1

y=D(p,t)-sin p=t- D - (cos ¢) sin @.

To find the maximum, we differentiate with respect to ¢:

d _

% =t-D-(—sing- (t—1) - (cos )% sin ¢+ (cos @)~ cos ¢)
d - .

% =t-D - (cos p)' 2 (costp — (i —1) - sin*g).

For the maximum the derivative d y/d ¢ has to be zero. Apart from the trivial zero
at 90°, caused by the cosine factor and corresponding to a minimum, dy/d¢ will
vanish when the term in parentheses is zero. The anticipated relationship is then:

cot g =1i—1. (10)
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Fig. 1. Logarithmic plot according to (9e) of experimental intensities of (00I)-reflection for
specimens of montmorillonite from Cyprus; fraction < 2 p @, with varying degree of orienta-
tion: 000 MII; x x x MIIT; eee M1
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Fig. 2. Logarithmic plot according to (9e) of experimental intensities of (002)-reflection for
specimens of kaolinite ““Supréme”; fraction <2 p &, with varying degree of orientation:
000K 6,; xx x K16,; eee K 1.

The slopes decrease with increasing ¢ for K 6, and K 16,. Therefore, two different slopes are

drawn. They correspond to the two ¢-coefficients used in description by two cosine powers
according to (14)
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Table 1. ¢-values determined by different methods of evaluation

Specimen  Preparation Slope of Plot of J {g)-sing (Thiem)
logarithmic . A
plot (9¢) position of by graphi-

maximum (10)  cal
integration

Montmorillonite, Cyprus, air-dry; <2 p @ ; (001)-reflection

MII collected from suspension 10.7 10.5—11.7 11.3
on membrane filter

MIII compression of wet paste 9.7 10.56—9.7 9.8
132 kp/em?

MI compression of dry powder 4.25 4.25 3.7
200 kp/em?

Kaolinite *“ Supréme’; <2 p @ ; (002)-reflection

K 6, compression of wet paste 21.0 19.5—22.8 20.2
500 kp/cm?

K16, compression of wet paste 11.8 13.0—11.7 10.7
2000 kp/cm?®

KI compression of dry powder 5.1 5.0—4.8 5.0
60 kp/em?

The t values determined by the different methods, as well as the sample descrip-
tions, are summarized in Table 1. The agreement is of the same order of magnitude
as the accuracy, of about -~ 5%, with which intensities can be read from the record-
ing of an X.-ray diffractometer when no special precautions are used. The pre-
cision of the ¢ values derived from (10) is poorest because the measurements were
not planned for this purpose. The maxima were rather poorly defined on account
of the spacing of 5° ¢ of the measurements. Better results may be expected from
more closely spaced measurements in the critical region of the maximum in the
J(g) - sin ¢ plot.

The ¢ values derived from the logarithmic plots were used to trace intensity
curves according to (9) for a more direct comparison with the experimental data
than has been possible in the logarithmic diagrams. Figs. 3 and 4 show that func-
tions of the type (9) afford a realistic description of the preferred orientation of the
flake-like clay minerals.

An additional test of the validity of (9) is provided by the values of J calculated
from the orientation data. They should be constant for a given mineral regardless
of the degree of orientation. This is confirmed, within limits, by the J values listed
in Table 2. In the case of the montmorillonite the parallelism of the J obtained
from the logarithmic plot and those from integration is particularly striking,
although the deviation of M T from M II and M III is considerable. M I was
prepared by dry compression, in contrast to M II and M III, which were prepared
in the presence of water. Most probably the deviation is due to the variability of
the basal intensity of the expandable clay mineral with moisture content, i.e. M I
is not strictly the same material as M IT and M IHI.
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Fig. 3. Comparison of experimental (001)-intensities for montmorillonite from Cyprus;
fraction < 2p @, 000 MII; x x x MIIT; eee MI; with calculated functions of type (9):

J(p)=t-J - (cos @)~
MII: J(¢)=10.716.0- (cos ¢)%7; ——
MII:  J(g)= 9.7-15.2- (cos @)tT; -veern- ,
MI: J(@p)=4.25+13.2 - (cos ¢)3-28; -..--- .

The intensities J according to (9), which the specimens would yield from a randomly oriented
fabric, are shown as horizontal lines with corresponding signatures

For the kaolinite the agreement among the J values for one particular method
is remarkable. The low values from the logarithmic plots reflect the somewhat
incomplete duplication of the intensities at higher ¢-angles by a function of type (9).
The deviations are, nevertheless, within the limits of aceuracy X-ray intensity
determinations.

It appeared desirable to try function (9) also on microscopically determined
petrofabric patterns. The only data, thus far found in the literature, which are
readily amenable to such an evaluation, are those of Green II (1967). The pattern
is that of a quartz fabric which was artificially produced by annealing a flint
cylinder at 900° C and 6 kilobars (sample DT 460). The pattern of the c-axes of the
quartz grains, which was determined by universal stage measurements, is axially
symmetric within the limits of experimental accuracy, and the numerical density
values can be read from Green’s histogram. Their logarithms are plotted against
log cos @ in Fig. 5. The resulting points form a straight line with fair approxima-
tion. That the points of lowest densities fall off the straight line, is due to the small
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Fig. 4. Comparison of experimental (002)-intensities of kaolinite “ Supréme’’; fraction << 2 u &,

000K 6y; xxx K16,; eee K1;

with calculated functions of type (9):

The average intensity J is marked by the dashed horizontal line

K 6,
K 16,:
K I:

J(@)=t-J - (cos @)i—1,
J(@)=21.0 - 8.96 - (cos ¢)20-0;
J(p)=11.8-8.44 - (cos @)108; ... ueo ,
J(p)= 5.1-9.16- (cos p)*1;

Table 2. Average intensities .J from different methods

Specimen Slope of Graphical
logarithmic integration of
plot (9e) J (p)-sin @ (Thiem)

MII 16.0 16.1

M IIIL 15.2 15.6

MI 13.2 13.8

mean 14.8 15.2

K6, 8.96 (9.16)2 9.63

K 16, 8.44 (9.16)2 9.22

KI 9.16 9.14

mean 8.85 (9.16)2 9.33

2 Value used in description by two cosine powers (14) (Fig. 6).
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Fig. 5. Logarithmic plot of universal stage measurements by Green II on artificial quartz
fabric (sample DT 460), showing extreme preferred orientation;

. . D(g)
ordinate = reduced density = d = 5
200 grains measured: J = —— = 31,8

27

number of grains (4; 2 and 1, respectively) which they represent among the 200
grains measured in total. According to the slope of the straight line ¢ is 105, which
is almost identical with 107, the value determined directly by Green as the
reduced maximum density in the pole figure.

Discussion

It may seem surprising that it has been possible to develop a function describing
the angular dependence of vector density, without recourse to concrete models
concerning the mechanism which might bring about preferred orientation. We
are, however, in & similar sitnation when we develop the vapor pressure formula

—H
np=—Z7+C
from thermodynamic principles.

In doing so, we rely on the first and second laws of thermodynamies, i.e. on
conservation principles, and on the law of the ideal gas, the simplest equation of
state available for the vapor phase. We need not consider the detailed mechanisms
by which the molecules are held back in the condensed phase. The acting forces,
which may be of very different character, are summarized by just one parameter,
the heat of evaporation H. Nevertheless, the resulting formula has proved, in
countless experiments, that it adequately, or at least approximately, describes
the temperature dependence of the vapor pressure of both liquids and solids, held
together by all possible types of bonding forces. Therefore, it is now in constant
use for the interpolation as well as extrapolation of experimental data.
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The postulates used for developing our function (9) are in many respects
analogous to the principles underlying the vapor pressure formula. The concept of
the independence of the average density D from the type and the degree of orienta-
tion, (1) and (2), is a conservation principle, i.e. the number of the grains or vectors
is assumed to be constant. The ideal gas equation and a power of cosine are the
simplest functions compatible with the respective problems. Finally, we have
postulated that an axially symmetric fabric be quantitatively characterized by
one single parameter ¢. This may be an approximation of the same kind as when
we regard the heat of evaporation H independent of temperature, It is well known
that more complicated vapor pressure formulae result when account is taken of
the temperature dependence of H. More complicated formulae, with an increasing
number of parameters, have to be used when more precise data are to be evaluated
for larger intervals of temperature.

‘When we extend this, as a loose analogy, to our orientation problem cases may
occur where it is no longer possible to describe experimental data by means of the
simple formula (9), i.e. with one orientation parameter ¢. It is easy to verify
that (2) is satisfied also by a sum of cosine powers:

D(@;pispa--- Ptz by ... by)=
=D (p, t,(cos @)™ + py ty(cos @)a 4 .- + p, £, (cos @)in~?)

in which the orientation is characterized by a set of parameters p, and?,. These
latter have to satisfy two relations:

(11)

D(0
t=_—l%—)—=p1t1+p2l2+"'+pntn (12)

and, in order to comply with (2):
l=pi+pat - + P (13)

i.e. 2(n —1) parameters are independent. Relation (13) suggests that a fabric may
be viewed as being composed of diserete portions or domains of minerals, each one
of which is characterized by a degree of orientation{,. Such a view is supported
by observations of Tressler and Williamson (1966) and of Smart (1967) on
deformed clays. p, is then the proportion of an entity, denoted by £,, in the whole
fabric.

This more generalized way of describing preferred orientation offers possibilities
of a more refined evaluation of experimental data. The two more perfectly
oriented kaolin samples K 6, and K 16,, for which the description by the simple
function (9) was not entirely perfect at higher g-angles, may serve as examples.
A function composed of two cosine powers:

J(p)=J (p, , (cos )"+ p, ty(cos @)7) (14)

may be determined in such a way that the most reliable J, that of K1 whose
description by (9) is the most perfect, is used as a basis. The parameters ¢, and 7,
are taken from the slopes in the logarithmic plot at low and higher g-angles. The
latter region will yield £, with rather low accuracy. p,, and thereby p,, are then more
or less fixed. Fig. 6 shows that the experimental data of K 16, yield an almost
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Fig. 6. Description of preferred orientation for K 16, by means of two-term function according
to (14):

J(9)=9.16 - (0.87 - 11.8(cos @)198+0.13 -5 - (cos @)4).
The lower curve shows the contribution of the second term. A function of type (19) would
yield no better fit than the one-term description (9) in Fig. 4. Therefore, in order to obtain the

same degree of concordance as in this figure, an expression composed of two terms of type (19)
must be considered

complete fit with a function of two terms. The remaining deviations are due to
incomplete axial symmetry. K 6, would be more perfectly described by the
function (no illustration):

J () =9.16 (0.95 - 21.0 - (cos ¢)**0+0,05 - 12 - (cos g)11).

The numerical parameters for K 16, are given in the subscript of Fig. 6.

It may be conceived that the small portions (13 and 5%) of less perfectly
oriented clay are located in the slip bands via which the preferred orientation by
compression was brought about (conf. Tressler and Williamson).

Function (9) still has one drawback for low values of ¢, in that it is zero at 90°
for any ¢ > 1, with the exception of ¢ = 1. This is not realistic in view of the current
use of the intensity ratio (001)/(0k0) as an orientation index at low degrees of
orientation (Brindley and Kurtossy, Niskanen), which should be oo at the
47 %) of (9¢) is

do
discontinuous at 90° for 1<<¢<<2. This is an unlikely situation for a natural
distribution function, especially, in view of the prospect that a statistical develop-
ment via a differential equation might be possible. A two term expression

slightest orientation according to (9). Moreover, the derivative

J(@)=J (po+pr- T - (cos )T~ (15)
with
Pot+pr=1;
and
J(0)

t:T:po“l‘pT T
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would be a solution which is not zero at 90°, and it yields a continuous derivative
there for 7'=2. This way, the oriented specimen is regarded as being composed
of an unoriented portion p, and of a portion pp, oriented according to 7.

However, for particles with a very strong tendency towards parallel orientation
on a flat surface, i.e. for particles susceptible to higher values of ¢, it is very likely
that D(90°) is zero. We see this when we inspect a heap of coins or a stack of
unanswered mail on a table, or when we try to have a stack of unbound issues of
this journal stand up without support. Only for partially bent and crumpled paper
(equivalent to the ground clay minerals of Niskanen) or by using supports
(equivalent to the presence of isometric grains in a clay, or to bonding the clay
with some cement; Brindley and Kurtossy), is it possible to have a measurable
amount of paper surface standing perpendicular, i.e. to have D (90°) different
from zero. This latter occurs also after the issues of a journal have been bound to
thick volumes which in a mixture act as supports for the unbound ones in the same
way as the worm-like aggregates in an untreated specimen of a kaolin.

The development of (9) given in this paper imposes no restrictions on ¢, except
that it is (equal to or) greater than unity. However, as developed, function (9)
applies only to the upper half of the reference sphere for any ¢. In order to make
it applicable also to the lower hemisphere we proposed to use the absolute value
of the cosine as in (9¢). This expression does not represent an analytic function
at @=90° in that it does not possess all higher derivatives there for arbitrary
values of . We have already mentioned above that its derivative is discontinuous
for t<<2. In an analogous fashion the second derivative is continuous only for
{ =3 and so on. In general, nature appears to favor analytic functions, but at the
moment we have no cogent criteria to decide whether the density function should
be analytic at 90°, or not. All the same, it is interesting to discuss the conditions
for an analytic density function which is valid for both hemispheres without any
break at 90°. This is the case in the simple function (9) when ¢ is an odd integer so
that the exponent (£ — 1) of the cosine is even. Consequently, degrees of orientation
intermediate between two odd values of ¢ can be deseribed only by a function
with at least two even cosine powers:

J(@)=J - (p-2n—1)- (cos @)*" 24 (1 —p)- (2n+1)- (cos ¢)*")  (16)
with

This means that the degree of orientation can no longer be described by one
continuously variable parameter. Instead, two parameters, p and =, are necessary.
Whereas p is continuously variable between 0 and 1; z has to be an integer and
is thus variable only in a discontinuous manner. This way, in order to avoid any
discontinuity of the density function at 90°, we have traded a discontinuous
variability of #. A decision from experimental data whether such an analytic
description of the density is superior to a single cosine power, whose exponent
may be odd or fractional, should be most sensitive at low degrees of orientation.
For M 1, the values of the analytic function:

J(p)=13.2.(0.375 - 3 - cos? @+ 0.625 - 5 - cost p) (conf. (16))



Functions Describing Preferred Orientation in Axially Symmetric Fabrics 91

are slightly but distinctly different from those of
J(p)=4.25-13.2 . (cos ¢) > (conf. Fig. 3)

except at @ =0° and ¢ ~50°. The differences are, however, not important enough
to allow a definite choice on the basis of the experimental data. These are equally
well described both ways. In view of this state of affairs we may as well continue
using the more versatile one-term expression for practical purposes, even if the
matter should be settled in favor of (16) by a statistical derivation of the density
funection.

The discussion of the functions with several cosine powers might have suggested
that (9) is the only function available as long as we insist on a description of
preferred orientation by one single, continuously variable parameter {. Regardless
of this impression, functions of the type (11) with several cosine powers will lead
us to more expressions characterized by one orientation parameter. In (11), we
may employ an infinite number of integer cosine powers and dispose of the p, in
such a way that the sum of the p,t,(cos p)f»~1forms a convergent series S. This
latter may be regarded as a power series of the variable (k - cos ¢), and it may be

D0
scaled in such a way that it complies with ¢ = %:

S (& - cos @)

(17)
A transcendental relation between ¢ and % can in general be found by taking
account of (2). This will certainly be more complicated than the simple arithmetic
relation between the two orientation parameters ¢ and (¢ —1) of (9), if we choose,
for a short moment and for sake of analogy, to look upon (9) as being formally
determined by two different coefficients as well.

The function exp (k - cos @) has been suggested without proof by Fisher (1953)
for spherical distributions, and its application to quantitative petrofabric studies
has been discussed by Braitsch (1956). It may be regarded as a special case of
(17), since the exponential function exp (k - cos ¢) may be expressed as an infinite
series of cosine powers. The properly scaled function must be written:

— exp (k- cosg)

D(p,t)=t-D —¢.D-exp (k- (cos p—1)). (18)

exp (k)

The coefficients are related by: t= m.

If we want to apply this function also to the lower hemisphere we have to use
the absolute value sign on the cosine as in (9¢). This way (18) is not differentiable
at 90° for any ¢. These difficulties do not occur when we use a function which is
described by an infinite power series with even order terms only. The hyperbolic
cosine may serve as an example:

~ cosh(k - cos ¢)

D(p,t)y=t-D - cosh ) (19)

and

t=1Fk - coth(k).
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When compared to the experimental data of K 1

cosh (5.1 - cos ¢)
cosh (5.1)

D(p,t)=>5.1-9.16 -

offers no better description than does

D(g, )=5.1-9.16 - (cos ¢)**
in Fig. 4.

Thus there is no practical reason to use (19) or even (18) instead of (9) for the
evaluation of experimental data as carried out above. Nontheless, being an analytic
function without any discontinuities at 90°, (19) may show advantages in applica-
tions where both hemispheres have to be considered.

For larger values of ¢, and especially at low @-angles, there will be no appreciable
difference between (18) and (19), according to the definition of the hyperbolic
cosine as the sum of two exponential functions of the same arguments but of
opposite signs, the magnitude of the power with negative exponent becoming
negligible.

A closer comparison of (18) and (9) is afforded when we write the latter:

D(p,t)y=t-D-exp((t—1)-1ncos ¢). (99)

We have the logarithm of the cosine in the exponent, instead of the cosine itself

in (18). In order to study the behavior of (18) and (9f) at lower @-angles we write
the power series for cos ¢ and In cos ¢ consider the first terms only:

cosp=1—"2 1 . Dig,)=D(0)-exp(— ;" ). (182)

‘p2 lp2

In COSp=— g~ — - D(p, t)=D(0) - exp(——(t—l)-T). (9g)
We see that for low @-angles (18) and (9) grade into the same type of function, the
Gauss distribution. They can no longer be distinguished at very high degrees of
orientation when k, ¢ and (— 1) are practically equal. The most interesting point
is that it becomes thus evident under what conditions preferred orientation is
described by a Gauss curve or normal distribution. This has been chosen by Dunn
(1954) to depict the X-ray intensities of cold rolled metal specimens. The author
plotted the logarithm of the diffracted intensity versus the square of the g-angle
and obtained roughly straight lines. This approximate behavior, however, would
be expected also for a cosine power function, in view of the prevailing contri-
bution of the square term to the In cos and cosine series. Because there is no
way of having the Gauss distribution comply with (2) and (3), except for
extremely high values of £, it cannot be accepted as a generally valid description
of preferred orientation.

We may even go one step farther and consider the distribution of errors for the
measurement of angles. In the Gaussian description, errors of all magnitudes may
oceur, albeit with drastically decreasing probability for increasing magnitude.
In the measurement of angles, however, errors greater than 90° are hardly
imaginable, even with the crudest measuring device imaginable. Moreover, an
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error of 90°+ § may be interpreted as 90°—f when we measure the angle between
non-polar directions. Under these circumstances, errors greater than 90° are
meaningless, and from this point of view it appears that properly normalized
functions of the type

cosh (b - cos o)

F(a)=a(cosa)’ orperhaps F(x)=a- w0 ()

may be the adequate distributions of the errors for measured angles. The Gauss
distribution is then a mere approximation for the low mean deviations, i.e. for
the high accuracy, with which angles are normally measured.

The preceding consideration may suggest that function (9) [or possibly (19)] is
perhaps of more general importance. But for the moment its significance lies in the
versatility which it affords in the quantitative evaluation of experimental orienta-
tion data. When written for the density of a given crystallographic vector, clustered
around the pole, it may be used to calculate the density of an other vector which
is at an angle with the first. The problem is simple for an angle of 90°. This way,
the relation between the density of (007) at the pole and that of (k@) on the
girdle around the equator has been determined for oriented aggregates of flake-
like clay minerals (Lippmann, 1968). Calculations for angles other than 90° are
being attempted.

Zusammenfassung

Texturpraparate blittchenformiger Tonminerale, wie sie zur Verstdrkung der
Basisreflexe bei der rontgenographischen Bestimmung hergestellt werden, sind
rotationssymmetrische Gefiige. Die Symmetrieachse oder Pol steht senkrecht
auf der Oberfliche und fillt mit dem Dichtemaximum der Basislote zusammen.
Betrachtet man eine feste Anzahl Blattchen, so kann man fordern, daf3 die Giite
der Orientierung nur von einem einzigen Parameter ¢ abhdngt, der als Verhiltnis
der variablen maximalen zur konstanten durchsehnittlichen Lotdichte D definiert
wird. Der Dichteabfall vom Pol zum Aquator kann dann durch eine Potenz des
Cosinus der Polardistanz ¢ beschrieben werden:

D(p,t)=t- D - (cos p)f1. 9)

Diese Formel und ihre Varianten (9a-—g) ermoéglichen die quantitative Aus-
wertung gemessener Rontgen- und U-Tisch-Gefiigedaten.

Die Ubereinstimmung zwischen gemessener und berechneter Lotdichte kann
in einigen Féllen durch Verwendung einer Summe aus zwei Cosinuspotenzen ver-
bessert werden. Die Cosinuspotenz ist keineswegs die einzige Losung des Problems.
Andere mogliche Losungen sind jedoch zunichst weniger handlich und liefern
keine bessere Beschreibung der MeBwerte. Die GauB-Verteilung ist eine spezielle
Néherung fir (9) bei sehr grofler Orientierungsgiite.
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