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L2-Decay for Navier-Stokes Flows 
& Unbounded Domains, 

with Application to Exterior Stationary Flows 

Vq'OLFGANG BORCHERS & TETSURO MIYAKAWA 

C o m m u n i c a t e d  by C. DarEm~,tos 

I. Introduction 

The motion of  a viscous incompressible fluid filling a domain D C R n is 
governed by the Navier-Stokes initial value problem: 

Ou 
- -  + u .  Vu  = Au  - Vp + f ( x E D ,  t > O),  
Ot 

V. u = 0 (x fi D, t ____ 0) ,  (NS) 

U l s =  0; utt=0 = a 

for unknown velocity u = (uj)]=0 and: pressure p. Here S is the boundary of  
D, x = (Xl . . . . .  xn) is a point of  R", a a n d f d e n o t e ,  respectively, the given initial 
velocity and external force; and u.  Vu = Zj uj Ojuj, V .  u = Ej Ojuj, Vp = 

(Ojp)]=l,  Oj = O/Oxj. The fluid density and the kinematic viscosity are nor- 
malized to be unity. It  is known [16] that problem (NS) possesses at least one 
weak solution for an arbitary initial velocity a in L 2. Uniqueness of  weak 
solutions has only been proved for n = 2. 

In this paper we study the existence of  a weak solution, in an arbitrary 
unbounded domain, which goes to zero in L 2 as t ~ co, with explicit rates. 
The LZ-decay problem for Navier-Stokes f lows was first posed by LZRAY [14] 
in case D = R 3. The first (affirmative) answer was given by KATO [13] in case 
D = R ~, n = 3, 4, through his study of  strong solutions in general L p spaces. 
A different approach was then taken by  SCI-IONBEK [20], which is based on 
the Fourier decomposition for the fluid velocity u; see also [12, 21, 23]. The 
idea of  SCI-IONBEI,: was then applied by us [2, 3] to the case where D is a half- 
space of  R ~, n > 2, or an exterior domain of R ~, n >__ 3. In this paper we first 
show, in Sections 2 and 3, that the method developed in [2, 3, 12] can be 
modified so that it applies to the case of  an arbitrary unbounded domain in 
R n, n =< 4. The arguments developed in Sections 2 and 3 are then applied 
in Section 4 to the stability problem for exterior stationary flows in three di- 
mensions. 
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To state our main results, we use the standard notation: C0,~(D) denotes 
the set of  smooth and compactly supported solenoidal vector fields on D. We 
denote by H and V the L 2- and HI-closures of  Co~,a(D). The orthogonal 
decomposition: 

(L2(D))  n = H O H  • H • ={Vp;pEL2oc(D)}  

is well known [22, Chap. I]. We denote by P the associated orthogonal projec- 
tor onto H. With the bilinear form (Vu, Vv) defined on Vx V, we associate 
a (unique) positive and self-adjoint operator A in H such that D(A 1/2) = V 
and IIAU2u [12 = II Vu 112, where [1" [[r (1 <_ r _< ~ )  is the usual U-norm.  By V we 
denote the completion of  C~,a(D) in the norm ]IV.H2, and by t ~* its dual 
space. For simplicity in notation we assume that f =  Pf ,  using the above or- 
thogonal decomposition. Then the function 

t 

v(t)  = e-tAa + j e - ( t - s )A f ( s )ds  
0 

with a ~ H  and f~L2oc([0, oo); H)  satisfies the nonstationary Stokes system 

OV 
- -  - / h v  = f - Vq ( xeD,  t > O), 
Ot 

V. v = 0 (xED, t >= 0) ,  (S) 

Vls = O; vl,=0 = a 

with an appropriate scalar distribution q; so the problem (NS) is formally 
transformed into the integral equation: 

t 

u(t)  = e-tAa + ~ e-Ct-slA[f(s)  -- P(u .  V )u ( s ) ]d s .  (I) 
0 

Given a and f as above, a weakly continuous function u : [0, co) ~ H is called 
a weak solution of  (NS) (or equivalent ly  of  (I)) if it belongs to 
L~~ T ; H )  n L 2 ( 0 ,  T, V) for all T >  0, and satisfies u(0) = a  and 

t 

(u(t) ,  4~(t)) + ~ [(Vu, v~) + (u-Vu, ~)]  d r  
s 

t 

= (u(s) ,  ~(s))  + ~ [(u, r + (f,  ~)]dr (W) 
$ 

for all t>_s>_O, and all + e C ( [ 0 ,  c~);V) n C I ( [ 0 ,  ~ ) ; H ) ,  where ( . , . )  is 
the standard L2-inner product and 4 / =  O~/Ot. The existence of  a weak solu- 
tion corresponding to arbitrary a and f is well known; see, e.g., [16]. All the 
weak solutions obtained so far satisfy the energy inequality 

t t 

]lu(t)ll 2 + 2 J [lVull 2 ds <= Ilall~ + 2 l ( f ,  u) ds 
0 0 

for all t _ 0, and the equality sign holds in case n = 2. In Section 4 we shall 
deal with a more stringent form of  the above energy inequality. Our main 
results are the following: 
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Theorem 1.1. Let n = 3, 4, and let D be an arbitrary n-dimensional unbounded 
domain for which the Poincard inequality for functions in C~(D) may not hold. 
I f a ~ H ,  iffEL~oc([O, co); H)  n L I (0 ,  o o ; H )  r i L l ( 0 ,  co; V*),  and if 

t ll f(t)[]2 dt < +oo, 
0 

then there is a weak solution u of (NS) such that 
(i) [ l u ( t ) l l 2 - , 0  a s  t ~ oo. 

(ii) / f  ][e-tAall2 = o ( t  -~) for some a > 0, then 

I l u ( t ) l h  = I ~ if  e~ < 1/2, 
O(t e-1/2) if  o~ >= 1/2 

where O < e < 1/2 in case n = 3 ,  and e = O in case n = 4. 

Theorem 1.2. Let D C R 2 be an arbitrary unbounded domain for which the 
Poincard inequality may not hold. Given a E H and f as in Theorem 1.1, there is 
a unique weak solution u such that 
(i) ] [ u ( t ) [ ] 2 ~ 0  as t ~  oo. 
(ii) If  ][e-tAal[2 = O(t -~) for some c~ > 0, then 

[[ u(t)I[2 = O ( ( l o g ( t  + e)) -m/2) 

for all integers m >= 1. 
(iii)If l[a[]2 and ~ollf][2 ds are small enough and, moreover, fELz(O, oo; ~*), 
then 

f O(t -~) if c~ < 1/2, 
Ilu(t)ll2 = (o(t~_1/2) i f ~ > =  1/2 

where e > 0 is arbitrary. 
(iv) If  a ~ R(A ~) for some 0 < ~ ____ 1/2, then assertion (iii) holds irrespectively of 
the size of lla[h and lo l l f [ ]2  ds. 

When  D is the entire space R n or the half  space R~_, n => 2, and f = 0, it 
is known [2, 12, 21, 23] that  there exists a weak solut ion u satisfying 

I O(t -~) for  c~ < (n + 2) /4 ,  

][u(t)[[2= O(t_(n+2)/4) for  c~__> ( n + 2 ) / 4  

provided that  [] e - tAa  []2 = O(t -~)  for some c~ > 0. When  n __> 3, f =  0, and D 
is an exterior domain  with smooth  boundary,  we have recently established 
in [3] the existence o f  a weak solution u such that,  under  the assumption 
]Ie -tAa []2 = O(t-c~), 

I/u(t) 112 = f ~  
( O(te-n/4) 

if  o~ < n/4, 

if  c~ = > n/4 
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for any 0 < e < 1/4. All these results are deduced by essential use of  various 
properties of  the operator A in general L r spaces. In our present case, 
however, the class of  domains D is so large that we cannot appeal to L r- 
theories. So we restrict ourselves to the case of  space dimensions n __ 4 and 
deduce our results by applying only the L2-theory of  the operator A. We note 
that Theorem 1.2 partially extends our previous result in [3] to the case of  two- 
dimensional exterior domains (with nonsmooth boundaries). 

We prove Theorem 1.1 in Section 2, using a specific approximation scheme. 
Since the uniqueness of  weak solutions remains open in case n ____ 3, we first 
consider in Section 2 the decay problem for generaI weak solut ions satisfying 
the energy inequality and show that the time-average t -1 ~0l[u[12 ds of  any 
such weak solution u decays in the same way as stated in Theorem 1.1; see 
Theorem 2.1. It turns out that Theorem 1.1 immediately follows from Theo- 
rem 2.1. 

Our proof  of  Theorems 1.1 and 2.1 does not work in the two-dimensional 
case. So in Section 3 we give a detailed proof  of  Theorem 1.2 which uses the 
spectral decomposition for the setf-adjoint operator A. This approach was first 
suggested by SCrmNBZK [20] and then systematically studied in [2, 3, 12]. It 
is also possible to prove Theorem 1.1 by using the spectral decomposition. 
However, we do not employ this method,  since our argument in Section 2 pro- 
vides Theorem 2.1, which is difficult to obtain by applying the spectral decom- 
position. 

In both o f  Theorems 1.1 and 1.2, it is in general difficult to characterize 
completely the class of  functions a ~H  satisfying the condition [[ e - t a a  [[2 = 
O ( t - ~ ) .  In Section 3 we show that this condition holds for a in some L r 
spaces. This result is deduced from the fact that the range R ( A  ~) of  the frac- 
tional power A c~ remains invariant under the Navier-Stokes flow if o~ > 0 
satisfies an appropriate condition depending on the space dimension; this in- 
variance property not only enables us to prove assertion (iv) of  Theorem 1.2, 
but also implies the following 

Corollary 1.3. (i) I f  n = 2 and a E H c~ ( L r ( D ) )  2 for  some 1 < r < 2, then the 
corresponding weak solution u satisfies 

II u(t)112 = o ( t  -"/r-1/2>) 

provided that f satisfies the assumption in Theorem 1.2. (iii). 
(ii) I f  n = 3 and a E H  n ( L r ( D ) ) 3  for  6/5 <_r<_ 3/2, then there is a weak solu- 
tion u with u(O) = a such that 

1] U(t)  [12 : 0 ( t - 3 ( 1 / r - I / 2 ) / 2 )  �9 

(iii)If n = 4  and a ~ H n  (La /3 (D) )  4, then there is a weak solution u with 
u ( O ) = a such that 

II u(t)112 = o ( t - 1 / 2 )  �9 

The problem of  L2=decay for Navier-Stokes flows is closely connected with 
the notion of  energy stability in viscous fluid motions (see [6]). Indeed, 
Theorems 1.1 and 1.2 assert in particular that the trivial steady state u = 0 is 
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globally asymptotically stable in this sense in arbitrary unbounded domains. 
In Section 4 we apply the method of proof of Theorems 1.1 and t.2 to the 
stability problem for exterior stationary flows in three dimensions. We prove 
that an exterior stationary flow is globally asymptotically stable in the energy 
sense provided that the associated Reynolds number is small enough. See 
Theorem 4.2. This result improves and supplements the known results as given 
for instance in [6, 8, 9, 10, 15]. A novel feature of our result is that we deal 
with global L2-norms of disturbances and deduce their explicit decay rates. 
However, we believe that our result in this section is not the optimal one, 

We thank Professors J. G. t-IrvWOOD and A. MATSV-MUga for their interest 
in the L 2 decay problem. Parts of our results are announced in [24]. 

2. Proof  of  Theorem 1.1 

First we deal with general weak solutions satisfying the energy inequality 
t t 

]lu(t) 1] 2 + 2 f ttYTull 2 ds __< IJal] 2 + 2 5 ( f ,  u ) d s  
0 0 

(E) 

for all t >__ 0. 

Theorem 2.1. Let the assumptions in Theorem L1 be satisfied. Let  u be any weak 
solution satisfying the energy inequality (E). Then 
(i) t-l$ollull2ds -,O a s  t ~  co.  

(ii) I f  11 e -tAa 112 = o r  -~)  for  some o~ > O, then 

! i ltull2ds= f ~ 
t 0 (. O ( t  e ' l / 2 )  

i f  o~ < 1/2, 

if  a >_ 1/2, 

where 0 < e <  1/2 in case n = 3 ,  and e = O in case n = 4. 

For the proof we prepare three lemmas. 

Lemma 2.2. Let LPw = LPw(R), 1 < p < 0% denote the Banach space of  mea- 
surable functions f on the real line R w i th  norm 

IIfllp, w ~ sup IEI -1+1/p ~ I f l ds <oo 
E E 

where [E] is the Lebesgue measure of  a measurable set E. 
(i) I f  fELPw, g ~ L  q and 1/p + 1/q = 1/r, then f g ~ L  r ,  and 

l[ fgllr, w <= c[[fllp, w [lg[Iq, w 

with c > 0 depending only on p and q. 
(ii) I f  f~L{~,  g ~ L  q and I /p  + 1/q = 1 + 1/r, then the convolution f * g  is in L~  
and there is a constant C > 0 depending only on p and q so that 

I l f*gl lr ,  w ~  cllfl[1,,wllgltq, w. 
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(iii) I f  f ~ L Pw and g ( L 1, then f * g ~ L p ,  and 

I] f * g]]p,w <-<- I] fUp, w[[g]]l . 

Lemma 2.2 (i) is the weak version of  HOlder's inequality, while (ii) and (iii) 
are the weak versions of  Young's inequality. 

Proof.  Statement (ii) is proved in [19, p. 32], and (iii) is easily deduced by us- 
ing the definition of  the norm [[ f]tp, w given above. So we here prove only (i). 
First observe that f is in LPw if and only if 

[1 f[ l~,~ ~ sup t lE(] f l  > t)I lip < +oo, 
t>o 

where E ( l f  I > t) = [s E R ; I f ( s ) ] >  t}, and that 

t l f l I ~ , ~ l l f l f p ,  w ~ p l l f l l ; ,~  
p - 1  

as shown for instance in [7, p. 585]. Applying the classical Young inequality: 

Ifgl ~ LeP/rlf[ p/r+ Le-q/rlqlq/r 
P q 

for any e > 0, we get 

E ( l f g  I > t) C E ( [ f  I > c t e - t t  r/p) w E(Ig  t > c2et r/q) 

with q and c 2 depending only on p and q. Direct calculation thus gives 

(11 f g  * " = * P lit, w) < Cle;(ll + -q(ll flip, w) C2g * q ql[q,~) 
for all e > 0, where C1 and C2 depend only on p and q. The result now 
follows by taking the minimum with respect to e > 0. 

Lemma 2.3. Let f >= 0 be a measurable function on R. Suppose there exist con- 
stants M > O, C > O and p > q > 1 so that O <<_ f <_ M and 

~ f  ds <= C ( t E  [ l-lip + ]E I l - l /q)  
E 

for all measurable subsets E. Then there is another constant C ' >  0 such that 

~ f  ds <= C']E[ 1-I/p 
E 

for  all measurable E. 

Proof.  Since 1 - l iP  > 1 - l / q ,  the result is obvious for E with ]E[ = 1. So 
we may assume I E[ < 1. Then, since 

~ f ds <_ 2C[E] l-l/q, 
E 
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H61der's inequality yields, with 0 = 1 - q / p ,  

11-0 l f d s < = M  ~ ~ I I - ~ 1 7 6  ~ f d s  
E E 

which completes the proof. 

=< M ~ (2c)l-~ I l-liP 

I_emma 2.4. Let n = 3, 4. Then for all v ~ V and w r H 1 (R ~) with V. w = O, 

II e -tAp(w. V) v 112 -<_ ct-x/2([I w 112 II ~ ll2) 1-'/4 (ll Vw ][2 II v v  [12) n/4 . 

Proof.  Let ~ ~ C~a(D). Since 

II Ve-tA4~ 112 = I[A1/2e-tA4 ~ 112 --<-- t-l/2 II ~ 1[2, 

direct calculation gives 

[(e- 'AP(w . V)v, 4~)[ = ](v, w. Ve-tAqs)t < t[vl[4 Ilwll4 I/Ve-'~ 112 

=< t - l /2  II v li4 II w 114 L] ~ 112. 

The result follows by applying the Sobolev inequality 

I[ fll4 =< Cll fll~ -n/4 [] Vfll~/4. 

Proof  of  Theorem 2.1. First observe that the energy inequality (E) gives 

t t 

Ilu(t)ll~ + 2SllVull~ds ~ Ilall~ + .~ Ilfll2 (1 + Ilull~) ds. 
0 0 

Applying Gronwall's I_emma yields 

Ilu(t)[l~ + 2 0 i llVull2 ds<= (11a,122 + o~ Ilfl/2 ds)exp  (0  ~ ['fl12 ds ) .  

Thus, Ilu[12~L = and IIVull2~L 1. Now, substituting 4~(r )=e-Ct-~)@/ with 
~u ~ Co~,o(D) into (W) with s = 0, we obtain 

t t 

(u(t) ,  gt) = (e-tAa, gt) - ~ (u.  Vu(r),  e-(t-s)Aq, t) ds + f ( f ,  e-(t-s)Aq/) ds" 
0 0 

We apply Lemma 2.4 to estimate the nonlinear term to get 

t 

If u(t ) I Iz  ~ II e- '~a 112 + C ~ (t - s ) - l /~  (11 u II1/= II Vu 1123/2 + II f I{r;'*) ds 
0 

when n = 3, and 
t 

II ~(t)IIz ~ II e--tAg I[2 -{- C I ( t  - -  S) -1/2 (11VU I1~ + [] f l l#*)  da 
0 

(2.1) 

(2.2) 
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when n = 4. From now on we regard tlu 112 and I1Vu 112 as  defined to be zero 
on the negative real axis. Since IlVu]]~L a, it follows from Lemma 2.2 that 

i 1 i ! II u 112 d ,  __ - -  II e-SAa 112 ds + c ( t - e  + t-x/2) (2.3) 
t o  t o  

where fl = 1/4 when n = 3, and fl = 1/2 when n = 4. This proves (i) as well 
as (ii) with n = 4. To prove (ii) with n = 3, we systematically apply Lemmas 2.2 
and 2.3. First observe that (2.3) shows the result for a < 1/4. When c~ __> 1/4, 
(2.1) shows that [lul12 is bounded from above by a function belonging to 
L~/~+ L 4 + L 2. Since H uII2r ~, Lemma 2.3 implies that I[uII2EL 4, and  so 

8 Ilull~/Z~Lw . Thus, by Lemma 2.2 (i), IlullUIIVull~/2~L~ with i /p  = 1/8 + 3/4. 
Since 1/2 + 1/p = 1 + 1/4 + 1/8, Lemma 2.2 (ii) implies 

1 t 
- -  ~ II. 112 ds <_ C( t  -~  + t -1/q -}- t -1t2) 
t 0 

with l / q  = 1/4 + 1/8, and this shows the result for a < 1/q. When ~a => 
l /q ,  (2 .1 )shows  that ][u[[2 is bounded from above by a function in 
Llw I~ + L q + L2w, so [[u]] 2 EL q by Lemma 2.3. Thus, the same argument a s  
above gives 

t 
( t  - -  S) -112 II U I IU II V u  1123/~ ds ~L~, 

0 

with 1/r = 1/4 + 1/8 + t/16. Hence 

1 i l l  - -  ulI2 ds <= C ( t  -~  + t -1/r jr t-l/2), 
t 0 

and this proves the result for c~ < 1/r. Repeating these processes eventually 
yields the desired result. The proof is complete. 

P r o o f  of Theorem 1.1. We first construct approximate solutions of (NS), for 
n = 3, 4, by solving 

t 
uk(t) = e-tAa k -- ~ e-( t -s)A (P(Uk" V) uk - fk)  (s) ds, k = 1, 2 . . . . .  (IE) 

0 

where a k = (I  + k - l A ) - l  a, fk = (I  + k - l A ) - I  f ,  and uk = J~/k~k is the spatial 
mollification of the zero-extension ak of Uk. The unique solvability of  (IE) in 
the space C([0, T]; V) as well as the fact that uk satisfies, in L2(0, T; D ( A ) )  n 
Wi'2(0, T; H) ,  the problem 

duk + Auk + P(~k" V) uk =fk ,  a.e. t > 0; Uk(O) = ak (2.4) 
dt 

can be shown as in [2, 18]. From (2.4) we get 

t t 

II u~(t)I1~ + 2 5 I1VUk 1122 dT = II"k(S)I1~ +2  I ( fk ,  Uk)dr 
s s 

(2,5) 
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for t _> s _ 0. Upon taking s = 0 and using II ak 11 --<-- [I a }12, we obtain from (2.5) 
that 

Uk is bounded in L~176 T; H) n L2(0, T; V). 

Hence we may assume that a subsequence of uk converges weakly-star in 
L~176 T; H) and weakly in L2(0, T; V). Moreover, a standard argument ([22, 
Chap. III]) can be applied m show that if we define vk(t)= uk(t) for 
t (  (0, T) and vk(t) = 0 otherwise, then the fractional derivatives Dfvk, de- 
fined via the Fourier transform of vk(t) in t, remain bounded in LZ(R; H) 
provided 0 < y < 1/4. We thus conclude that a subsequence, again denoted 
Uk, converges in L2oc([0, T l x D )  to a function u, and it is readily seen (cf. 
[16]) that the limit function u is a weak solution of (NS). Notice that the 
above argument implies that 

Ilu(t) 112 -- lim inf II uk(t)112 
k--r co 

for a.e. t > 0, so we need only show that Uk(t) decays in L 2 as indicated in 
Theorem 1.1 uniformly in k. 

Now the energy equality (2.5) implies that 
t t 

II uk(t)III + 2 111Vuk 1122 dr _-_ II uk(s)tl22 + I II Ill2 (1 + II Uk 1122) dr, 
s s 

so that, by Gronwall's Lemma, 

[[Uk(t)[t22 + 2 si [IVukll2 dr__< c(lluk(s)ll~ + si llfl[2 d O '  

where C = exp ( I o  Ilfl12 ds). Hence Io  IlvUktlN ds is bounded uniformly in k, 
and 

[11 (! 2) 1/2 ] I luk(t)l l2--- c u~U) l l~+  I l f l l 2d  �9 

Integrating this in s fi (0, t) gives 

i [i I luk(t)h -< ct -~ Ilu~llzds + 0 -'/2 
0 

r II f(r)II~- dr 1 
1/2 

t 
o - 1 1  II uk 112 ds + 0-1/2.  (2.6) 

0 

On the other hand, applying Lemma 2.3 to (IE)gives 

Ilu~(s) h ___< ]le-SAal]2 + i (s - T) -1/2 ( [ l V U k I I  2 + II ILI~'*) dr 0 (2.7) 

w h e n  
A and n = % 

II u~(#) I1= -< il e-#"a 11= + i (s - T )  - 1 / 2  (11 ukll 1/2 II Vu~ll~/~ + II file*) d~ 0 (2.8) 
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when n = 3. Note that we have used II e-tAa k ll2 ~ II e- tna 112, II ut 112 ~ II .~ 112, 
and [[Vukt[2 < I[Vuk[t2- Since Iluktl2 ~L and IIVukll~ EL ~ uniformly in k, we get 
the desired result by combining (2.6) with (2.7) or (2.8) and applying the 
reasoning in the proof of Theorem2.1. This completes the proof of 
Theorem 1.1. 

Theorem 2.1 (i) can be slightly improved. Indeed, one can prove 

Corollary 2.5. Let n = 3, 4. Then, for every weak solution u satisfying (E) there 
holds 

t + l  

lim ~ II u 112 ds = O. 
t - - ~  t 

For simplicity we treat only the case n = 3. Inserting ~b(r) = e-( t-r)AN, ~/~ 
C0,•(D), into (W) gives 

t 

( . ( t ) ,  q/) = ( e - ( t - s ) A . ( s ) ,  ~ )  -- ~ (U. VU(r),  e - ( t - r )A~/ )dr  
s 

t 

+ ~ (f, e-(t-~)%,)dr 
s 

for 0 _< s<_t. So we get, as in the proof of  Theorem 2.1, 
t 

[[ u(t)ll2 --< [[e-Ct-~>Au(s) [12 + C i ( t -  r) -1/2 (l[u 111/~ ]1Vu ][2 3/2 + [1 f l l~*)dr  
s 

with C independent of s > 0. We regard every function of r as defined to be 
zero for r < s. Since II Vu 113/= II u [[U ~ L4/3 Q Z4w/3, it follows from the weak 
Young inequality that the integral on the right-hand side belongs to L 4 + Law 
and the norm is bounded by 

c IlVull~ d + c ~  [[fll~* dr 
s 

with C independent of s > 0. For an arbitrary e > 0 we fix s > 0 so that the 
above quantity is less than e. Then, by the definition of the LP~-nprm we get 

t + l  t + l  

~ [[ul[2dr__< ~ Ile-(~-S>Au(s)[[2dr+e 
t t 

for all t > s. Since limt_~ II e-tAa 112 = 0 because of the injectivity of A, ap- 
plication of the Bounded Convergence Theorem gives 

t + l  

lim sup ~ ][ u 112 dr _< ~. 
t-->oo t 

Since e > 0 is arbitrary, this proves the corollary. 

3. Proof  of  Theorem 1.2 

In this section we first prove Theorem 1.2, using the spectral decomposition 
of the positive self-adjoint operator A. To prove assertion (iv) of Theorem 1.2, 
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we establish the invariance of some of the ranges R(A ~) of the fractional 
powers A =. As a by-product we obtain Corollary 1.3. The argument below 
originates from those of [12, 21, 23] and, as in Section 2, relies on the follow- 
ing 

oo 
I.emma 3.1. (i) Let A = ~o )~ dEz be the spectral decomposition of A. If  n = 2, 
then for v ~ V, 

[[EzP(v. g)l)[[2 =~_ C~1/2[[v[[2 [[Vv[[2, ~ > 0. 

(ii) Under the same assumption as in (i), 

]le-tAp(v. V) u[h <_ Ct-i/21[vlh llVvll2, t > 0  

Proof. By the definition of P and E~ we easily see that, for 4~ E Co~q(D), 

I (EiP(v.  V)v, r = I( v, v .  VE~r I _< N vll ] II VExr 112 

= IIvII4 2 IIA1/ZEaOll2 <-- ~1/2 Ilvll] I1~ IL2. 

Applying the Sobolev inequality 

1[ fl[4 _-< c II f[l~/2 II Vfll 1/2 

to the last term yields the desired estimate. This proves (i). Assertion (ii) is 
proved in the same way as in Lemma 2.4. The proof is complete. 

Proof of Theorem 1.2. The standard theory of the two-dimensional Navier- 
Stokes equations as given in [16, 22] asserts the existence of a unique weak 
solution u satisfying the energy equality 

t t 

Ilu(t) [12 2 + 21  [IVull 2 as = Ilall 2 + 2 ~ (f ,  u)ds 
0 0 

for all t __> 0. Hence we have 

d 
dt [[ull 2 + 2 [[Vu][ 2 = 2 ( f ,  u) __< 2 [[ f][2 []u[[2. (3.1) 

Using the estimate 2 1t fll2 l[ u ll2 -<- II fl12 (1 + II u 1122) and Gronwall's Lemma, we 
easily see that 

and therefore 11 u 112 ~ L = and II Vu 1122 ~ L 1  Now, since II Vu 112 = IIa 1/2u 112, using 
the estimate 

Z IIA~/2ull~ >= 2 ~ 2 d[[Eaul[Z2 >__ 2l) ~ d[]Exult ~ = 2p(IIull 2 -IlEpull~), 
o o 

and [IEpulh _-< []u 112, we see from (3.1) that 

~tll u 112 + p I1 u 112 ~ p llEpu 112 + II f[]2 (3.3) 
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for all p >  0. To deal with the right-hand side we substitute 4~(T)= 
e-(t-~)AEp~ ', ~'EC~o(D) into (W) and get 

t 
(EpU(t), g/) = (Epe-tAa, q/) + ~ (Epe-(t-s)af, gJ)ds 

0 
t 

- ~ (Epe-(t-s)Ap(u. Vu), ~/) ds, 
0 

so that, by duality and Lemma 3.1(0, 
t 

IIEpg(t) lh ---I]e-'Aa]h + CP 1/2 I (]tu]h ]tVu]h + ]lf]l~*)ds. 
0 

Combining this with (3.3) and applying H61der's inequality gives 

d ~ ( i  ds)l/2+ ] + ]]f,12 (3.4) ~ l lu l l2+p l lu lh__<cp  ]e-tAa]12+,o 1/2 Ilull~ pl/2 

since ][Vull2eL I by (3.2). In (3.4) we take p = 2 / ( t +  e ) l o g  ( t +  e) and then 
multiply both sides by (log (t + e)) 2 to obtain 

d ((log (t + e)) 2 II u 112) -< 2c(t + e) -1 log (t + e) Ill e -'Aa []2 + C(log (t + e)) -1/21 
dt 

+ C(log (t + e)) 2 (t + e)-* II f[12 (t + e) .  

Since [[ e-tAa ]]2 -< 1[ a ]]2, since [[ e- tZa [t2 ~ 0 as t ~ co because A is injective, 
and since I0  [[ f]]2 (t + e) dt is finite by assumption, we obtain 

flU(t) 112 ~< (log (t + e ) ) ,  2 ]]]a]] 2 + C i (s + e) -1 log (s + e)][e-SAa][2 ds I 
k 0 / 

+ C (log (t + e))-1/2 + C(log (t + e ) ) -2  ~ 0 as t ~ oo. 

The proof of (i) is complete. We next prove (ii). Since l] e - tAa  I]2 ~ C(t + e) - a  

by assumption, the proof of (i) shows that 

llu(t) 112 -< C[(log (t + e))  -2 + (log (t + e)) -1/2] . 

This proves (ii) for m = 1. From this we obtain (see [21, 23]) 

t t 
I [1 u t12 ds < C J (log (s + e ) ) - i  ds <= C(t + e) (log (t + e)) - 1  
0 0 

so that, as in the proof of (i), 

d ((log (t + e)) 2 I]ult2) < c(t  + e) -1 log (t + e) [(t + e) -~ + (log (t + e)) -11 
dt = 

+ (log (t + e)) 2 (t + e) -1 []f[[2 (t + e). 

Integrating this gives 

II u(t)  112 _<-- C( log  (t + e ) )  - 1  . 



Navier-Stokes Flows in Unbounded Domains 285 

This proves (ii) for m = 2. Now suppose (ii) is true for some m _  2. 
Taking p = (m + 1 ) / ( t +  e) l o g ( t +  e) in (3.4) and then multiplying by 
(log (t + e)) m+l we obtain 

d ((log (t + e)) m+l Ilull2) < c ( t  + e) -1 log (t + e)) m 
dt = 

x [(t + e) -~ + (log (t + e)) -(m+1)/2] 

+ C(log ( t +  e)) m+l (t-l- e) -1 I]fll2 ( t +  e) ,  

since ~0 (log (s + e))-mds <= Cm(t q- e) (log (t + e)) -m ([21, 23]). Hence 

]lu(t) 112 --< C(log (t + e)) -(m+1)/2, 

and this completes the proof of  (ii). 
We next prove (iii), following [12, pp. 142, 143]. Substituting ~b(l:)= 

e-(t-r)Agl, I//6 C~,,a(D) into (W) and applying Lemma 3.1(ii) gives 
t 

[tu(t)l[2<=[[e-tZa][2+C~ (t-s)-l /2(l]u[12llVul[2+[lf]lr (3.5) 
o 

Assume first that 0 < a <  1/2 and choose q > 2  so that q o e < l .  Since 
1 + 1/q = 1/2 + (q + 2)/2q, the Hardy-Littlewood-Sobolev inequality [19] ap- 
plied to (3.5) gives 

[i[[ ]l/q [ i  ](q+2)/2q ullq ds <= Cl(t-t- 1)l/q-= + C (llull2 [IVull2) 2q/(q+2) ds 

[ i  ] (q+2)/2q + C ]]fll~/(q+2~ds 

Notice that the last term is bounded in t by the assumption f~Le(O,  r ~/*) 
for p = 1, 2. Since (q + 2) /2q = 1/2 + 1/q, HOlder's inequality and (3.2) 
together yield 

Ilullq ds <= c l ( t  + 1) l/q-" + c2 llull~ds + G o 

where C1 and C2 are constants and C2 = C2 (a, f )  is the square root of  the 
right-hand side of  (3.2). Here we assume that I[a[[2 and ~o [[f[[2dt are so 
small that C2 _-< 1/2 to obtain from the above 

[itl I x/q UI[2 q ds <_ C(t -b 1) 1/q-a -b C <- C(t -b 1) 1/q-c~ 

because 1/q - oe > 0. Inserting this into (3.4) gives 

[ (i ~t Ilulh+;[lull2_-< cp ( t + l ) - ~ + P l / 2 ( t + l )  1/2-1/q ][u[] q +[t f[]2 

<=Cp((t + 1) -e' + pl/2(t + 1)) 1/2-~ + [[fll2. 
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Taking p = m/( t  + 1), multiplying by (t + 1) m, and then proceeding as in the 
proof of (ii), we obtain ]lu(t)][2 = O(( t  + 1)-~),  and this proves (iii) in case 

oo o~ < 1/2, If  o~__> 1/2, then qa > 1 for all q > 2, and so S0 ]]e-tAa[] q d t <  +oo. 
The foregoing argument thus gives 

Ilullg dx =< c1 --]- c 2 ullqds -Jr- c3, 

so that [S0 tlu II g dd  1/q~ C if Ce _-< 1/2. Inserting this into (3.4) and repeating 
the same argument as in the case ~ < 1/2, we obtain 

Ilu(t)rl2 =< c((t+ 1) -=+  ( t+  1)-1/q). 
Since q > 2 is arbitrary, the proof of (iii) is now complete. 

To prove (iv), we need only show that the (unique) weak solution u(t) 
belongs to R(A ~) for all t > 0 provided a ( R ( A ~ ) ,  because it then follows 
that 

[le-tAu(s) ]12 = O(t -~) 

for any fixed s __> 0. Thus the proof of (iii) applies if we choose s __> 0 as the 
initial time so that ]Iu(s)112 and S~' [[fn2 dr are small enough. To this end we 
u s e  

Proposition 3.2. Let n = 2 and 0 < o~ ____ 1/2. If  v ~ V, then for all ;t > 0, 

I1(~ + A ) - = P (  v" V)vii2 =< c l lv l l~ l [Vv l l~  -2~ 

with C depending only on oz. Moreover, we have 

[1(2 + A)-=fll2 =< [1/][~. [[fll2 ~-2=. 

We continue the proof of Theorem 1.2(iv), admitting Proposition 3.2 for 
a moment. Let 

uz(t) = (2 + A ) - ~ u ( t ) ,  a.~ = (2 + A )  -~ a. 

Since a ~ R(A ~) by assumption, [lax 1[2 is uniformly bounded in 2 > 0. On the 
other hand, inserting ~b(r) = (3~ +A)-~e- ( t - r )Aq l ,  q/E C~,,a(D) into (W) and 
applying Proposition 3.2 (i), we obtain 

t t 

Ilu~(t)ll2 _-< Ila~ Ih + ~ II (~ +A)-~P(u"  V) u(s)lh ds + ~/I (~ + A ) -a / [ ] 2  ds 
0 0 

t t 

C1 q- C2 S [lul]~ ~ IlVull~ -=~ ds + S l[ f112r II fll2 ~-=~ ds 
0 0 

<~c~+c Ilull~d~ + C ~  

This shows that u~(t) remains bounded in H for any fixed t > 0. Hence we 
may assume that ux(t) ~ w(t)  as Z ~ 0 weakly in H and therefore, for any 
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(~ ~ D (A=), 
(u( t ) ,  d)) = (u)~(t), (2 + A) ~ O) -~ (w( t ) ,  A~O). 

Hence u(t) ER(A ~) for all t _>_ 0, and this proves (iv). The proof is complete. 

Proof of Proposition 3.2. First we obtain the estimate 

II q5 lip -< C []A~b ]12 (3.6) 

for t /p  = 1 / 2 -  oz, and 0 = ot < 1/2. This is deduced from the following: 
(i) The family {D~; 0 _ c~ <_ 1/2} of the completion D ~ of D(A ~) in the norm 
]] As" N2 forms a complex interpolation family (see, e.g., [17]); (ii) D 1/2 C BMO 
with continuous injection (see, e.g., [7, Prop. 3.4]); and (iii) [L 2, BMO] o = 
L 2/(1-~ 0 _ 0 < 1, where the bracket denotes the complex interpolation (see 
[11]). 

Now, estimate (3.6) implies that 

I(()L + A ) - ~ P ( v . V ) v ,  ~b)l = I(v. Vv, ()~ + A ) - "  (h)[ 

<--IlVvll2 I/vlll/<~ II (~ + A )  -~ <~ II,, 

-< Cl lVvl l~ -~<< llvllT" IIA<~(~ + A )  -<< <S> 11: 

_<__ C II V~ I1~ -2<< II v 1122 <~ II 4> 112 
for o~ < 1/2, and 

I((z + A )  -1/2 P ( v .  V)v, ~b)l 

= l (v ,  v-V()< + A )  -1/2 q~)l _---Ilvl17 IIv(~ +A)  -1/2 4b112 

= CIIvl[4 ~ IIA*/=( ;c + A )  -1/= *11~ ~ C I1'~11= IlVvll2 I1<~ 112 

for o~ = 1/2. This proves the first assertion. The second assertion easily follows 
from the moment inequality 

II (2 + A ) - ~  ill2 ----Ilfll 1-2ce II ('~ +A)-l/Zfll2~ 
and the estimate 

[I (2 +A)-112fl12 <= IIfH9*" 

This completes the proof of Proposition 3.2. 

Using the estimates 

II 4, Ilp --< c llAnO 112 
where l ip  = 112 - 2~/3, 1/4 _ ~ _ 1/2 if n = 3; a n d p  = 4, ~ = 112 if n =4,  
we can also prove 

Proposition 3.3. Let vE V and w E H i ( R  ") with V. w = O. 
(i) / f  n = 3 and 1/4 = ~ =<1/2, then for all 2 > O, 

II (,~ +A) -<~  P(w. v)vii= _<- CIIwl[Y <~-~i2 IlVwl@/=-2<~ l] Vvll2 

with C depending only on or. 
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(ii) I f  n = 4, then for  all 2 > O, 

II (4 +A) -~/z e(w. V)vll2 _-__ CllVwll2 tlVvll2 

with C independent o f  v and w. 
(iii) R ( A  ~) is invariant under the Navier-Stokes f low provided either n = 3, 
1 / 4 _ ~ -  1/2; or n = 4 ,  o~= 1/2. 

Finally, Corollary t.3 is immediately obtained from Theorems 1.1, 1.2 and 
the following 

Corollary 3.4. The inclusion 

H n ( L ' ( D ) )  n C R ( A ~ ) ,  o~ = n ( t l r  - 1/2)I2 

holds for  1 < r < 2 i f  n = 2, for  6/5 _< r _< 3 / 2 / f n  = 3, and for  r = 413 i f  n = 4. 
More precisely, to each a ~ H n ( L r ( D ) ) "  there corresponds a unique b E D ( A  ~) 
such that a = A=b and IIb 112 < c]l a lit with C > 0 independent o f  a. 

Proof.  We consider only the case n = 2; the other cases are treated similarly. 
The function a~. = (2 + A ) - ~ a  satisfies 

](aa, O)l = l( a, (2 + A ) - "  *)1 --< Ilaitr II (A + A )  -~ 411r 

CllaIlr lIAr(2 + A )  - ~  4112--- Cllallr 114112 

for all q ~ H ,  where 1 / r ' =  1 - 1/r. This shows that a~ is bounded in H for 
> 0; thus a subsequence converges weakly in H as Z --, 0 to a function b ~ H 

with tl b 112 -< CII a [Ir. But then, 

(a, 4)  = (ax, (4 + A) ~ 4 )  -~ (b, A=4) 

for all 4 E D ( A ~ ) ,  so a = A ~ b  and b is thus determined uniquely. The proof  
is complete.  

Remark. When n > 3 and D is an exterior domain of R n with smooth bound- 
ary, the Lr-theory of  the operator A as developed in [3] gives the estimate 

II + [1~ -< c ]IA~4 I[~ 

for 1 < r < n, 1 < p  < ~ and 1/p = l / r -  2~x/n. This implies that R ( A  ~) is 
invariant under the Navier-Stokes flow (with f =  0) provided o~ < n/4,  and that 
the inclusion of Corollary 3.4 holds for all 1 < r < 2. More generally, the L ~- 
theory implies that 

L~ n L~ c R(A D 

whenever n '  < q < ~ ,  1 < r < o~, and 1/r = 1/q + 2o~/n. Here l /n"  = t - i /n ,  
L~ denotes the Lr-closure of  C0~a(D), and Aq is the operator A regarded as 
a closed linear operator in Lq~. We can further show that the space L ~ n H is 
invariant under the Navier-Stokes flow provided 1 < r =< n' .  See [3, Secs. 4, 5] 
for the details. 
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4. Energy Stability of Exterior Stationary Flows 

This section deals with the problem 

0V 
- -  + v . Vv = A v -  Vp + fo ( x E D ,  t > 0 ) ,  
Ot 

V . v  = 0  ( x ~ D ,  t > 0 ) ,  

Vls = V* v ~  v ~ as Ixl-' 

VIt= 0 = V 0 

(4.1) 

in an exterior domain D in R 3 with smooth boundary & Hence v* ---v* (x) 
is a given smooth vector field on S, v ~ is a given constant vector, and 
f0 = f 0 ( x )  is a given external force. 

Under some assumptions on v*, v = and f0, FINN [4, 5] and BABENKO [11 
proved the existence of  a stationary solution w to problem (4.1) satisfying 

w - v ~ 1 7 6  ~ L 3 ( D ) ,  V w e L 3 ( D ) ,  C0--sup  [xl.lw(x)-v [ < + c o .  (4.2) 
D 

In this section we study the stability of  these stationary solutions with respect 
to L 2 disturbances. Given a stationary solution w and disturbances f and 
a = v0 - w, the time-evolution of  u = v - w is governed by 

Ou 
- -  + u .  V u  = A u  - w .  V u  - u .  V w -  V q  + f 
Ot 

V . u = 0  

UlS = O, u ~ 0  as ]x I --,oo, 

ult=0 : a. 

( x ~ D ,  t > 0 ) ,  

( x ~ D ,  t > 0 ) ,  (P) 

The problem (P) is formally transformed into the integral equation 

t 
u( t )  = e - tLa  -- ~ e - ( t - s ) f ( P ( u  �9 V) u - f )  (s)  ds (4.3) 

0 
where 

L = A + B,  Bu = P ( w .  V)  u + P ( u .  V) w,  

and [e-tL; t __> 01 is the analytic semigroup in H generated by - L .  (See [18].) 
Given a E H, a weakly continuous function u : [0, co) ~ H is called a weak 

solution of  (P) if u6L~176 T; H) n L 2 ( 0 ,  T; V) for all T >  0, u(0) = a, and 
u satisfies 

t 
( u ( t ) ,  ~ ( t ) )  + ~ [(Vu, Vq~) + (w. Vu + u- Vw + u. Vu, q~)] dr 

$ 

t t 
= ( u ( s ) ,  c~(s)) + j (u, 4~') dr  + j ( f ,  4~) dr  (4.4) 

s s 

fo r  al l  t > _ s > _ O  a n d  all  q~E C I ( [ 0 ,  o o ) ; H )  F) C ~  co); V ) .  



290  W. BORCHERS & T. MIYAKAWA 

For the existence of weak solutions, we already have the following result: 

Theorem 4.1 ([18]). Given a ~ H and f e L~oc( [0, co) ; H)  , problem (P) possesses 
a weak solution u which, moreover, satisfies the energy inequality in the form 

t t t 

flu(t) 1122 + 2 .~ ]IVullN d~ + 2 I (u. Vw, u) dr __< []u(s)]l 2 +2 ~ (f ,  u)dr  
S S S 

(SE) 

for  s = 0 ,  a.e. s > 0 ,  and all t >= s. 

In this section we shall prove 

Theorem 4.2. Let Co < 1/2, a E H, and suppose that f satisfies the assumption of  
Theorem 1.L Then any weak solution u of problem (P) satisfying the energy in- 
equality (SE) has the following decay properties: 
( i )  llu(t)ll2-'o as t ~  co. 
(ii) I f  Ile-%llz = o ( t  -'~) for some a > O, then 

flu(t) llz = O((log t ) e - I / 2 )  . 

(iii)If v ~ = 0 and I[e-tLall2 = o ( t  -~)  for some c~ > O, then 

]lu(t)ll2 = I 

where e > 0 is arbitrary. 

O( t  -~)  i f  o~ < 1/2, 

O(t  e-l/2) i f  c~ >= 1/2 

Theorems 4.1 and 4.2 mean that an exterior stationary flow w is globally 
asymptotically stable in energy sense provided Co < 1/2. The energy inequali- 
ty (SE) was first deduced by LEgAY [14] in the case D = R 3, w = 0 and f =  0. 
Part (i) of Theorem 3.2 was proved in [18]. HEYWOOD [8, 9] and GAIa~I & 
RIONERO [6, p. 411 discuss the decay of local L2-norms of strong solutions in 
case Co < 1/2. Contrary to these works, our Theorem 4.2 deals with global 
L2-norms of weak solutions satisfying (SE). The decay properties of strong 
solutions in other function spaces are discussed in detail by HEYWOOD [10] and 
MASUDA [15]. For various problems related to the stability of fluid motions, 
we refer to [6] and references therein. 

We begin the proof of Theorem 4.2 by establishing the following 

1.emma 4.3. Let Co < 1/2, and let L* denote the adjoint operator of  L. Then 
(i) {e-tZ; t >- 0} and /e-tZ*; t _-> 0} are contraction semigroups in H. 
(ii) l /e - tLa  112 -~ 0 a s  t - *  c o  

(iii) The estimate 

[]Epe-tZp(u �9 V) u 112 --< C(/0 1/2 -]- / 01/4) 11U 1121/2 II Vu [I 3/2 

holds for all u ~ V and p > O, where Ep is the spectral measure associated 
with A. 
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(iv) I f  v co = O, then for all u ~ V and t > O, 

II e-tLp(u, v)  u 112 _-< ct-'/2ll u I1~/2 II vu I IU.  

Proof.  As shown in [15], we have the estimate 

I ( ~  Vw, ~)1 = < 2c0ll v ~  II 2 2. (4.5) 

Since (w. Vff, ~b) = 0, (4.5) implies that  

(L6, ~b) = (4), L*6) --- (1 - 2C0) [I V~b 1122 (4.6) 

for all # ~ D ( L ) = D ( L * ) = D ( A ) .  Hence, we get (i) if C o <  1/2. To show 
(ii), suppose first that  a ~ R ( L )  and hence a = Lb for some b ~ D ( L ) .  Then 
e-tLa = - v ' ( t )  with v(t)  = e-tLb. Since 

v"( t )  + Lv ' ( t )  = O, 

we get 
t 

2 ( 4 . 7 )  [[v'(t) ]] 2 + 2(1 - 2Co) j [[Vv'[]~ dr  __< n v'(s)112 
$ 

for all t = s > 0. This implies that  tl Vv' 112 is in L 2 on the interval [1, ~) .  
Next, f rom the Sobolev inequality 

2 
][fl[6 < ~ - I l V f l h  (4.8) 

we see that  IIBvlh _-< (/Iwll~ + cllVwll3)llVvlh. Direct calculation thus gives 

(v', v') = - ( ~ ' ,  a~) - (v', n~) __< llVv'll2 IlVvll2 + C11v'[12 IIV~112 

_-< IIV~'II~ + IIWlI~ + 21 IIv'll~ + CIIVvl l~, 
so that 

tlv'll~ _-< c( l lVvl l~ + I1 Vv' t l ] )  

and hence jjv' IJ2 EL2 on [1, oo). From (4.7) it follows that  

( t - 1 ) l l v ' ( t ) N ~ = <  Ji l t ' l i lac---_ IIv' I I ] as<  +oo, 
1 1 

and we conclude that  

[[e-tLaH2 ::  ]]v'(t)ll e --, 0 

as t ~ oo. This proves (ii) in case a ~ R(L) .  To complete the proof, it suffices 
to show that  R(L)  is dense in H. But this follows from the equation 
N(L*)  = 0, which is a consequence of  the assumption that  Co < 1/2. The 
proof  of  (ii) is complete. 

To prove (iii), observe that  (4.6) gives 

II Ve-tL*Ep@ 1[2 -< C Ilt*e -tL*Epdp II 1/2 liEge II~/2 < c []L*Ep6/I 1/2 II * 1121/~. 

By the definition of  L we easily see that  

IIL*E,~ 1]2 < ]lAEp~ 112 + C(ll w II~ + II Vw ll3)II VEp#, 112. 
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The H61der and Sobolev inequalities then imply that 

[ ( e - tZp(u .  V) u, Ead))[ = [(u, u.  Ve'tZ*Ep4~)l 

=< Cllull~ ][ Ve-*L*Ep4,112 

C(p 1/2 -I- pl/4)Ilu Ill/= II vu I1~/2 I1' 112. 
This proves (iii). To prove (iv), consider the problem 

dv 
- -  --I- ei~ = O, v(O) = a 
dt 

in the complexification of the Hilbert space H. The standard argument then 
gives 

t 

IIv(t)ll~ + 2Re ~ (ei~ v) dr  =tjv(s)l[~. 
s 

Estimating each term of 

Re (el~ v) = Re (ei~ v) -I- Re (ei~ w.  Vv) + Re (el~ v .Vw)  

by (4.5) and the Sobolev inequality (4.8), we see that 

[ ( ]sin 01 3 ) ] i  2 IIv(t)lt~+2 c o s 0 - 2  c 0 + ~ l l w l t  s I[Vvll~dr<-llv(s)ll2. 

Hence 

IJ v(t)If2 _-< Ila 1t2 
provided]0]  is small enough. This means that {e-tL*; t _> 0} is a bounded 
analytic semigroup in H [19], so we  have 

tlt*e-'L*al[2 <_ ct-llla]12. 
Thus (4.6) yields 

II Ve -tL*4~ 115 _-__ c [It*e-'L*~ 112 II e-tL*r 112 =< ct-X I] ~ 1122" 
We therefore obtain 

I ( e - t L p ( u  �9 V) u, ~b)[ = [(u, u. Ve-tZ*qS)] 

<- ct-1/211ullU IlVull~/2 11,112, 
which proves (iv). 

Proof  of Theorem 4.2. Since (Lu, u) = IlVull 2 + (u. Vw, u), inequality (4.6) 
and the energy inequality (SE) yield 

t t 

IEu(t) II 2 + 2(1 - 2C0) ~ IlVull N dr ~ I lu(s) l l2  ~ + 2 ~ ( f ,  u )dr  
s s 

(4.9) 

for a.e. s > 0 and all t => s. Thus, if Co < 1/2, then as in Section 2; we see 
that [[u]12fiL ~176 [tVu[12~L 1. As in Section 3 we get 

1[ u(t)]122 + g(t ,  s) < II u(s)II 2 + h(t, s) (4.10) 
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for a.e. s > 0 and all t_> s, where 

, (; ) g(t ,s)=C~PllulJ~dr,  h ( t , s ) = C  pllGullldr+ IIfll2dr , 
s s 

and the function p(r):~O is to be fixed later. S i n c e  
0g 

- Cp(r) llu(r)l]~< -cp(r)[llu(t)ll2+g(t,r) - h ( t , r ) ] ,  
aT 

we may assume the existence of  a function F ( r )  > 0 with F" = ,oF to abtaiz 

i F 3h dr F(t)  II uKt)ll~ <- FKs) t l  u(s)IIR - ~ a-~ 

by Gronwall's I_emma. Letting s--* 0, we thus have 
t 

I1.(r <= CF( t )  -1 l}s 2 + CF( t )  -1 J F'(r) IJEpull2z dr  
o 

t 

+ CF(t) -1 j F ( r )  (1 + r) -1 [] fl[2 (1 + r ) & .  (4.11) 
0 

L* o~ Next, in (4.4) we take 6(v) = e -(t-v) E~q/, gt(CO,o(D), and set s = 0, to 
obtain 

t 

I(u(t), Ez~u)l _-__ II ~112 INe-'Lal]2 + J jlNe-('-~Le(u" V)ull2 dr] 
o 

t 

+ II ~,112 J JlExe-U-~)Lftlz dr. 
0 

Applying Lemma 4.3 and HOlder's ineqttality yidds 

II e.,u (.~)1t2 _-< Jl e -SLa It2 + c(,~ 1/2 .-.i- ,~ 1/4) II ,, Jl~ 
s ] 

+ 5 I l f l l , "  dr  . 
o 

(4.12) 

Here we set p(v) = 2/(r  + e) log (r + e) and F =  (log (r  + e))2. Assertions 
(i) and (ii) follow from (4.11) and (4.12), by repeating the argument in the 
proof of (i) and (ii) of Theorem 1.2. 

We finally prove (iii). As in Section 2, applying Gronwall's Lemma to (4.9) 
gives 

(, 9 IJu(,)tl 2 + 2(t - 2co) s "[ }JVuJ}~ dz <= C )u(s)tt ~ + ~ It.f)la d 

for a.e. s~ (0, t). Thus we get ][u[[2EL ~, ]IVu[I2EL 2, a n d  

II,,(t) 112 ~ Ct-1 II, 112 ds + Ct  -1 II fllz d ds 
o o 

Ct-1 I1" 112 as + Ct-1/2 S It f(s)1t2 ds 
o 

t 

Ct-1 j llult2 ds + 0 -1 /2 .  
o 

(4.13) 
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On the other  hand,  taking r  = e- ( t - r )L*~ ,  Ip'E Co,~a(D), in (4.4) and then 
applying Lemma 4.3(iv) yields 

s 

II  ( )1t2 11 e-SLa IIz + c j (s - (11 u II1/= II vu 112 + II fll *) dr.  (4.14) 
o 

The result now follows f rom (4.13) and (4.14) in the same way as in the p r o o f  
o f  Theorem 1.1 (ii}. The  p roof  is complete .  
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