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Summary.  When testing for regulation of population 
numbers, rather than using Bulmer's second test in cases 
where population numbers are estimated instead of mea- 
sured, we prefer to correct Bulmer's first test for estimation 
error. A correction method is expounded, discussed, and 
applied to two series of census data: the pine looper of 
Klomp and the garden chafer of Milne. In neither case the 
tentative conclusion from using the uncorrected test was 
changed after correction. Therefore, in practice Bulmer's 
first test without correction can be used well as a first orien- 
tation. Twelve long series (more than 10 years) of census 
data of both univoltine and semelparous (a necessary condi- 
tion) insects were tested for significant density dependence 
in the fluctuations of numbers with the randomization test 
of Pollard et al. None of the series, all we could find to 
meet the necessary condition as well as being longer than 
10 years, showed significant density dependence at the 0.05 
level, though the pine looper of Klomp did so at the 0.1 
level. Next, the same series were tested for regulation in 
the sense of "keeping density within limits" with both the 
first test of Bulmer and the permutation test of Reddingius 
and Den Boer. Only Klomp's  pine looper population at 
"Hoge  Veluwe" scored significantly. In a following paper 
this population will be considered more closely, in order 
to enable understanding of this test result. 

Key words: Density dependence - Census data - Trends 
- Regulation 

In the first part of this paper (Reddingius and Den Boer 
1989) we compared and discussed two tests that might be 
used to detect the existence of regulation of population 
numbers: the parametric first test of Bulmer and the non- 
parametric permutation test. As in most population studies 
densities are not exactly measured but estimated by taking 
samples, a parametric "regulation"-test should take into 
account the possible effect of estimation error. Rather than 
using Bulmer's second test (1975), which hardly has any 
power, we proposed to correct the test statistic of Bulmer's 
first test for estimation error. We noted, that if U* and 
V* are the uncorrected estimates of Bulmer's U and V re- 
spectively, R**, the imperfect test statistic based on density 
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estimates, can be expressed as R**=(V+na~) / [U+ 
2(n-- 1) a~], by which Bulmer's R = U/Vcan be approximat- 
ed as R ~ ( V * - n a 2 ) / [ U  * - 2 ( n -  1) a~]. If a reasonable esti- 
mate can be obtained for the sample variance of the density 
estimates 2 2 aa, Sa, say, the corrected test statistic can be com- 
puted as R c = (V* -- nS~)/[U* -- 2 ( n -  1) $2]. 

At  the time we prepared the present paper, Pollard et al. 
(1987) published an interesting test for detecting density de- 
pendence in the variation of population numbers without 
the necessary condition that it should have to contribute 
to "regulation", i.e. to "keeping between limits", of density. 
For  this "randomizat ion" test, as it is called, they indepen- 
dently used the same method of taking samples from the 
collection of all possible permutations of the values of net 
reproduction (Yt = Xt + ~ - Xt = In Rt, where Xt = in Nt, and 
Nt is population size or density in year t), as was presented 
by Reddingius and Den Boer (1989) for the permutation 
test. The randomization test uses the product-moment  cor- 
relation coefficient between population density (or size) and 
the next population change (net reproduction). By randomly 
permuting the values for net reproduction of the original 
time series many times, and each time calculating the match- 
ing densities, population change is made independent of 
density. Therefore, the currently computed correlation coef- 
ficients define the probability distribution of this coefficient 
under the null hypothesis, with which the coefficient of the 
original series can be compared in the way it was described 
by Reddingius and Den Boer (1989) for Log-Range values. 
The interesting point with this test of Pollard et al. (1987) 
is that the outcome is independent of whether or not there 
is a marked trend in the data. 

In the following we will expound how to correct the 
test statistic of Bulmer's first test for estimation errors, after 
which we will try to find out how much difference it makes 
in practice whether one uses the corrected statistic, R c, or 
the uncorrected one, R**. Next, we will apply the randomi- 
zation test of Pollard et al. (1987) to a number of long series 
of published population data to see whether or not signifi- 
cant density dependence can be detected in these series. 
With this knowledge we can adequately test the same series 
with Bulmer's first test and the permutation test to get some 
idea of the evidence that actually supports the regulation 
hypothesis. Unfortunately, we will have to restrict our ex- 
plorations to insects that are both univoltine and semelpar- 
ous, because a basic assumption of these tests - especially 
of the parametric one, but also in an unbiased use of the 
permutation and randomization tests - is that  the sequence 
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of population densities can be considered a piece of first- 
order Markov  chain. Because of this we could not test some 
of the best series of census data, such as on the great tit 
of Kluyver (1951), on muskrats and bobwhite quail of Err- 
ington (1957), and on the many series of carabid species 
available at the Biological Station, Wijster. New tests that 
also cover higher-order Markov chains will have to be de- 
veloped for that. 

Methods 

Correcting for the effect of density estimates 

Suppose, in a given year the estimate of density is based 
on k independent random samples of size a, and let N/de-  
note the number of animals in the i-th sample. The obvious 
estimator of the density then will be the arithmetric average 

k 

of the numbers per unit area, i.e. 57/a = ~ N~/(ka). Let N 
i=1 

be the real population density, and a 2 the variance among 
k 

samples. Let $2=  ~ (Ni-57)Z/(k-1) be the sample vari- 
i = 1  

ance, used as an estimator for cr 2. The problem we will 
consider is how to estimate the variance of X* = log (57/a). 
That this is an intricate problem will be realized if one 
is aware of the fact that the variance of the logarithm of 
a variable depends on the expected value (mean) as well 
as on the variance of that variable (see Fig. 1, where this 
is illustrated for normally distributed variables). Moreover, 
since X*=log(~Ni) - log(k) - log(a) ,  we have var(X*) 
= vat  [log (~  Ni)]. In general, increasing k will not  decrease 
the variance of X*, al though it does decrease the variance 
of 57. In what follows, we will suppose a = 1. We can think 
of four ways to approach our problem. 

1. One might work with logarithms from the very start 
k 

and estimate X = log (N) by ) ( =  ~ log (N~)/k = ~ Xi/k, say, 
/ = 1  

and use the sample variance of this mean by ~(X~ 
-X)Z/[k(k-1)] .  This approach seems straightforward but 
there are some objections to be raised against it. In the 
first place, the density itself, N = exp (X), is now estimated 
as the geometric average of the N~'s, suggesting a multiplica- 
tive rather than an additive relationship between samples. 
This does not seem very plausible. In the second place, 
some N{s may be zero, in which cases the corresponding 
X[s are undefined, although, of course, the zeroes must be 
included in our density estimate. Adding a constant such 
as 0.5 or 0.375 may be useful if the data are to be treated 
by A N O V A  or regression analysis, but in the present case 
this is not  relevant. We have to estimate X = l o g  (N) not 
log (N + 0.375), or something like that. It follows from what 
was said above concerning the moments of logarithms of 
variables that the (arbitrary) choice of which constant is 
added will influence the variance. 

2. One might postulate a certain type of probability dis- 
tribution for the sample sizes. Rather often, a Negative Bi- 
nomial distribution will fit the data rather well, for example. 
We might then estimate the parameters of this distribution 
from the data and numerically compute the variance of 
the logarithm of the sum of k variables with the fitted distri- 
bution. The probability that this sum will be zero must 
be zero or at least negligibly small. 
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Fig. 1. Probability densities of a normally distributed variable X, 
in the graphs at left plotted as X, and in those at right plotted 
as In (X) 

3. We may try to estimate var (X*) using a series devel- 
opment, which may be valid if the variance is small com- 
pared to the mean. Suppose 57 is an unbiased estimator 
of N. We write 

in (N) = In (U) + (57-- U)/U- -  (N -- N)2/(2 N z) +.. .  
in 2 (57) = [In (N)] z = in 2 (N) + (57 -- N)2/(N 2) 

+ 2 In (N). (57-- N)/N 
-- 2 In (N). (57-- N)2/(2 N z) --... +.. .  

Neclecting higher order terms, we obtain 

In (57) ~ In (N) - var (57)/(2 N 2) (because g (57 - N) = 0) 

(ln z (57) ~ In 2 (N) + [ 1 -- in (N)] var (57)/(N 2) 

whence 

var In (bT)= g In 2 (57)- [C In (N)] / 

= var (57)I-1 - {var (57)/(4 N2))]/N 2. 

So as an estimator of var In (57) we might use 

S z I-1 - {S2/(4k57Z)}q/(k572), as var(57) = a2/k. 

This formula is valid provided the higher order terms may 
indeed be neglected, i.e. for example 8(57--N)3/(3N 3) m u s t  
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be small compared to var (N)/(2N2). This means that f i  
with a high probability must be close to N. 

4. If  k is large, N is approximately normally distributed. 
This approximation may  be used only if g(ig/) is large com- 

pared to |, v/~ar (N), because the probability of the approxi- 
mating variable's being less than or equal to zero must 
be negligible. But i f /q  is large enough, we may estimate 
its expectation and variance, and compute the expectation 
and variance of the logarithm of a variable with the fitted 
normal distribution using numerical integration. For exam- 
ple, a simple way of calculating the expectation is the follow- 
ing. If g log(/V)=#, var log (N)= a 2, one chooses a large 
a and a small h, and, putting 

k 

k= a/h: g log (N)~ ~ [log (]h) e-~t~ h. 
j = l  

In our calculations, we chose a sequence of decreasing 
values of h until the successive results no longer differed 
in their two or three most significant digits. If # is not 
large in comparison to or, this procedure fails because the 
inproper integral 

(1/a ~2-~) ~ log (X) e -a~t(~-u)/`l~ .dx 
0 

= t i m  ( 1 / a l f ~ )  S log(X)e-~t(~-' / 'J2.dx 
g 

does not converge. Formally we should divide the result 
0 

by 1 - ( 1 / a l / / ~ )  ~ e-~t(~-")/ '~.dx, but if # is large 
- - o 0  

enough in comparison to a, this quantity is almost 1. 

Results 

Correction for estimation errors 

We tried to apply these ideas to two cases: larval density 
of the Pine Looper according to Klomp (1966), using data 
on sample sizes from his Table I, and larval density of the 
Garden Chafer from Milne (1984) using Table 1 a from Ap- 
pendix 1. However, we dropped the second approach; al- 
though it may seem the most exact one, it was not feasible 
to fit probability distributions that were numerically trac- 
table. 

A. Bupalus larvae. 
1. Variance of log~ 0 (number of larvae/number of shoots) 

August, 9 samples: 0.00429 
September, 9 samples: 0.001071 

3. August:N=0.025072 S 2=0.00010373 k = 9  
estimate of vat In (_N) = 0.018251 
estimate of vat log10 (/V)= 0.018251/[ln (10)] 2 

= 0.0034424 
September:N=0.025238 SZ=0.000033980 k = 9  

estimate ofvar In (_N) = 0.0059188 
estimate of vat log ~ o (N) = 0.0011164 

4. August: estimate of vat In (N) =0.019254 
estimate of var loglo (N) = 0.0036315 

September: estimate of vat In (N) = 0.0060692 
estimate of var log1 o (~) = 0.0011447 

The results agree fairly well. 

In Table IV, Klomp (1.c.) gives estimates of larval density 
for the years 1950-1964 (n= 15). Using logarithms to the 
base 10 of the densities per shoot in August, we calculated 

U* = 3.492 V* = 2.154, hence R** = 0.617 

Rz; o.o5 = 0.25 + 13 x 0.0366 = 0.7258, 

so R** would be considered significant at the 0.05 level. 
If  we assume cry=0.004, we obtain RC=0.6195, which 

is still significant at the 0.05 level. So, unless sampling errors 
on the average were much worse than they were in 1954, 
the year on which Table I was based, these data do support 
the hypothesis that net reproduction is negatively density- 
dependent. 

B. Garden Chafer larvae. 
1. Method 1 could not be applied because there were 

many zeroes. 
3. Data for 1949: 

numberof la rvae  0 1 2 3 
number of samples 303 28 6 1 

N=0.12722 $z=0.16478 k=338 
estimate ofvar  In (N)=0.029895 
estimate of vat log lo (N)= 0.0056385 

Data for 1975: 
number of larvae 0 1 2 3 4 5 6 7 
number of samples 213 42 20 13 19 10 11 5 

8 9 10 11 12 
1 2 0 1 1 

/Y=1.17456 $2=4.32849 k=338 
estimate ofvar  In (N) = 0.0092611 
estimate of vat log 1 o (N) = 0.0017467 

4. Data for 1949: 
estimate of var In (N) = 0.032750 
estimate ofvar  loglo (N)=0.0061770 

Data for 1975: 
estimate of var In (N) = 0.0095071 
estimate of vat log10 (N) = 0.00t7931. 

The results for a given year agree fairly well, but the sam- 
piing variance was much larger in 1949 than it was in 1975. 
We considered all years in which ~7 was at least 4.5 times 
as large as its standard error, i.e. 12 out of 29 cases. For 
these we estimated var In (_N) by Method 4. The weighted 
avarage, weighted according to k-value, of these variances 
is 0.023755. Converted to logarithms to the base 10, this 
is 0.0044804. These results suggest tentatively that putting 
aJ = 0.01 may be conservative. 

Using natural logarithms, we obtained V*=42.1703, 
U*=20.9015, k=29,  hence R**=2.0t8.  With RL;oo5 
= 1.238, this is not significant at 0.05 level. Converted to 
logarithms to the base 10, we have V* = 7.9538, U* = 3.9423. 
With a~=0.01 we then obtain RC=2.2659, which is, of 
course, not significant. 

An approach which may also be useful in certain cases 
is to calculate for which value of a~ a "significant" R** 
would be transformed into a non-significant R c. Suppose 
R**=V*/U*<RL;  we now ask for which value of a~ we 
have (V* - n aJ)/(U* - 2 ( n -  1) a~) > RL. The answer one ob- 
tains after some algebra is a~>(RL U*-- V*)/[2(n- 1) RL 
- - n ] ,  

For example, for the data on moth density of Klomp 
(1.c. Table X), we obtained, using logarithms to the base 10: 

U*=4.218 V*=2.452 k=14  
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Table 1. Population densities or population sizes (N,) with natural logarithm (ln) of the density range (LR) in a number of longterm 
population counts in univoltine insect species, i.e. populations for which the yearly densities may be considered terms of a first-order 
Markov chain 

Species, area, period, and source of data N-values LR (In) 

Winter moth, Wytham Wood, Oxford UK, 19 years 112.2; 117.5; 55.0; 18.2; 158.5; 77.6; 95.5; 275.4; 190.55 3.59 
(1950-1968), Varley et al. (1973, Table F, p 201). 57.54; 21.4; 7.6; 13.5; 40.7; 131.8; 269.15; 51.3; 9.8; 10.0 
Larvae per m 2 of canopy 

Winter moth, 19 years (1950-1968) 3.06 
Adults converted per m 2 

Pine looper, Hoge Veluwe, Netherlands, 15 years 2.80 
(1950-1964), Klomp (1966, Table XXIII, pp 268-270). 
Larvae in August per m 2 of canopy 

Pine looper, 15 years (1950-1964) 3.47 
Larvae in September per m 2 

Pine looper, 14 years (1950-1963) 3.81 
Pupae in April per m z 

Pine looper, 14 years (1950-1963) 3.29 
Adults converted per m 2 

Pine looper at Cannock, Staffordshire UK, 4.03 
13 years (period unknown); read from Fig. 8.3 
(p 139) of Varley et al. (1973) 
Pupae per m 2 

Garden chafer, Rydal Farm, Ambleside UK, 29 4.60 
years (1947-1975), Milne (1984, Appendix 1, p 195) 
Third instar larvae (in 338 samples of 4 x 4 in./year) 

Garden chafer, Hawes End Farm, Keswick UK, 18 4.52 
years (1951 1968), Milne (1984, p 196) 
Third instar larvae (in 85 samples of 4 x 4 in./year) 

Grey larch bud moth, Upper Engadin, Switzerland, 12.02 
20 years (1949-1968), Van den Bos and Rabbinge 
(1976, Table 4, p 57). Larvae per 7.5 kg of branches 

Spruce budworm, New Brunswick, Canada, 15 years, 7.03 
(1945-1959), Morris (1963, Fig. 28.1, p 177) 
Third instar larvae per 10 feet 2, Plot G4 

Spruce budworm, 14 years (1946-1959) 7.23 
Third instar larvae per 10 feet 2, Plot G5 

Viburnum whitefly, Silwood Park, London UK, 5.14 
12 years (1962-1973), Southwood and Reader 
(1976, Table 1, p 318) 
Fourth instar larvae in entire population 1 

Viburnum whitefly, 12 years (1962-1973) 4.51 
Fourth instar larvae in entire population 2 

Viburnum whitefly, 12 years (1962-1973) 4.19 
Fourth instar larvae in entire population 3 

Nebria brevicollis (carabid), Wijster, The Netherlands, 1.93 
11 years (1968-1978), Nelemans and Den Boer 
Young adults per 1000 m 2 

7.4; 13.8; 7.03; 4.9; 20.23; 11.94; 14.8; 23.44; 14.8; 6.17; 
1.12; 3.02; 5.25; 10.965; 16.4; 24.0; 2.85; 2.82; 3.02 

9.5;24.4; 1.6; 4.5; 11.5;13.9; 15.1; 1.8; 3.6; 5.8; 7.5; 
26.3; 24.8; 18.3; 6.5 

7.7; 22.4; 1.3; 4.5; 11.5; 12.0; 12.2; 0.8; 2.2; 3.7; 6.5; 
25.6; 20.1; 18.3; 3.7 

5.4; 3.6; 0.73; 3.0; 3.0; 2.6; 1.7; 0.12; 0.87; 1.1; 2.3; 
3.4; 5.0; 4.6 

2.7; 1.3; 0.10; 1.1; 1.4; 1.5; 0.99; 0.10; 0.48; 0.58; 1.5; 
2.1; 1.1; 0.83 

7.94; 40.74; 30.9; 26.92; 89.13; 6.31; 2.34; 1.58; 6.31; 
15.85; 20.42; 12.3; 3.31 

136; 83; 43; 139; 161; 307; 251; 140; 22; 8; 4; 43; 21; 
35; 19;23; 11;16; 11; l l ;  14;11; 46; 22; 44;49; 63; 
260;397 

159; 184; 43;39;13; 10;9; 17; 14; 38; 15;17; 17; 15; 
10; 12; 2; 2; 6 

0.13; 0.62; 3.37; 31.3; 516.0; 2488.0; 949.0; 160.0; 
16.8; 0.63; 0.59; 2.12; 12.3; 172.0; 1866.0; 1382.0; 
23.4; 0.15; 0.015; 1.5 

0.056; 0.071; 0.427;3.236; 3.981; 56.23; 51.29;44.67; 
25.7; 63.1; 12.3; 6.31; 19.95; 2.818; 0.331 

0.04; 0.048; 1.072; 1.585; 5.248; 5.623; 2.291; 12.59; 
54.95; 4.476; 2.884; 6.31; 1.778; 0.302 

13190; 1937; 3904; 13919; 27562; 34136; 31110; 50658; 
78943; 164027; 300583; 3303390 

708; 168;195; 144; 134;582;1021; 2640; 6209; 
12236; 6957; 6756 

597; 146; 115; 9; 25; 28; 27; 97; 348; 152; 48; 75 

268; 341; 238; 784; 396; 604; 626; 1641; 1281; 
1006; 645 

hence R ** = 0.581. As RL; 0.05 = 0.6892, this is "significant" 
at the 0.05 level. The result would not  be significant, how- 
ever, if 

ad z > (0.6892 x 4.11970-2.45048)/(26 x 0.6892-14.0)  
= 0.09921. 

Moth  density was minimal  in the years 1953 and 1958. 
In both cases it was 0.1 moths /m 2, and the 0.95 confidence 
interval given by Klomp  was 0.02-0.18. The 0.95 confidence 
interval for the logar i thm of the moth  density then would 
be - 1 . 6 9 9  to -0 .745 .  This interval has a width of 0.954. 
Moth  density was maximal,  i.e. 2.71 moths /m 2 in 1951. The 

confidence interval was 2.09-3.33. Converted to logari thms 
this is 0.320-0.522, with a width of 0.202. If we assume 
the width of a 0.95 confidence interval to be about  4 times 
the s tandard  deviat ion (as Klomp did), then ~d might be 
somewhere between 0.05 and 0.24, and ~2 accordingly be- 
tween 0.0025 and 0.058. It seems reasonable,  therefore, to 
reject the null hypothesis. 

The cases in which we tried to correct for possible errors 
from estimating instead of measuring densities, the pine 
looper  of K lomp  and the garden chafer of Milne, both  illus- 
trate that  the difference between R** and R c cannot  be 
expected to play a decisive role in the detection of the ex- 



istence of regulation of population numbers. In neither case 
was the tentative conclusion from R** changed after correc- 
tion. Therefore, in practice Bulmer's first test without cor- 
rection often will do. Because R** always will be smaller 
than R c, by restricting the search for regulation to testing 
of the significance of R** will lead to accepting the regula- 
tion hypothesis a little bit too often, but the error in the 
significance level stated will usually be small. 

Density dependence in long series of census data 

In Table 1 we bring together from the literature a number 
of series of population data that may tentatively be consid- 
ered pieces of first-order Markov chain. This means that 
we could not use data from species with more, generally 
overlapping generations per year, such as those of 16 gener- 
ations of Epiphyas postvittana (Danthanarayana 1983) and 
of many other moths, or data from univoltine insects for 
which a sizeable fraction of individuals reproduce in more 
than one year, such as in most carabid beetles (Van Dijk 
1982). We further restricted ourselves to series of at least 
11 12 years. Since we intend also to apply "regulation" 
tests, strictly speaking, we should have excluded the grey 
larch bud moth and the spruce budworm, because in the 
first the sequence of densities is highly affected by a self- 
induced and cyclical change in food quality and quantity 
(Bos and Rabbinge 1976), and in the second by trends in 
the overall weather conditions over years (Greenbank in 
Morris 1963; Andrewartha and Birch 1984). Den Boer 
(1987:233) showed that in the pine looper of Klomp (1966) 
the effect of the supposed regulating factor may be different 
in different developmental stages of the same population. 
Therefore, in Table 1 we included four stages of the pine 
looper, to detect in what stage a possibly density-dependent 
process might be most effective. For comparison, we added 
another pine looper series in which densities were much 
higher. Adults of the winter moth are included in addition 
to larvae, because the winter moth at Wytham Wood has 
long been considered a classical example of regulation, in 
which the density-dependent pupal predation was responsi- 
ble for a mean generation mortality of 35%. For the other 
species in Table 1 regulation of numbers has hardly been 
considered seriously, although most of the authors were 
in search for density-dependent processes. So far, Nebria 
brevicollis is the only carabid species studied by us that 
is virtually semelparous (Den Boer 1979), and like the ma- 
jority of carabid species it is also univoltine (Nelemans 
1987). Within the context of the present paper this species 
is particularly interesting, because, in the population stud- 
ied, the number of recruits per female tended to be negative- 
ly correlated with the number of reproducing females: 
p = - 0 . 5 5  (p=0.048, one-sided); Nelemans et al. (unpub- 
lished work). 

Unfortunately, we failed to discover more published 
data on densities in populations of insects that are both 
semelparous and univoltine, and which, moreover, were un- 
interruptedly studied for 11-12 years or longer. 

The results of the randomization test are given in Ta- 
ble 2. It will be seen that, at the 0.05 level, none of the 
series shows significant density dependence in the variation 
of population numbers, and at the 0.1 level only the pine 
looper of Klomp (1966) scores significantly for adults and 
marginally so for larvae in August. So far as the winter 
moth at Wytham Wood is concerned, the results are in 
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Table 2. Test results of the randomization test of Pollard et al. 
(1987), when applied to the census data of Table 1. Given are: 
(1) the product-moment correlation coefficient tax between the den- 
sity estimates (loge-values) and the next coefficient of net reproduc- 
tion (loge-values), (2) mean and standard deviation (S.d.) of the 
500 correlation coefficients (rv) of the permutated series, (3)the 
number of permutated series (out of 500) in which the correlation 
coefficient was less than or equal to (L.E.) r~x, and (4) the latter 
number divided by 501 being an estimate of P, the chance to accept 
the density dependence hypothesis wrongly 

Population counts ra~ %-+ S.d. L.E. rdx P- 
(Table 1) value 

Winter moth; larvae -0.434 -0.39+0.15 208 0.415 
Winter moth; adults - 0.496 - 0.43 • 0.11 137 0.274 
Pine looper; -0.635 -0.49_+0.11 50 0.100 

larvae August 
Pine looper; -0.630 -0.49+0.11 63 0.126 

larvae Sept. 
Pine looper; -0.584 -0.51+0.11 123 0.246 

pupae April 
Pine looper; adults  -0.699 -0.49+0.13 30 0.060 
Pine looper; -0.484 -0.51 -+0.12 279 0.557 

UK, pupae 
Garden chafer; -0.307 -0.34+0.10 306 0.611 

Rydal Farm 
Garden chafer; -0.501 -0.31 -+0.19 79 0.158 

Hawes End 
Grey larch bud moth -0.412 -0.42-+0.11 260 0.519 
Spruce budworm; -0.459 -0.47-+0.13 261 0.521 

Plot G4 
Spruce budworm; -0.553 -0.46-+0.14 145 0.289 

Plot G5 
Viburnum whitefly; -0.086 -0.34-+0.22 415 0.828 

pop. 1 
Viburnum whitefly; -0.115 -0.39-+0.21 449 0.896 

pop. 2 
Viburnum whitefly; -0.637 -0.48• 93 0.186 

pop. 3 
Nebria brevicollis; -0.536 -0.50-+0.16 180 0.359 

adults 

accordance with the conclusions of Den Boer (1986): the 
density-dependent process is apparently counterbalanced 
by the key factor to such a degree that no density depen- 
dence can be discovered in the variation of population 
numbers. The results for the pine looper at Hoge Veluwe 
are somewhat better than could be expected from the analy- 
sis by Den Boer (1987). The other time series tested did 
not give cause to expect significant density dependence in 
the fluctuations of numbers, so that the results of the rando- 
mization test are perhaps not surprising. For instance, there 
are other reasons (Nelemans et al., unpublished work) to 
suppose that the negative correlation between recruitment 
and number of females in Nebria brevicollis (above) will 
not result in significant density dependence. 

Note that the strikingly low correlation coefficients (rax), 
which might suggest negative density dependence, are im- 
portantly biased, because the highest density in such a series 
is necessarily followed by a net reproduction below unity, 
whereas the lowest density by definition is always followed 
by a net reproduction above unity. Although less stringently 
so, something similar can be stated about other very high 
and very low densities in the series. Reddingius (1971:8.2) 
has already shown that this phenomenon can be expected 
to lower correlation and regression coefficients considerably 
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Table 3. Test results of Bulmer's first test and of the Permutation test when applied to the population 
counts of Table 1. Given are: Bulmer's first test, with the uncorrected test statistic R** = V*/U* (based 
on natural logarithms) as compared with Ro.os ; Permutation test, test statistic r/(k + 1)[ = P] for k (number 
of permutations) = 500. n.s. = not significant 

Population counts (Table 1) Bulmer's first test Permutation test 

Winter moth; larvae 
Winter moth; adults 
Pine looper; larvae August 
Pine looper; larvae Sept. 
Pine looper; pupae April 
Pine looper; adults 
Pine looper; UK, pupae 
Garden chafer; Rydal Farm 
Garden chafer; Hawes End 
Grey larch bud moth 
Spruce budworm; Plot G4 
Spruce budworrn; Plot G5 
Viburnum whitefly; pop. 1 
Viburnum whitefly; pop. 2 
Viburnum whitefly; pop. 3 
Nebria brevicollis; adults 

R** = 1.160 > Ro.os(= 0.872 ) n.s. P = 0.064 
R** = 0.952 > Ro.os(= 0.872) n.s. P=0.164 
R** = 0.620 < Ro.o5 ( = 0.726)* P = 0.030* 
R** = 0.626 < Ro.o5 ( = 0.726)* P = 0.060 
R** = 0.809 > Ro.o5 ( = 0.689) n.s. P = 0.475 
R** =0.581 < Ro.o5 (= 0.689)* P = 0.076 
R** = 0.979 > Ro.o5 ( = 0.653) n.s. P = 0.461 
R** =2.018 >Ro.os(= 1.238) n.s. P=0.377 
R** = 1.896>Ro.o5(=0.836) n.s. P=0.551 
R** = 1.932>Ro.o5(=0.909 ) n.s. P=0.533 
R** =2.816 > Ro.o5 (= 0.726 ) n.s. P =  0.842 
R** = 1.781 > Ro. o 5 (= 0.689) n.s. P = 0.850 
R** =3.646> Ro.o5(=0.616) n.s. P=0.812 
R** =4.516 > Ro.o5 (=0.616) n.s. P =0.946 
R** = 1.046 > Ro.o5 (=0.616) n.s. P =0.451 
R** = 1.123 > Ro.os ( = 0.579) n.s. P = 0.437 

* : P < 0 . 0 5  

(e.g. those in Table 2) in still longer time series, without  
the opera t ion  of negative feedback processes (e.g. in series 
with r andom increments). As this applies equally well to 
the permuted  series (rp), the test is not  inval idated by this 
bias. 

Evidence favouring the regulation hypothesis 

After our  experiences with the randomiza t ion  test we can 
hardly  expect to detect significant regulat ion in the census 
da ta  of Table 1. However,  Table  3, which contains the re- 
sults of both  Bulmer's  first test and the permuta t ion  test, 
deviates somewhat  from this expectat ion in that  three of 
the four stages of the pine looper  at Hoge Veluwe (Klomp 
1966), in a series of 15 years (1950-1964), score significantly 
with Bulmer's  first test. One of these stages, larvae in Au-  
gust, was also the only case for which the permuta t ion  test 
gives a significant result. This is not  in accordance with 
the conclusions of Den Boer (1987), but  it was a l ready fore- 
shadowed by Table 2. Again, the results of the winter moth,  
though suggestive, do not  reach the significance level of 
0.05, neither for Bulmer's  first test, nor  for the permuta t ion  
test. This is in agreement  with Den Boer (1986) in spite 
of the interesting critisisms of Lat to  and Hassell  (1987) and 
of Poethke and Kirchberg  (1987), which were, fiowever, re- 
futed by Den Boer (1988). The results of the Viburnum 
whitefly are in accordance with the conclusions of South- 
wood and Reader  (1988). The students of most  other  species, 
i.e. the garden chafer (Milne), the grey larch bud moth  (Bal- 
tensweiler 1968), and  the spruce budworm (Morris 1963), 
did not  expect regulat ion of numbers  in the strict sense 
of "keeping  density within limits".  This is not  surprising, 
because these three species are potent ia l  pest insects which 
reached peak  numbers  within the census per iods  (see Ta- 
ble 1). 

D i s c u s s i o n  

Throughout  most  of this century, theories to explain the 
supposedly  rather  stable density levels of animal  popula-  

tions have dominated  the at tent ion of popula t ion  ecologists. 
After some decades of both  popula t ion  research and con- 
nected controversies, Nicholson (1958) could still state: 
"P robab ly  the most  contentious question concerning ani- 
mal  ecology at the present  t ime is whether animal  popula-  
tions are self-regulated or  not  . . . .  It  is impor tan t  that  every 
effort should be made to resolve it unequivocally, for con- 
fused ideas upon this subject have bedevilled ecological 
theory for many  years".  Nicholson himself, was convinced 
that  "densi ty- induced governing reac t ion"  adjusted popula-  
tions to their environments.  

Reddingius (1971), after an extensive study of the litera- 
ture, tried to formulate the different ideas in mathemat ical  
terms, and discussed the mathemat ica l  and biological  diffi- 
culties that  are connected with the current determinist ic 
regulat ion models. Therefore, he preferred to consider and 
formulate the course of popula t ion  density through time 
as a stochastic process. This provided a basis for developing 
a statistical method  for testing the "governed density hy- 
pothesis",  using census da ta  from popula t ions  that  may  
be considered as pieces of f irst-order M a r k o v  chain. How- 
ever, neither this test, nor  the nearly identical first test of 
Bulmer (1975), seemed to st imulate popula t ion  ecologists 
to answer Nicholson 's  appeal  (above); see further Redd-  
ingius and Den Boer (1989). Ins tead they confined them- 
selves to agreeing that  the view of Andrewar tha  and Birch 
(1954), who almost  completely denied an impor tan t  role 
of densi ty-dependent  processes, must  be wrong (see e.g. 
Bakker  1980; It6 1980). Al though  many  ecologists admit  
that  the controversies are not  yet resolved, they are no lon- 
ger heavily involved in these controversies,  and generally 
seem to believe that,  in some way or  another,  the "governed 
density (regulation) hypothesis"  will appear  to be the right 
one (see e.g. Wil l iamson 1972; Begon and Mor t imer  1981). 
Because of this at t i tude of resignation during the last twenty 
years, popula t ion  theory has arr ived at an impasse. Highly 
interesting popula t ion  studies continue to be done, but  they 
are no longer explicitly connected with realistic concepts 
on the long-term survival of populat ions.  
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As knowledge about  the processes that  may significantly 
influence the long-term survival of popula t ions  is urgently 
needed, we thought  it useful to reopen the discussions about  
whether or not  the long-term survival of animal  populat ions  
may be favoured by regulat ing processes. In  the present 
paper,  as a cont inuat ion of Reddingius and Den Boer 
(1989), in the 12 popula t ion  series that  met the necessary 
condit ion of being pieces of first-order M a r k o v  chain, with 
the exception of the pine looper  popula t ion  at "Hoge  Ve- 
luwe" (Klomp 1.c.), neither governing of popula t ion  densities 
by density dependence, nor  their significant being kept  with- 
in limits could be statistically detected. It may  be objected 
that  the series presented in Table 1 are still too short  to 
expect significant results, even if regulat ing processes were 
at work. Al though this is quite possible, no longer series 
are available for the moment .  On the other hand, Figs. 4 
and 5 of Reddingius and Den Boer (1989) show that, with 
census da ta  of about  20 years, the power  of both  regulat ion 
tests seems to be sufficient, whereas the only significant se- 
ries, the pine looper  of Klomp,  has been studied during 
a comparat ively  low number  of years (15). In any case, for 
the present series we cannot  generally reject the null hypoth-  
esis. Be this as it may, so far we have no arguments  to 
expect much from regulat ing processes, or from density- 
dependent  processes in general, for the long-term survival 
of animal  populat ions.  

In  a following paper  we will try to explain why the 
pine looper  popula t ion  studied by Klomp  (1966) gave signif- 
icant results, and what  may  be the consequences of that. 
Then, we will also apply  the tests used in this paper  to 
the da ta  of a number  of forest insects published by 
Schwerdtfeger (1941), and made mangeable  by Varley 
(1949). Al though these da ta  are not  very reliable, they cover 
a per iod of 60 years, so that  we may hope to learn something 
about  the behaviour  of a long series of census data. 
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