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Abstract. The oriented aggregates of flake-like clay minerals, prepared in the laboratory 
for X-ray identification purposes, are axially symmetric fabrics, with the axis of symmetry or 
pole perpendicular the surface. The density of the vectors normal to the basal planes of the 
clay particles has its maximum at the pole. A given number of particles is considered, and the 
degree of orientation is assumed variable with one single parameter t, defined as maximum 
density over constant average density D. The decline of the basal vector density from the pole 
to the equator may then be described by a power of the cosine of the polar angle ~: 

D(~, t) = t-/)-(eos ~o) t-1. (9) 

This formula yields a quantitative description of orientation patterns measured on artificial 
fabrics by means of X-ray diffraction and on the universal stage. 

In some cases, the description may be refined by using a function composed of two additive 
cosine powers. The cosine power is by no means a mathematically unique solution but other 
possible functions are less versatile and yield no better fit with the experimental data. The 
Gauss distribution may be regarded as an approximation of (9) for very high degrees of 
orientation. 

Introduction 

Oriented aggregates  of f lake-l ike c lay par t ic les  are  commonly  p repa red  in the  
l a b o r a t o r y  in order  to  ob ta in  enhanced  basa l  reflect ions in X - r a y  di f f ract ion for 
ident i f ica t ion  purposes.  An  enhancemen t  also of the  d iagnos t ica l ly  i m p o r t a n t  
(0k0) ref lect ions m a y  be achieved in a su i t ab ly  a l igned Guinier  camera  b y  the  use 
of o r ien ted  aggregates  as well (Lippmann,  1968). These p repara t ions ,  f lake-l ike 
themselves ,  a lbe i t  on a much larger  scale t h a n  the ind iv idua l  par t ic les ,  mus t  be 
expec ted  to  exhib i t  ax ia l  s y m m e t r y  wi th  the  axis of s y m m e t r y  pe rpend icu la r  to  
the  f lake surface. The var ious  techniques  of p repar ing  or ien ted  c lay  aggregates  do 
no t  de l ibe ra te ly  a im a t  ax ia l  symmet ry .  I t  is more a by -p roduc t  of the  efforts  to 
ob t a in  a homogeneous  c lay  fi lm with  a cons tan t  th ickness  over  the  whole face. 
To this  end,  no th ing  is done which might  create  a pr iv i leged di rec t ion  wi thin  the  
p lane  of the  specimen.  Such a direct ion,  if present ,  would have  to  be descr ibed  b y  
an  az imu th  angle,  i .e.  b y  an  angle with some reference d i rec t ion  in the  specimen 
surface, e.g.  wi th  a slide edge. F r o m  the absence of a n y  process which might  br ing  
abou t  an az imu tha l  dependence  of or ien ta t ion  dur ing specimen p repa ra t ion  we 
m a y  conclude t h a t  the  resul t ing or iented  aggregates  are indeed  ax ia l ly  symmetr ic .  
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Thus, in order to produce oriented aggregates with as high a degree of reproduc- 
ibility as possible the a priori  conditions for axial symmetry are carefully observed 
in most clay laboratories. The most important  condition is the exactly horizontal 
positioning of the slides during sedimentation of the clay minerals from suspension. 
When the direction perpendicular to the slide coincides with the direction of 
gravity there exists obviously no cause for an azimuthal dependence of orientation. 
Although at first sight horizontal positioning does not appear important  in the 
method of suction through a porous plate because the mean direction of suction 
is by  all means perpendicular to the surface it is nevertheless to be maintained as 
far as possible in order to arrive at a constant thickness of the clay film over the 
whole plate. 

In the method of producing preferred orientation by compression, axial sym- 
metry is secured by the parallel alignment of piston surface and support as well as 
by the direction of pressure perpendicular to both. 

Some investigators (e.g. Jasmuud, 1950) attribute an important r61e to dry- 
shrinkage in bringing about preferred orientation, in the techniques using wet 
clays. Only if supports of excessively elongate proportions are used deviations 
from axial symmetry may be expected. There is, however, one type of clay 
aggregates, the smear mounts, in which a privileged azimuthal direction ensues 
from the mode of preparation. They are perhaps the only type of artificial clay 
aggregates for which axial symmetry does not apply, although much of their 
azimuthal asymmetry may be expected to disappear by shrinkage on drying. 

The following considerations apply also to orientation patterns encountered in 
petrofabric analysis as far as they are axially symmetric. Although patterns 
belonging exactly to this type seem to be extremely rare, judging from the many 
petrofabric diagrams published by Sander (1950), axially symmetric patterns 
should be of considerable interest in petrofabric studies because they constitute 
the simplest type of preferred orientation as they are characterized by a sole 
privileged direction. Moreover, many petrofabric patterns of more complicated 
symmetry are conveniently described as axially symmetric for a first approxima- 
tion. 

Development of Density Function for Axially Symmetric Fabrics 
In a flat oriented aggregate the vectors normal to invidual clay mineral flakes 
cluster around the normal to the layer. An analogous situation is encountered in 
many axially symmetric (or nearly so) petrofabric patterns when the directions 
of a suitably chosen crystallographic vector are concentrated around the axis of 
symmetry. The maximum density of such vectors may then be used to describe the 
degree of preferred orientation. 

In  order to quantify our considerations we follow Taylor and Norrish (1966) 
and assign one vector to each particle in a fabric of uniform grain size. For non- 
uniform grain size distributions, the number of vectors assigned to any one particle 
may be thought proportional to its volume. The density of the vectors in a given 
spot of the unit sphere may then be defined as the number of vectors per unit solid 
angle, i.e. per unit area on the surface of the unit sphere. The position of a certain 
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vector is described in spherical polar coordinates by the polar angle ~s, which 
denotes the angular distance from the axis of symmetry or pole, and by the 
azimuth angle ~0, which defines the position of the projection of a vector on the 
equator. This latter coincides with the specimen surface in oriented clay aggre- 
gates, and it is generally defined as the great circle perpendicular to the pole. 

For a certain crystallographic vector, a given orientation pattern of any sym- 
metry may be described by the density of the vector as a function of the spherical 
coordinates ~0 and ~0. If this function D (~o, ~s) is known it is possible to calculate 
the average vector dens i ty / )  on the unit hemisphere (area 2 ~): 

2 ~ ~/2 
f f D(~, q))'sin~d~od~o 

~ 0 0 
2~ 

(1) 

For a given material this average density is independent of the special type of 
orientation pattern provided that  a constant specimen volume is considered. 
This condition is automatically satisfied in X-ray diffraction when operating with 
a given slit system and when all of the primary beam is absorbed by the specimen 
(Klug and Alexander, 1954). D then also determines the diffracted intensity 
from a specimen with completely random orientation or uniform spatial distribu- 
tion of the crystallographic vectors. In microscopic petrofabric work , / )  is either 
equivalent to the number of grains measured and sealed to equal grain size, or to 
the area of thin section studied. 

For axially symmetric fabrics, D(~o, ~0)=D(~0) is independent of ~0 and is a 
function only of the polar distance ~0. (1) therefore simplifies to: 

/ ~ =  f D(~v) - s in~ dq~. (2) 
o 

At this moment, all we know about D(~) is that  it assumes its maximum value 
Dmax(~0) exactly on the axis of symmetry: 

Dmax(tp) = D (~o = 0). 

For fabrics consisting of identical material and studied under the same experi- 
mental conditions, the magnitude of D (~v = 0) (D (0) in the following) may be used 
as a measure for preferred orientation. An orientation index t which is independent 
of experimental set-up is obtained by referring D (0) to D : 

2)(0) D(O) 
for clays : t(ool)= /~ ; in general: t -~ ~ - -  

For X-ray diffraetometer measurements this procedure is equivalent to referring 
the basal intensity of an oriented aggregate of clay minerals to the basal intensity 
of a preparation with random orientation. In petrofabric studies the maximum 
density is referred to the total number of grains measured per unit solid angle. 

For varying degree of orientation the density distribution of axially symmetric 
patterns may now be expressed as a function of the polar angle ~0 and of t, the 

6* 
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or ienta t ion index:  D(9,  t). Since for  9 = 0 we have  D(0,  t ) =  t - D  one m a y  
assume t h a t  the factors  t and  D are conta ined in D ( ~ ,  t) also for 9 # 0, hence:  

D ( 9 ,  t ) = t  . D . E(q~, t) (3) 

E ( 9 ,  t), like D ( 9 ,  t), assumes its m a x i m u m  value for  ~ =  0, bu t  this m a x i m u m  is 
identical  to 1 regardless of t: 

E(0 ,  t) ~ 1. 

Nevertheless ,  E ( ~ ,  t) has  to  be a funct ion also of t, to render  possible a var iable  
decrease of the densi ty  with increasing ~0 for va ry ing  degrees of orientat ion.  B y  
subs t i tu t ing  (3) in (2) we have:  

/ ) =  f t . / ) .  E(9~, t) �9 sinQ9 d~ .  
0 

Since t and J0 are independent  of ~v: 

l = t .  f E(~,t).sinq~dg; 1 f �9 T = E ( 9 ,  t ) .  sin ~ d ~ .  (4) 
0 o 

T h e  funct ion E ( F ,  t) has  now to be de te rmined  is such a way  as to sat isfy the  
preceding relat ion (4). The  subst i tu t ion 

0 

d cos ~ 1 f 
d~0 - -  sin~v; ~- = J E(~v, t) d cos ~ (5) 

suggests t h a t  E(cf, t) m a y  be replaced b y  a funct ion of cos 9:  

0 

E ( 9 ,  t) = F (cos 9, t); --1 = / F ( c o s  9, t) d cos 9, (6) 
t 

1 

1 IF(z,  t) dz. (7) cos ~0 ~ z; T = . 
o 

The desired value of 1/t for the  integral  results  for:  

F (z, t) = z t -1 .  (S) 

Taking  account  of (8) and  reversing subst i tu t ions  (7) and  (6) we obtain:  

E ( ~ ,  t ) = F ( c o s  9, t ) =  (cos ~)t-1. 

B y  subst i tu t ing this in (3), the  dens i ty  funct ion for axial ly symmet r ic  fabrics is 
expressed by :  

D ( 9 ,  t) = t .  D .  (cos 9) ' -1  (9) 
o r :  

D(9, t) = D(0) �9 (cos 9) t-1. (9a) 

So far  our considerat ions have  been l imited to the upper  hemisphere where cos 
is posit ive.  Since only posit ive real  values of a dens i ty  are meaningful  in pract ice 
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but  since on the lower hemisphere (cos ~v) t-1 may  assume negative or imaginary 
values for variable ( t - - l )  we may  write for the moment :  

t - - 1  

D(~,  t ) :  t .  D .  (cos 2 ~ ) ~ -  (9b) 
o r  : 

D(~v, t ) =  t .  L~- leos ~1 t-1 (9e) 

if we want to apply the density function also for the lower hemisphere. This 
procedure is justified as long as the crystallographic vectors, of which we study the 
distribution, are non-polar. Even if polar vectors do occur almost all of the current 
experimental methods for determining vector densities are not sensitive to polarity. 
Therefore, in general, the distribution on the lower hemisphere will be the mirror 
image of tha t  on the upper one, and exactly this is conveyed by writing (9b) or 
(9e) instead of (9). 

When plotting D (~v, t) versus ~v according to (9) or (9a--c)  we trace bell-shaped 
curves which have their maxima at  ~v = 0. They are different from Gauss curves, 

which are zero only at  ~= co, in that  the zeros of (cos ~v)t-1 are at ~= 2 ;  with one 

possible exception: for t = 1, which characterizes random orientation, the zero at  
Fg 

may be smoothed out by an infinitesimal process. With increasing t the maxima 

of the bell-shaped curves become more and more pronounced, and the function 
approaches almost zero at lower and lower values of ~v. Before entering into a 
further discussion of the function, which up to now is of purely theoretical signi- 
ficance, it is important  to show to what extent it is capable of portraying ex- 
perimental data. 

Application of Developed Function to Experimental Data 
Continuing the experiments of v. Engelhardt and Gaida (1963) on the compac- 
tion of clay minerals, Thiem (1967) undertook a quanti tat ive X-ray  measurement 
of the orientation of samples of kaolinite and montmorfllonite. These clay minerals 
had been subjected to various pressures in the piston-cylinder apparatus,  which 
had been used before by  the former authors. The X-ray  measurements were 
carried out on a diffraetometer of about  the same type as that  introduced by 
Schulz (1949). The most important  additional feature by which the diffracto- 
meter is distinguished from ordinary X-ray  diffractometers is a tilting mechanism 
which allows to incline the specimen, in the direction perpendicular to the plane 
of the focusing circle, from its regular position (~v = 0 ~ by  various ~v-angles. Since 
the slits confining the pr imary beam were of such dimensions that  it is absorbed 
entirely by the specimen up to the maximum ~v-angles of ~= 75 ~ the basal intensi- 
ties measured as a function of ~v, J(~v, t), are proportional to the vector density 
D (~v, t). The same relations as have been defined and developed above for D may  
thus be written for J as well. E.g.,  the average intensity ] ,  i.e. the intensity of 
a randomly oriented specimen, is related to the intensity function J(~v, t) by 
the analogue o2 (2): 

J = f J (~ ,  t) �9 sin ~ d ~v (conf. Je t ter  et al., 1956). 
0 
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Therefore, Thiem multiplied his measured J (9 )  values by sin ~, plotted the result- 
ing values versus ~, and determined J by  graphical integration. The degree of 
orientation is then: 

J(0) 
tY 

I f  indeed the above developed expression is valid then there are more convenient 
ways of determining J and t. The following procedure yields, at  the same time, the 
possibhty of checking the validity of the analogue of (9) : 

J (9 ,  t ) : t .  J .  (cos 9) t-1. (9d) 

Instead,  we may  write: 

log J ( 9 ,  t) ~--log (t - J )  q- (t --  1) �9 log cos 9- (9e) 

I f  we plot the logarithms of  the experimeptal J (~)  values versus log cos 9 a 
straight line should result. This is shown for the data of Thiem in Figs. 1 and 2. 
The measured points lie indeed on straight lines within the limits of experimental 
accuracy for the montmorillonite and also for the kaolinite. 0n ly  for the more 
perfectly oriented specimens of the latter, the measured intensities appear  to be 
somewhat high at  higher ~0-angles. These deviations occur, however, at  intensities 
which are so low tha t  their significance might be questioned. We shall, nevertheless, 
give some more thought to these deviations later on. 

The straight lines, drawn through the experimental points of the logarithmic 
plots, have (t - -  1) as their slopes according to (9@ This determination of t, which 
involves the measurement of the angles of the straight lines with the horizontal 
by means of a protractor,  obviates the plotting of J ( 9 )  " sin 9 and the cumbersome 
graphical integration to obtain d. 

The plot of the function J ( ~ ) .  s in~  (not illustrated in this paper) offers, 
however, an interesting way for an independent determination of t. The function 
is zero for 9 ~ 0~ raises to a maximum with increasing 9, and gradually decreases 
towards zero as 9 approaches 90 ~ The angle 9max of the position of the max imum 
decreases with increasing perfection of orientation. This behavior of Thiem's  
plots suggested to search for a quanti tat ive relationship. According to (9) we 
may  write : 

y----D(9, t) �9 sin q ~ : t .  13. (cos 9) t-1 -sin 9.  

To find the maximum, we differentiate with respect to ~: 

d v 
d~ = t-  Jg- ( - - s in  ~ - (t - -  l) - (cos 9) t -~.  sin 9 q- (cos ~)t-1.  cos 9) 

dy 
d V - -  t .  D -  (cos ~p)t--2 ( c o s  2 9 - -  (t - -  1) �9 sin ~ 9)" 

For the max imum the derivative d y/dcf has to be zero. Apar t  from the trivial zero 
at  90 ~ caused by the cosine factor and corresponding to a minimum, dy/d 9 will 
vanish when the te rm in parentheses is zero. The anticipated relationship is then: 

cot 9m~ = V ~ - -  1. (10) 
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Fig. 1. Logarithmic plot according to (9e) of experimental intensities of (O01)-reflection for 
specimens of montmorillonite from Cyprus; fraction < 2 ~ ~, with varying degree of orienta- 
tion: 0 0 0  MII ;  xx  x M I I I ; e e � 9  
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Fig. 2. Logarithmic plot according to (9e) of experimental intensities of (O02)-refleetion for 
specimens of kaolinite "Supr4me"; fraction < 2 ~ ~, with varying degree of orientation: 
o o o K 6 2 ;  x x x  K 1 6 4 ; e |  
The slopes decrease with increasing T for K 63 and K 164. Therefore, two different slopes are 
drawn. They correspond to the two t-coefficients used in description by two cosine powers 
according to (14) 
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Table 1. t-values determined by di]]erent methods o/evaluation 

F. Lippmann: 

SpEcimEn PrEparation Slope of 
logarithmic 
plot (9 e) 

Plot of J (~0)-sin~0 (Thiem) 

position Ef by graphi- 
maximum (10) eal 

integration 

Montmorillonite, Cyprus, air-dry; ~ 2 ~ ~ ; (O01)-reflection 
M II collected from suspension 10.7 

on membrane filter 

M III  compression of wet paste 9.7 
132 kp/em ~ 

M I compression of dry powder 4.25 
200 kp/em 2 

10.5--11.7 11.3 

10.5--9.7 9.8 

4.25 3.7 

Kaolinite "Supreme"; ~ 2 ~ ~;  (O02)-reflection 
K 62 compression of wet paste 2 1 . 0  19.5--22.8 20.2 

500 kp/em ~ 

K 16a compression of wet paste 1 1 . 8  13.0--11.7 10.7 
2000 kp/em 2 

K I compression of dry powder 5.1 5.0--4.8 5.0 
60 kp/em ~ 

The t values determined by the different methods, as well as the sample descrip- 
tions, are summarized in Table 1. The agreement is of the same order of magnitude 
as the accuracy, of about ~ 5%, with which intensities can be read from the record- 
ing of an X-ray diffractometer when no special precautions are used. The pre- 
cision of the t values derived from (10) is poorest because the measurements were 
not planned for this purpose. The maxima were rather poorly defined on account 
of the spacing of 5 ~ ~0 of the measurements. Better results may be expected from 
more closely spaced measurements in the critical region of the maximum in the 
J (~)  �9 sin ~ plot. 

The t values derived from the logarithmic plots were used to trace intensity 
curves according to (9) for a more direct comparison with the experimental data 
than has been possible in the logarithmic diagrams. Figs. 3 and 4 show that  func- 
tions of the type (9) afford a realistic description of the preferred orientation of the 
flake-like clay minerals. 

An additional test of the validity of (9) is provided by the values of ] calculated 
from the orientation data. They should be constant for a given mineral regardless 
of the degree of orientation. This is confirmed, within limits, by the J values listed 
in Table 2. In  the case of the montmorfllonite the parallelism of the ] obtained 
from the logarithmic plot and those from integration is particularly striking, 
although the deviation of M I from M I I  and M I I I  is considerable. M I was 
prepared by dry compression, in contrast to M I I  and M I I I ,  which were prepared 
in the presence of water. Most probably the deviation is due to the variability of 
the basal intensity of the expandable clay mineral with moisture content, i.e. M I 
is not  strictly the same material as M I I  and M I I I .  
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Fig. 3. Comparison of experimental (O01).intensities for montmorillonite from Cyprus; 
fraction < 2 ~ ~, �9169 M II ;  • • • M I I I ;  ooo M I;  with calculated functions of type (9): 

d((p)=t �9 J .  (cos 9) t-x, 

M II :  

M I I I :  

M I:  

J(~v)= 10.7 �9 16.0- (cos ~)9.7; 

J(~0)= 9.7.15.2. (cos ~)s.~; .... . . .  , 

J (+)=  4.25.13.2. (cos ~0)s-25; . . . . . .  . 

The intensities j according to (9), which the specimens would yield from a randomly oriented 
fabric, are shown as horizontal lines with corresponding signatures 

For  the kaolinite the agreement  among  the ] values for one part icular  method 
is remarkable.  The low values from the logari thmic plots reflect the somewhat  
incomplete duphcat ion of the intensities at  higher ~-angles by  a funct ion of type  (9). 
The deviations are, nevertheless, within the limits of accuracy X- ray  intensi ty  
determinations.  

I t  appeared desirable to t ry  function (9) also on microscopically determined 
petrofabric patterns.  The only data,  thus far  found in the literature, which are 
readily amenable  to such an  evaluation, are those of Green I I  (1967). The pa t te rn  
is tha t  of a quartz fabric which was artificially produced by  annealing a flint 
cylinder at  900 ~ C and  6 kilobars {sample DT 460). The pa t te rn  of the c-axes of the 
quartz  grains, which was determined by  universal stage measurements,  is axially 
symmetr ic  within the limits of experimental  accuracy, and  the numerical  densi ty  
values can be read from Green's histogram. Their logarithms are plot ted against  
log cos ~v in Fig. 5. The resulting points form a s traight  line with fair approxima-  
tion. That  the points of lowest densities fall off the s traight  line, is due to the small 
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:Fig. 4. Compar i son  of expe r imen ta l  (002)-intensities of k a o l i n i t e "  S u p r e m e " ;  f rac t ion  ~ 2 ~ ~ ,  
o o o K 6 2 ;  x x x  K 1 6 a ;  o o o K I ;  

w i th  ca lcu la ted  func t ions  of t ype  (9) : 

J(cf):t" J" (cos q~)t--1, 
K 62: 

K 16~: 

K I :  

J ( ~ ) =  2 1 . 0 . 8 . 9 6 -  (cos q)20.0; 

J ( ~ ) :  11 .8 -8 .44 .  (cos ~)10.s; . . . . . . .  , 

J ( q ) :  5.1 �9 9.16.  (cos q)4.1; . . . . . .  . 

The  average  in tens i ty  ] is m a r k e d  b y  the  dashed  hor izon ta l  line 

Table  2. Average intensities j ]rom di//erent methods 

Spec imen  Slope el  Graph ica l  
logar i thmic  in t eg ra t ion  of 
p lo t  (9e) J (~ ) . s in  ~ (Thiem) 

M I I  16.0 16.1 
M I I I  15.2 15.6 
M I  13.2 13.8 

m e a n  14.8 15.2 

K 62 8.96 (9.16) a 9.63 
K 16~ 8.44 (9.16) a 9.22 
K I 9.16 9.14 

m e a n  8.85 (9.16) a 9.33 

a Value  used in  descr ip t ion  b y  two  cosine powers  (14) (Fig. 6). 
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Fig. 5. L oga r i t hmi c  plot  of un iversa l  s t age  m e a s u r e m e n t s  by  Green  I I  on artificial qua r t z  
fabric  (sample  D T  460), showing  ex t r eme  preferred or ien ta t ion ;  

o rd ina te  = reduced  dens i ty  = d - -  

2OO 
200 grains measured: /D -- 2~ = 31,8 

number  of grains (4; 2 and 1, respectively) which they represent among the 200 
grains measured in total. According to the slope of the straight line t is 105, which 
is almost identical with 107, the value determined directly by Green as the 
reduced maximum density in the pole figure. 

Discussion 

I t  may  seem surprising that  it has been possible to develop a function describing 
the angular dependence of vector density, without recourse to concrete models 
concerning the mechanism which might bring about preferred orientation. We 
are, however, in a similar situation when we develop the vapor pressure formula 

- - H  
l n p =  RT q -C  

from thermodynamic principles. 

In  doing so, we rely on the first and second laws of thermodynamics, i.e. on 
conservation principles, and on the law of the ideal gas, the simplest equation of 
state available for the vapor phase. We need not consider the detailed mechanisms 
by which the molecules are held back in the condensed phase. The acting forces, 
which may  be of very different character, are summarized by just one parameter,  
the heat of evaporation H. Nevertheless, the resulting formula has proved, in 
countless experiments, tha t  it adequately, or at least approximately, describes 
the temperature dependence of the vapor pressure of both liquids and solids, held 
together by all possible types of bonding forces. Therefore, it is now in constant 
use for the interpolation as well as extrapolation of experimental data. 
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The postulates used for developing our function (9) are in many  respects 
analogous to the principles underlying the vapor  pressure formula. The concept of 
the independence of the average density D from the type and the degree of orienta- 
tion, (1) and (2), is a conservation principle, i.e. the number  of the grains or vectors 
is assumed to be constant. The ideal gas equation and ~ power of cosine are the 
simplest functions compatible with the respective problems. Finally, we have 
postulated tha t  an axially symmetric fabric be quanti tat ively characterized by 
one single parameter  t. This may  be an approximation of the same kind as when 
we regard the heat  of evaporation H independent of temperature.  I t  is well known 
tha t  more complicated vapor  pressure formulae result when account is taken of 
the temperature dependence of H. More complicated formulae, with an increasing 
number  of parameters,  have to be used when more precise data are to be evaluated 
for larger intervals of temperature.  

When we extend this, as a loose analogy, to our orientation problem cases may  
occur where it is no longer possible to describe experimental data  by  means of the 
simple formula (9), i.e. with one orientation parameter  t. I t  is easy to verify 
tha t  (2) is satisfied also by  a sum of cosine powers: 

D(~0; Pl; P c . . -  P~; tl; t 2 . . .  tn) ---- 
(11) 

~--/) (Pl tl(COS q))t,-l_~p~ t2(eos ~0)t,--1 ~ . . .  "7 L Pn tn(COS ~0) ~'-1) 

in which the orientation is characterized by  a set of parameters  Pn and tn. These 
lat ter  have to satisfy two relations: 

D(O) 
t=- D _ pl t l -k  p2 t2- k . . . - k p n t ~  (12) 

a n d / i n  order to comply with (2): 

1 ~ - P l ~ - P 2 q - " ' "  + P ~  (13) 

i.e. 2 (n - -  1) parameters  are independent. Relation (13) suggests tha t  a fabric may  
be viewed as being composed of discrete portions or domains of minerals, each one 
of which is characterized by a degree of orientation t~. Such a view is supported 
by  observations of Tressler and Williamson (1966) and of Smart  (1967) on 
deformed clays, pn is then the proportion of an entity, denoted by  tn, in the whole 
fabric. 

This more generalized way of describing preferred orientation offers possibilities 
of a more refined evaluation of experimental  data. The two more perfectly 
oriented kaolin samples K 63 and K 16a, for which the description by the simple 
function (9) was not entirely perfect a t  higher ~-angles, may  serve as examples. 
A function composed of two cosine powers: 

J(~)  = J ( p l  t 1 (cos ~)ti-1 q_ P2 t2 (cos ~)t~-~) (14) 

may  be determined in such a way that  the most reliable ] ,  tha t  of K I whose 
description by  (9) is the most perfect, is used as a basis. The parameters  t 1 and t 2 
are taken from the slopes in the logarithmic plot at  low and higher ~0-angles. The 
latter region will yield t 2 with rather  low accuracy. Pl, and thereby P2, are then more 
or less fixed. Fig. 6 shows tha t  the experimental data  of K 164 yield an almost 
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Fig. 6. Description of preferred orientation for K 16r by means of two-term flmetion according 
to (14): 

J (~0)= 9.16. (0.87 �9 11.8 (cos ~0) 1~ -k 0.13- 5. (cos ~0)a). 

The lower curve shows the contribution of the second term. A function of type (19) would 
yield no better fit than the one-term description (9) in Fig. 4. Therefore, in order to obtain the 
same degree of concordance as in this figure, an expression composed of two terms of type (19) 
must be considered 

complete fit with a funct ion of two terms. The remaining deviations are due to 
incomplete axial symmetry .  K 6~ would be more perfectly described by  the 
funct ion (no illustration): 

J(~)----9.16 (0 .95 .21 .0 .  (cos ~0)~176 0 , 0 5 . 1 2 .  (cos ~)n) .  

The numerical  parameters  for K 164 are given in the subscript of Fig. 6. 

I t  m a y  be conceived tha t  the small portions (13 and 5%) of less perfectly 
oriented clay are located in the slip bands via which the preferred orientation by  
compression was brought  about  (conf. Tressler and  Williamson). 

Funct ion  (9) still has one drawback for low values of t, in tha t  it is zero at 90 ~ 
for any  t > 1, with the exception of t = 1. This is no t  realistic in view of the current  
use of the intensi ty ratio (OOl)/(OlcO) as an orientation index at low degrees of 
orientation (Brindley and Kur tossy ,  Niskanen), which should be ~ at  the 

dJ(~) 
slightest orientat ion according to (9). Moreover, the derivative ~ of (9c) is 

discontinuous at  90 ~ for 1 < t < 2 .  This is an unlikely situation for a natura l  
distr ibution function, especially, in view of the prospect tha t  a statistical develop- 
ment  via a differential equat ion might  be possible. A two term expression 

with 

and  

J(q))-= J(Poq-PT" T .  (cos ~)T-1) 

Po-k PT= 1 ; 

J(0) 
t j Po-t-P~ T 

(15) 
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would be a solution which is no t  zero at  90 ~ and  it yields a continuous derivative 
there for T ~ 2. This way, the oriented specimen is regarded as being composed 
of an  unor iented port ion Po and  of a port ion PT, oriented according to T. 

However,  for particles with a very  strong tendency  towards  parallel orientation 
on a flat surface, i.e. for particles susceptible to higher values of t, it  is ve ry  likely 
tha t  D (90 ~ is zero. We see this when we inspect a heap of coins or a stack of 
unanswered marl on a table, or when we t ry  to  have a stack of unbound  issues of 
this journal  s tand up without  support .  Only for part ial ly bent  and  crumpled paper 
(equivalent to the ground clay minerals of l~iskanen) or by  using supports  
(equivalent to the presence of isometric grains in a clay, or to bonding the clay 
with some cement ;  Brindley and  Kurtossy) ,  is it possible to have a measurable 
amount  of paper  surface s tanding perpendicular,  i.e. to have D (90 ~ different 
f rom zero. This la t ter  occurs also after  the issues of a journal  have been bound to 
thick volumes which in a mixture act  as supports  for the unbound  ones in the same 
w a y  as the worm-like aggregates in an  unt rea ted  specimen of a kaolin. 

The development  of (9) given in this paper  imposes no restrictions on t, except 
t ha t  it is (equal to or) greater  t h a n  uni ty.  However,  as developed, funct ion (9) 
applies only to the upper  half of the reference sphere for any  t. I n  order to make 
it applicable also to the lower hemisphere we proposed to use the absolute value 
of the cosine as in (9 c). This expression does no t  represent an  analyt ic  function 
at  ~----90 ~ in tha t  it does no t  possess all higher derivatives there for a rb i t rary  
values of t. We have a l ready ment ioned above tha t  its derivative is discontinuous 
for t ~ 2. I n  an analogous fashion the second derivative is continuous only for 
t ~ 3 and  so on. I n  general, nature  appears to favor  analyt ic  functions, bu t  at  the 
momen t  we have no cogent criteria to decide whether  the densi ty funct ion should 
be analyt ic  at  90 ~ , or not.  All the same, it is interesting to discuss the conditions 
for an  analyt ic  densi ty  funct ion which is valid for both hemispheres wi thout  any  
break at  90 ~ This is the case in the simple funct ion (9) when t is an odd integer so 
tha t  the exponent  (t - -  1) of the cosine is even. Consequently,  degrees of orientation 
intermediate between two odd values of t can be described only by  a function 
with at  least two even cosine powers:  

J ( ~ ) = - J .  (p .  ( 2 n - - l ) .  (cos ~ ) 2 n - ~ _ ( l _ p ) .  ( 2 n ~ - 1 ) - ( c o s  ~)2n) (16) 
with 

J(0) 
t - -~--- -2n--2p- t -1 .  

This means tha t  the degree of orientat ion can no longer be described by  one 
continuously variable parameter .  Instead,  two parameters,  p and  n, are necessary. 
Whereas  p is continuously variable between 0 and  1 ; n has to be an  integer and  
is thus variable only in a discontinuous manner .  This way, in order to avoid any  
discontinui ty of the densi ty  funct ion at 90 ~ we have t raded  a discontinuous 
variabil i ty of t. A decision from experimental  da ta  whether such an analyt ic  
description of the densi ty  is superior to a single cosine power, whose exponent  
m a y  be odd or fractional, should be most  sensitive at  low degrees of orientation. 
For  M I, the values of the analyt ic  funct ion:  

J(~)--~ 13.2 �9 (0.375 - 3 �9 cos2~ ~-0.625 �9 5 �9 cos 4 ~) (conf. (16)) 
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are  s l ight ly  b u t  d i s t inc t ly  di f ferent  f rom those  of 

J ( ~ ) ~ 4 . 2 5  �9 13.2 �9 (cos ~) 3.25 (conf. Fig.  3) 

except  a t  ~ = 0 ~ and  ~ ~ 5 0  ~ The differences are,  however,  no t  i m p o r t a n t  enough 
to al low a def ini te  choice on the  basis  of the  expe r imen ta l  da ta .  These are  equa l ly  
well descr ibed  bo th  ways.  I n  view of this  s ta te  of affairs  we m a y  as  well cont inue 
using the  more versat i le  one- t e rm expression for p rac t ica l  purposes ,  even if the  
m a t t e r  should be se t t led  in favor  of (16) b y  a s ta t i s t ica l  de r iva t ion  of the  dens i ty  
funct ion .  

The discussion of the  funct ions  wi th  several  cosine powers  might  have  suggested 
t h a t  (9) is the  on ly  funct ion avai lab le  as long as  we insis t  on a descr ip t ion  of 
prefer red  or ien ta t ion  b y  one single, cont inuous ly  var iab le  p a r a m e t e r  t. Regard less  
of th is  impression,  funct ions  of the  t y p e  (11) wi th  severa l  cosine powers  will lead  
us to more expressions charac te r ized  b y  one or ien ta t ion  pa ramete r .  I n  (11), we 
m a y  emp loy  an  inf ini te  number  of in teger  cosine powers  a n d  dispose of the  p~ in 
such a w a y  t h a t  the  sum of the  pn tn (cos ~0) t~-I forms a convergent  series S. This 
l a t t e r  m a y  be rega rded  as  a power  series of the  var iab le  (k - cos ~), a n d  i t  m a y  be 

2)(0) 
scaled in such a w a y  t h a t  i t  complies wi th  t = ~ "  

D(cf,  t ) = t .  D .  S(~.cos 9) S(~) (17) 

A t r anscenden ta l  re la t ion  be tween  t and  k can in genera l  be found b y  t ak ing  
account  of (2). This  will cer ta in ly  be more  compl ica ted  t h a n  the  simple a r i thmet i c  
re la t ion  be tween the  two or ien ta t ion  pa rame te r s  t and  (t - -  1) of (9), if we choose, 
for a shor t  m o m e n t  and  for sake of analogy,  to look upon  (9) as being fo rmal ly  
de t e rmined  b y  two different  coefficients as well. 

The funct ion  exp (k �9 cos ~) has  been suggested wi thou t  proof  b y  F i sher  (1953) 
for spher ica l  d is t r ibut ions ,  and  i ts  app l ica t ion  to  quan t i t a t i ve  pe t rofabr ic  s tudies  
has  been discussed b y  Bra i t sch  (1956). I t  m a y  be rega rded  as  a special  case of 
(17), since the  exponen t i a l  funct ion exp (]c �9 cos F) m a y  be expressed as an  infini te  
series of cosine powers.  The p rope r ly  scaled funct ion  mus t  be wr i t t en :  

D (~, t) = t .  ~ .  cxp (/~. oos 9) 
exp (k) = t -  .D. exp  (k .  (cos ~0 - -  1)). (18) 

k 
The coefficients are  re la ted  b y :  t = 

1--exp(- -k)  

I f  we wan t  to a p p l y  this  funct ion also to  the  lower hemisphere  we have  to use 
the  abso lu te  value  sign on the cosine as  in  (9e). This w a y  (18) is no t  d i f ferent iable  
a t  90 ~ for a n y  t. These difficulties do no t  occur when we use a funct ion  which is 
descr ibed b y  an  inf ini te  power  series wi th  even order  t e rms  only.  The hyperbol ic  
cosine m a y  serve as  an  example :  

D(cf,  t ) = t  �9 D �9 cosh(k, cos ~) 
cosh (~) (19) 

a n d  
t = k - coth (/c). 
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When compared to the experimental  data  of K I 

cosh (5.1 �9 cos ~) 
D ( q , t ) = 5 . 1  �9 9.16. 

cosh (5.1) 

offers no better  description than does 

D(q ,  t ) ~ 5 . 1  �9 9.16 �9 (cos q)4.1 
in Fig. 4. 

Thus there is no practical reason to use (19) or even (18) instead of (9) for the 
evaluation of experimental data  as carried out above. Nontheless, being an analytic 
function without any  discontinuities at  90 ~ , (19) may  show advantages in applica- 
tions where both hemispheres have to be considered. 

For larger values of t, and especially at  low q-angles, there will be no appreciable 
difference between (18) and (19), according to the definition of the hyperbolic 
cosine as the sum of two exponential functions of the same arguments but  of 
opposite signs, the magnitude of the power with negative exponent becoming 
negligible. 

A closer comparison of (18) and (9) is afforded when we write the latter:  

D ( q ,  t ) - - ~ t .  D . e x p  ( ( t - - l ) - I n  cos q) .  (9f) 

We have the logarithm of the cosine in the exponent, instead of the cosine itself 
in (18). In  order to s tudy the behavior of (18) and (9f) at  lower q-angles we write 
the power series for cos q and In cos q consider the first terms only: 

c o s q = l - - 2 - -  ~ . . . :  D ( q , t ) = D ( O ) . e x p  - -  , (18a) 

In cosq - - - - -  ~ -  . . . .  : D(q ,  t ) = D ( 0 )  �9 exp - - ( t - - l ) .  . (9g) 

We see tha t  for low q-angles (18) and (9) grade into the same type of function, the 
Gauss distribution. They can no longer be distinguished at  very high degrees of 
orientation when k, t and (t-- 1) are practically equal. The most interesting point 
is that  it becomes thus evident under what  conditions preferred orientation is 
described by a Gauss curve or normal distribution. This has been chosen by Dunn 
(I954) to depict the X-ray  intensities of cold rolled metal  specimens. The author 
plotted the logarithm of the diffracted intensity versus the square of the q-angle 
and obtained roughly straight lines. This approximate behavior, however, would 
be expected also for a cosine power function, in view of the prevailing contri- 
bution of the square term to the In cos and cosine series. Because there is no 
way of having the Gauss distribution comply with (2) and (3), except for 
extremely high values of t, it cannot be accepted as a generally valid description 
of preferred orientation. 

We may  even go one step farther and consider the distribution of errors for the 
measurement of angles. In  the Gaussian description, errors of all magnitudes may  
occur, albeit with drastically decreasing probabili ty for increasing magnitude. 
In  the measurement of angles, however, errors greater than  90 ~ are hardly 
imaginable, even with the crudest measuring device imaginable. Moreover, an 
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error of 90~ may be interpreted as 90 ~  when we measure the angle between 
non-polar directions. Under these circumstances, errors greater than 90 ~ are 
meaningless, and from this point of view it appears that  properly normalized 
functions of the type 

cosh (b. cos ~) 
F(~) ~ a ( c o s  ~)b or perhaps F(~) ~ a �9 cosh(b) 

may be the adequate distributions of the errors for measured angles. The Gauss 
distribution is then a mere approximation for the low mean deviations, i.e. for 
the high accuracy, with which angles are normally measured. 

The preceding consideration may suggest that  function (9) [or possibly (19)] is 
perhaps of more general importance. But for the moment its significance lies in the 
versatility which it affords in the quantitative evaluation of experimental orienta- 
tion data. When written for the density of a given crystallographic vector, clustered 
around the pole, it may be used to calculate the density of an other vector which 
is at an angle with the first. The problem is simple for an angle of 90 ~ . This way, 
the relation between the density of (OO1) at the pole and that  of (0/c0) on the 
girdle around the equator has been determined for oriented aggregates of flake- 
like clay minerals (Lippmann, 1968). Calculations for angles other than 90 ~ are 
being attempted. 

Zusammenfassung 
Texturpr~parate bliittchenfSrmiger Tonminerale, wie sie zur Verst~rkung der 
Basisreflexe bei der rSntgenographischen Bestimmung hergestellt werden, shad 
rotationssymmetrische Geffige. Die Symmetrieachse oder Pol steht senkrecht 
auf der Oberfliiche und fi~llt mit dem Dichtemaximum der Basislote zusammen. 
Betrachtet man eine feste Anzahl Bl~ttchen, so kann man fordern, dal3 die Giite 
der Orientierung nut  yon einem einzigen Parameter t abh~ngt, der als Verh~ltnis 
der variablen maximalen zur konstanten durchschnittliehen Lotdiehte D definiert 
wird. Der Dichteabfall yore Pol zum J~quator kann dann dutch eine Potenz des 
Cosinus der Polardistanz ~ beschrieben werden: 

D (~, t)----t. D .  (cos ~)t-1. (9) 

Diese Formel und ihre Varianten (9a--g) erm6glichen die quantitative Aus- 
wertung gemessener R6ntgen- und U-Tisch-Gcffigedaten. 

Die ]~bereinstimmung zwischen gemessener und berechneter Lotdichte kann 
in einigen F~llen durch Verwendung einer Summe aus zwei Cosinuspotenzen ver- 
bessert werden. Die Cosinuspotenz ist keineswegs die einzige L6sung des Problems. 
Andere m6gliche L6sungen shad jedoch zun~ehst weniger handlich und liefern 
keine bessere Beschreibnng der MeBwerte. Die Gaui3-Verteflung ist eine spezielle 
N~herung ffir (9) bei sehr groger Orientierungsgfite. 
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