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L*-Decay for Navier-Stokes Flows
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1. Introduction

The motion of a viscous incompressible fluid filling a domain D C R" is
governed by the Navier-Stokes initial value problem:

3
a—”+u-vu=Au—Vp+f (x€D, 1> 0),
t

Veu=0 (x€D, t=0), - (NS)
“!S=O§ u,t:O =a

for unknown velocity u = (u;)]—, and pressure p. Here S is the boundary of
D, x= (xy, ..., x,) is a point of R*, a and f denote, respectively, the given initial
velocity and external force; and u-Vu=Z; u;, V-u=xu, Vp=
(0;,p)j=1, 0; = 03/dx;. The fluid density and the kinematic viscosity are nor-
malized to be unity. It is known [16] that problem (NS) possesses at least one
weak solution for an arbitary initial velocity a in L% Uniqueness of weak
solutions has only been proved for n = 2.

In this paper we study the existence of a weak solution, in an arbitrary
unbounded domain, which goes to zero in L? as ¢t — oo, with explicit rates.
The L%-decay problem for Navier-Stokes flows was first posed by LErRAY [14]
in case D = R®, The first (affirmative) answer was given by Kato [13] in case
D =R", n =3, 4, through his study of strong solutions in general L” spaces.
A different approach was then taken by ScHoNBEK [20], which is based on
the Fourier decomposition for the fluid velocity u; see also [12, 21, 23]. The
idea of ScHONBEK was then applied by us [2, 3] to the case where D is a half-
space of R", n = 2, or an exterior domain of R”, n = 3. In this paper we first
show, in Sections 2 and 3, that the method developed in [2, 3, 12] can be
modified so that it applies to the case of an arbitrary unbounded domain in
R", n = 4. The arguments developed in Sections 2 and 3 are then applied
in Section 4 to the stability problem for exterior stationary flows in three di-
mensions.
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To state our main results, we use the standard notation: Cg,(D) denotes
the set of smooth and compactly supported solenoidal vector fields on D. We
denote by H and V the L>- and H'-closures of C§,(D). The orthogonal
decomposition:

(LX(D)"=H®H*, H"* ={Vp;peLl. (D))

is well known [22, Chap. I]. We denote by P the associated orthogonal projec-
tor onto H. With the bilinear form (Vu, Vv) defined on VXV, we assomate
a (unique) positive and self-adjoint operator 4 in H such that D(4'?) =
and || AY2ulj; = || Vul||,, where ||-||, (1 =7 = oo) is the usual L™-norm. By ¥ we
denote the completion of C§,(D) in the norm | V-]l, and by P* its dual
space. For simplicity in notation we assume that f= Pf, using the above or-
thogonal decomposition. Then the function

4
v(t) = e a + | eI (s) ds
0

with a€ H and fe L2 ([0, «); H) satisfies the nonstationary Stokes system

3
a—;} ~Av =f~Vq (x€D,t>0),

Viv=20 (xeD, t=0), &)
vls=0; v|0o=a

with an appropriate scalar distribution g; so the problem (NS) is formally
transformed into the integral equation:

u(t) = e Ha + Ste“(’"s)A[f(S) — P(u- V)u(s)lds. )]
0

Given a and f as above, a weakly continuous function u: [0, o) — H is called
a weak solution of (NS) (or equivalently . of (I)) if it belongs to
L*, T: H) nL?(0, T; V) for all T> 0, and satisfies u(0) = a and

(u(2), $(8)) + § [(Vu, Vo) + (u- Vu, )] dr

= (u(s), ¢(s)) + [ [(u, &) + (f, P)dr (W)

for all t=s5=0, and all ¢ € C([0, o); V) n C([0, ); H), where (-, -) is
the standard L%inner product and ¢’ = d¢/dz. The existence of a weak solu-
tion corresponding to arbitrary a and f is well known; see, e.g., [16]. All the
weak solutions obtained so far satisfy the energy inequality

I3 t
lu (B +2 [ Vulp ds = flalf +2§ (f 0 ds
for all £ = 0, and the equality sign holds in case n = 2. In Section 4 we shall

deal with a more stringent form of the above energy inequality. Our main
results are the following:
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Theorem 1.1. Let n =3, 4, and let D be an arbitrary n-dimensional unbounded
domain for which the Poincaré inequality for functions in C(?j (D) may not hold.
If a€H, if feL: ([0, ®); H) n L'(0, o; H)Y n LY(0, oo; V*), and if

;fnf(t)ilz dt < +oo,

then there is a weak solution u of (NS) such that
A lu(®l]—>0 ast— oo.
(i) If | e "all, = O(t™%) for some o >0, then

o(1™%) if a <12,
t =
(@) 2 {O(ts_l/z) ifazl/2

where 0 < &< 1/2 in case n=3, and € =0 in case n=4.

Theorem 1.2. Let D C R? be an arbitrary unbounded domain for which the
Poincaré inequality may not hold. Given a€H and f as in Theorem 11, there is
a unique weak solution u such that

@ [u())],—0 as 1 oo.

(i) If |e™all, = O(+™*) for some o >0, then

|u(t) ], = O((log(z + e))—m/Z)

for all integers m = 1.
(i) If ||a|l, and §5'| fll, ds are small enough and, moreover, f€L*(0, oo; V*),
then

||u(z>||2={0(f'_> o<1,
o= if az1)2

where & > 0 is arbitrary.
(iv) If a€ R(A%) for some 0 < o = 1/2, then assertion (i) holds irrespectively of
the size of ||all, and §3| £l ds.

When D is the entire space R” or the half space R}, n =2, and f=0, it
is known [2, 12, 21, 23] that there exists a weak solution u satisfying

(o™ for a < (n+2)/4,
u(®)l, = 3
O(t=™*D%y for o= (n+2)/4

provided that [|e "“a|, = O(¢+~%) for some « > 0. When nz 3, f=0, and D
is an exterior domain with smooth boundary, we have recently established
in [3] the existence of a weak solution u such that, under the assumption
le~ al, = 0(t™®),

ICTE T
ot~y if a=n/4
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for any 0 < & < 1/4. All these results are deduced by essential use of various
properties of the operator A in general L” spaces. In our present case,
however, the class of domains D is so large that we cannot appeal to L’-
theories. So we restrict ourselves to the case of space dimensions n = 4 and
deduce our results by applying only the L2-theory of the operator A. We note
that Theorem 1.2 partially extends our previous result in [3] to the case of two-
dimensional exterior domains (with nonsmooth boundaries).

We prove Theorem 1.1 in Section 2, using a specific approximation scheme.
Since the uniqueness of weak solutions remains open in case n = 3, we first
consider in Section 2 the decay problem for general weak solutions satisfying
the energy inequality and show that the time-average ¢~ {{|u], ds of any
such weak solution u decays in the same way as stated in Theorem 1.1; see
Theorem 2.1. It turns out that Theorem 1.1 immediately follows from Theo-
rem 2.1.

Our proof of Theorems 1.1 and 2.1 does not work in the two-dimensional
case. So in Section 3 we give a detailed proof of Theorem 1.2 which uses the
spectral decomposition for the self-adjoint operator A. This approach was first
suggested by ScHONBEK [20] and then systematically studied in [2, 3, 12]. It
is also possible to prove Theorem 1.1 by using the spectral decomposition.
However, we do not employ this method, since our argument in Section 2 pro-
vides Theorem 2.1, which is difficult to obtain by applying the spectral decom-
position.

In both of Theorems 1.1 and 1.2, it is in general difficult to characterize
completely the class of functions a € H satisfying the condition e *“a|, =
O(t7%). In Section 3 we show that this condition holds for ¢ in some L’
spaces. This result is deduced from the fact that the range R(A®) of the frac-
tional power A remains invariant under the Navier-Stokes flow if a >0
satisfies an appropriate condition depending on the space dimension; this in-
variance property not only enables us to prove assertion (iv) of Theorem 1.2,
but also implies the following

Corollary 1.3. () If n =2 and a€ Hn (L"(D))? for some 1 <r <2, then the
corresponding weak solution u satisfies

|u(t) [, = O~ Wr=12))

provided that f satisfies the assumption in Theorem 1.2.(iii).
@) Ifn=3and acHn (L'(D)) for 6/5 = r = 3/2, then there is a weak solu-
tion u with u(0) = a such that

lu(t) |, = O(¢~3Wr=122y

({ii)lf n=4 and acHn (L*3(D))*, then there is a weak solution u with
u(0) = a such that
lu(®) o= 0™,

The problem of L?-decay for Navier-Stokes flows is closely connected with
the notion of energy stability in viscous fluid motions (see [6]). Indeed,
Theorems 1.1 and 1.2 assert in particular that the trivial steady state u =0 is
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globally asymptotically stable in this sense in arbitrary unbounded domains.
In Section 4 we apply the method of proof of Theorems 1.1 and 1.2 to the
stability problem for exterior stationary flows in three dimensions. We prove
that an exterior stationary flow is globally asymptotically stable in the energy
sense provided that the associated Reynolds number is small enough. See
Theorem 4.2. This result improves and supplements the known results. as given
for instance in [6, 8, 9, 10, 15]. A novel feature of our result is that we deal
with global L?-norms of disturbances and deduce their explicit decay rates.
However, we believe that our result in this section is not the optimal one.

We thank Professors. J. G. HEywoop and A. MarsumurA for their interest
in the L? decay problem. Parts of our results are announced in [24].

2. Proof of Theorem 1.1
First we deal with general weak solutions satisfying the energy inequality
|ju(t)u§+25uvu”§ds§uau§+26€t(f, u) ds (E)
for all £=0.

Theorem 2.1. Let the assumptions in. Theorem 1.1 be satisfied. Let u be any weak
solution satisfying the energy inequality (E). Then
@ ¢ f5ulyds >0 as t— oo,

(i) If ||e all = O(t™*) for some « >0, then

L { pufpas = {0(’_“) if @<1/2,
to 0(t£—1/2) lf az 1/2’

where 0 < £ < 1/2 in case n =3, and € =0 in case n = 4.
For the proof we prepare three lemmas.

Lemma 2.2. Let LY, =L%(R), 1 <p <o, denote the Banach space of mea-
surable functions f on the real line R with norm

| fllp=sup |E| 7+ [ f| ds <o
E E

where |E| is the Lebesgue measure of a measurable set E.
@) If felL?h, geLf and 1/p + 1/q = 1]r, then fgeL’,, and

” Iz ”r,w = C”f”p,w ”g”q,w

with C > 0 depending only on p and q.
(i) If fel?, g€L% and 1/p + 1/g =1 + 1/r, then the convolution f+g is in L,
and there is a constant C > 0 depending only on p and q so that

“f*g “r,w § C || f“p,w”g “q,W'
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(ii) If feL? and geL', then fxgeL®, and
I f*gllpw =1 lpwlgl-

Lemma 2.2 (i) is the weak version of Holder’s inequality, while (ii) and (iii)
are the weak versions of Young’s inequality.

Proof. Statement (ii) is proved in [19, p. 32], and (iii) is easily deduced by us-

ing the definition of the norm || f|,, given above. So we here prove only (i).
First observe that f is in L%, if and only if

| £ Iw=sup t|E(f| > )] < oo,

where E(| f| > 1) = {s€R; | f(s)| > £}, and that

1]

o 5l = - E 11

as shown for instance in [7, p. 585]. Applying the classical Young inequality:

r —qjr r
fal s e 1 o g)

r
p
for any £ > 0, we get

E(fg| >0 CE(f| >cie7't) GE(g| > cpetl9)

with ¢; and ¢, depending only on p and g. Direct calculation thus gives

(175 ll7w)" = Ce? (| flpw)” + Ce™2( qllg)?

for all € >0, where C, and C, depend only on p and ¢. The result now
follows by taking the minimum with respect to ¢ > 0.

Lemma 2.3. Let f= 0 be a measurable function on R. Suppose there exist con-
stants M >0, C>0 and p>qg>1 so that 0= f=M and

Sfds = C(!E| 1-1jp + ‘E[l—l/q)
E

Jor all measurable subsets E. Then there is another constant C’ > 0 such that
{fds < C|E|'7P
E

for all measurable E.

Proof. Since 1 — 1/p > 1 — 1/g, the result is obvious for E with |E| = 1. So
we may assume |E| < 1. Then, since

§fds <2C|E|'"Va,
E
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Holder’s inequality yields, with § =1 — ¢/p,
1-6
§rds=M? [ fi=%ds < M°|E|® [§fds]
E E £
< M@(ZC)1—0|E| l—l/p’
which completes the proof.

Lemma 2.4. Ler n =3, 4. Then for all v€V and weHY(R™) with V-w =0,
le=4P(w- V) vlly = G2 (wll v () Vwla [| Vo 2"

Proof. Let ¢ € Cg,(D). Since
[ Ve g, = |42 ¢, < 72| 6 ],
direct calculation gives
[(e™P(w- V) v, )| = (v, w- Ve )| s |vls [|wlal| Ve o]l

=172 ofla wla] -

The result follows by applying the Sobolev inequality
1 flla= ClFB* [ VFIB™.

Proof of Theorem 2.1. First observe that the energy inequality (E) gives
t 4
lu @15+ 2 §lIVul3 ds < lall3 + VI Sl (1 +[ul) ds.

Applying Gronwall’s Lemma yields

lu 3+ 21l ds = (Jali+ ] 171n ) o (1510 ).

Thus, |||, €L* and |Vu||3€L’. Now, substituting ¢(7) = e~ "4y with
w € Cgy(D) into (W) with s =0, we obtain

2 t
(u(2), ) = (e "a, y) — 6‘ (- Vu(z), e” " y) ds + 05 (f, e 79y ds.
We apply Lemma 2.4 to estimate the nonlinear term to get
t
[u(@) ], =|le™all, + Cof =) (ulld? [ Vul3? + 1| fllony ds @1
when n =3, and

u(@) |2 = ||e al, + c§ (r — ) V2 (| Vu|3 + || f|p+) ds (2.2)
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when 7 = 4. From now on we regard ||u|, and || Vul, as defined to be zero
on the negative real axis. Since || Vu||5€L’, it follows from Lemma 2.2 that

1 t 1 t
- é lull, ds = N é le=*4al, ds + C(t~#% + t7'%) (2.3)

where § = 1/4 when n =3, and 8 = 1/2 when n = 4. This proves (i) as well
as (i) with n = 4. To prove (ii) with n = 3, we systematically apply Lemmas 2.2
and 2.3. First observe that (2.3) shows the result for « < 1/4. When « = 1/4,
(2.1) shows that |u||, is bounded from above by a function belonging to
Ly*+ Ly +L%. Since |luf, €L, Lemma 2.3 implies that ||u],€L%, and so
l|3* € LY. Thus, by Lemma 2.2 @), || |3/|| Va |3/ € LE, with 1/p = 1/8 + 3/4.
Since 1/2 4+ 1/p =1+ 1/4 + 1/8, Lemma 2.2 (ii) implies

14

— [lulpds = Ce= + 714 4 ¢7112)

t o
with 1/g =1/4 + 1/8, and this shows the result for a < 1/g. When o=
1/q, (2.1) shows that |u|, is bounded from above by a function in

LY*+ L%+ L2, so |u],€L% by Lemma 2.3. Thus, the same argument -as
above gives

4
5 (t — s)—1/2 “u”21/2 ||Vu ”23/2 dseL’,
0
with 1/r = 1/4 + 1/8 + 1/16. Hence
1 t
7 j ull, ds = C(z~ + U 4 ,—1/2)’
0

and this proves the result for o < 1/r. Repeating these processes eventually
yields the desired result. The proof is complete.

Proof of Theorem 1.1. We first construct approximate solutions of (NS), for
n =3, 4, by solving

t
we(t) = e Mo — [ e~ TINP(- VY w ~ £) () ds, k=1,2,..., (E)
4]

where @, = (I+k7'4)  a, fi = (I+k7'4)7' f, and & = J; 4% is the spatial
mollification of the zero-extension @, of u;. The unique solvability of (IE) in
the space C([0, T1; V) as well as the fact that u, satisfies, in L2(0, T; D(4)) N
w'2(0, T; H), the problem

fi? + Aug + P(i- V) = f,  ae. t>0; (0) =a 2.4)
1
can be shown as in [2, 18]. From (2.4) we get

()15 + 2 § 1 Va3 de = () 13 +2 § (S ) e (2.5)
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for ¢ = s = 0. Upon taking s =0 and using ||a;|| = ||a |, we obtain from (2.5)
that

#, is bounded in L*(0, T; H) NL20, T; V).

Hence we may assume that a subsequence of u; converges weakly-star in
L*(0, T; H) and weakly in L?(0, T; V). Moreover, a standard argument ([22,
Chap. III]) can be applied to show that if we define v (r) = u(¢) for
t€ (0, Ty and u(z) = 0 otherwise, then the fractional derivatives D]v, de-
fined via the Fourier transform of v, (z) in 7, remain bounded in L*(R; H)
provided 0 < y < 1/4. We thus conclude that a subsequence, again denoted
u, converges in LE ([0, T]xD) to a function u, and it is readily seen (cf.

[16]) that the limit function u is a weak solution of (NS). Notice that the
above argument implies that

lu (@) fl2 = lim inf i (2) |2

for a.e. t >0, so we need only show that u,(¢) decays in L? as indicated in
Theorem 1.1 uniformly in k.
Now the energy equality (2.5) implies that

a1 +2 [ 17l de 5 L B+ 112 0+ il de,
so that, by Gronwall’s Lemma,
s+ 2 {1 de 5 €l i+ [l ar)

where C = exp ({5 || fll» ds). Hence § || V|| ds is bounded uniformly in k,

and
lu ()] = € [nukm I+ (5 171 dr)”z] .

Integrating this in s¢€ (0, r) gives

1 ¢ 1/2
| (2) ], = Ct 7! (§ el ds + Ce /> [ g ]| £(0) |2 dr]

<t} Ojt g, ds + Ce~12. (2.6)
On the other hand, applying Lemma 2.3 to (IE) gives
o) < e~ als + § (s = 07 (Vs + [ fle) e @)
when n =4, and

()2 = e ~all, + g (s — )V (g |37 | Vi |32 + || Flo9dr (2.8)
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when n = 3. Note that we have used | e “a|, = |e “aly, ||@l. = || w]2»
and || Vig ||, < || Vug|l,. Since || ll, € L% and || Vig |3 € L' uniformly in &, we get
the desired result by combining (2.6) with (2.7) or (2.8) and applying the
reasoning in the proof of Theorem 2.1. This completes the proof of
Theorem 1.1.

Theorem 2.1 (i) can be slightly improved. Indeed, one can prove

Corollary 2.5. Let n = 3, 4. Then, for every weak solution u satisfying (E) there

holds
t+1

lim § Jull,ds=o0.
-0

For simplicity we treat only the case n = 3. Inserting ¢(7) = e~ "My, ye
CGo (D), into (W) gives

((0), w) = (e “"Mu(s), w) = § (v Vu(r), e "My dr

!
+ [ (fieMyyar
5

for 0 = s=<1. So we get, as in the proof of Theorem 2.1,

3
lu 2= lle”“Mu(s) |, + € (¢t =7 (uld? | Vu|3? + | fllo=) de
with C independent of s = 0. We regard every function of 7 as defined to be
zero for 7 <s. Since || Vul||3? |ull3? ¢ L*? c L, it follows from the weak
Young inequality that the integral on the right-hand side belongs to L%, + L2
and the norm is bounded by

c|Fimeac] ™+ cfis

with C independent of s > 0. For an arbitrary ¢ > 0 we fix s > 0 so that the
above quantity is less than &. Then, by the definition of the L4-norm we get

t+1 t+1
§ lulbdr=s § e Cu(s) | dr+ e
I t

Ip* dr

for all r>s. Since lim,, | e “a|, = 0 because of the injectivity of A, ap-
plication of the Bounded Convergence Theorem gives

r+1
lim sup | |ul, dr<e.
[—0oo t

Since ¢ > 0 is arbitrary, this proves the corollary.

3. Proof of Theorem 1.2

In this section we first prove Theorem 1.2, using the spectral decomposition
of the positive self-adjoint operator A. To prove assertion (iv) of Theorem 1.2,
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we establish the invariance of some of the ranges R(A%) of the fractional
powers A®. As a by-product we obtain Corollary 1.3. The argument below
originates from those of [12, 21, 23] and, as in Section 2, relies on the foliow-
ing

Lemma 3.1. (i) Let A = fg’ A dE; be the spectral decomposition of A. If n =2,
then for vEV,

IEsP(v-Vyvlly = CA* ol | Vol 4> 0.
(ii) Under the same assumption as in (i),

le *P(v-V)yul, = Ct~2||uf, |Vu],, £>0.
Proof. By the definition of P and E; we easily see that, for ¢ € Cg,(D),

(B P(w-V) v, 8)|=[(v, v VE;$)| = [v]F [ VE,6
=l 14 E¢ |l = AP ||v|Z [ ]2
Applying the Sobolev inequality
1 flle = ClLFIR V12"

to the last term yields the desired estimate. This proves (i). Assertion (ii) is
proved in the same way as in Lemma 2.4. The proof is complete.

Proof of Theorem 1.2. The standard theory of the two-dimensional Navier-

Stokes equations as given in [16, 22] asserts the existence of a unique weak
solution u satisfying the energy equality

t t
||u<r>i|%+2§||Vu||%ds=llan%+2§ (f, u)ds
for all £ = 0. Hence we have

d
@lluil% +2(|Vul3=2(fu) = 2| Fla |ul,. 3.1)

Using the estimate 2 || fl,fjul, = 7], (1 + | #||}) and Gronwall’s Lemma, we
easily see that

o) 342 {1 7ul3 ds < (na||%+ {1712 ds) exp (5 T ds), (3.2)

and therefore ||u[,€L® and |Vu|3€L'. Now, since || Vul|, =] AY%u|,, using
the estimate

24" = 250 Ad|Eul} z 2/)0}0 d|Eu 3 =2p(lul3 — | Eui?),
and [E,ul, <|u|,, we see from (3.1) that

d
7 lull + pllul, = pl|Epully + | fl2 (3.3)
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for all p>0. To deal with the right-hand side we substitute ¢(7) =
e”""ME,y, yeC§,(D) into (W) and get

(Epu(t), w) = (Eye ", y) +(§ (Epe™U=94%, w) ds

1
— (Eye~Y=94p(y- Vu), w) ds,
0

so that, by duality and Lemma 3.1(),

1Eu(); = lle~al, + Cp”z(f (fella | Vaella + 11 £ llp=) ds.

Combining this with (3.3) and applying Hélder’s inequality gives

d 1 1)2
luls+plul = Co [ne—“‘anz w7 ( fruizas) +p1/2] +1 712 G4

since || Vu||3€L! by (3.2). In (3.4) we take p =2/(¢ + ¢) log (t + ¢) and then
multiply both sides by (log (z + ¢))? to obtain

dﬁt ((og (t+e))*|ul2) =2C(t+e) log (t+e) [||e a,+ C(log (t+€)) 12

+Clog (t+e))?(t+e) I flh(t+e).

~tA —t4

Since | e ™al, = | al,, since [[e "all, >0 as t— oo because A is injective,
and since §g | |l (¢ + e) dt is finite by assumption, we obtain

lu(®) ], = (log (£ + e)) 72 [Ilallz + Cé (s + )7 log (s + ¢) e ~alf, dS]

+C(log(t+¢e) 2+ C(log(t+¢))"2>0 ast— .

The proof of (i) is complete. We next prove (ii). Since [[e “al, = C(z + e)™*
by assumption, the proof of (i) shows that

la() |, = Cl(log ( + €)) 72 + (log (¢ + e)) ~V7.

This proves (ii) for m = 1. From this we obtain (see [21, 23])

t
f[]u“% ds = C | (log (s +e)) ' ds = C(t + e) (log (1 + €)1,
0 0

so that, as in the proof of (i),

% ((log (t+ e))* [lul,) = C(t+e) Llog (t+ e) [(t+e)~ + (log (¢ + €)) 7]

+ (log (t+€))* (t+e)7 | fll (t+e).
Integrating this gives
lu(®)fl, = C(log (r + €))7
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This proves (ii) for m =2. Now suppose (ii) is true for some m = 2.
Taking p= (m+ 1)/(t+e)log(t+e¢) in (3.4) and then multiplying by
(log (¢t + €))"*! we obtain

d
o ((log (£ + &)™+ ul,) = C(z + &)™ log (1 + &))"
X[(t+e)~*+ (log (¢ + e)) ~("+D/Y
+C(log (t+ )" 1+ &) [ fllo (¢ +e),
since {f, (log (s + e))™™ds = C,(t + e) (log (¢ + €)) ™™ ([21, 23]). Hence
lu(r) |l = C(log (¢ + €)) = m+D12,
and this completes the proof of (ii).
We next prove (iii), following [12, pp. 142, 143]. Substituting ¢(7) =
e Dy, yeC§,(D) into (W) and applying Lemma 3.1(i) gives
t
lu@) |2 =lleall; + Cg (¢t =) Pl Vel + [ o) ds. (3.5
Assume first that 0 <a < 1/2 and choose ¢ >2 so that ga < 1. Since

1+ 1/g =1/2 + (g + 2)/2q, the Hardy-Littlewood-Sobolev inequality [19] ap-
plied to (3.5) gives

SR L f (g+2)/24
[“I”‘”2 ds] =G+ DVt C [S (lully || Vae |29 (@ +2) ds]
0 0

? (g+2)[2q
+C [05 | 7|3 @+ ds] .

Notice that the last term is bounded in ¢ by the assumption f€ L7 (0, oo; V'*)
for p=1,2. Since (g+2)/2q=1/2+ 1/g, Holder’s inequality and (3.2)
together yield

Coona o | M g A
[fiza] s cwseera [ fluza] "+

where C; and C, are constants and C, = C,(a, f) is the square root of the
right-hand side of (3.2). Here we assume that |al, and {7 || f], dt are so
small that C, = 1/2 to obtain from the above

t 1/q
[muug ds] < C+ DY e+ C=C@t+ DY
0
because 1/g — o > 0. Inserting this into (3.4) gives
d ! i/q
e plul = o[ 7o o2 0720 faltas) "2 151

=Cp((t+ D%+ p2 @t 4+ D)2 + | f],.
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Taking p = m/ (¢t + 1), multiplying by (¢ + 1)™, and then proceeding as in the
proof of (ii), we obtain ||u(z)|, = O((z + 1)~%), and this proves (iii) in case
a <1/2. If @z 1/2, then go > 1 for all ¢ > 2, and so {7 [le *“a| dr < +oo.
The foregoing argument thus gives

Hilu!l%ds]l/qg G +G [(fnungds] v G,

so that [fg Hu”Z asli=cif ¢, =1 /2. Inserting this into (3.4) and repeating
the same argument as in the case o < 1/2, we obtain

[u@) o= C(E+ D)7+ (¢ + 17Y9).

Since g > 2 is arbitrary, the proof of (iii) is now complete.

To prove (iv), we need only show that the (unique) weak solution u(z)
belongs to R(A*) for all > 0 provided @€ R(4%), because it then follows
that

e~ u(s)ll, = 0(r=%)

for any fixed s = 0. Thus the proof of (iii) applies if we choose s = 0 as the
initial time so that ||u(s) |, and {7 | f|| dz are small enough. To this end we
use

Proposition 3.2. Let n =2 and 0 < aa = 1/2. If v€V, then for all 1 >0,
1A +A4)™*P(v- V) v, = Cllo|3*] Vo [7 >
with C depending only on o. Moreover, we have

A+~ o = | FI 1127

We continue the proof of Theorem 1.2(iv), admitting Proposition 3.2 for
a moment. Let
w (1) = (A+A)"%u(t), a,=(A+4)%a.
Since a € R(4%) by assumption, ||, |, is uniformly bounded in A > 0. On the
other hand, inserting ¢(7) = (A +4) e~ "y, y e C§,(D) into (W) and
applying Proposition 3.2 (i), we obtain

t t
us ()| = || a; |2 + (§|| (A +A)"%P(u- V) u(s)|, ds + 05 (A +A4)=%fll ds

2a
%

= G+ G Jul3 | Vuli™> ds + [IfI3 0 £l ds

I3 [o'4
§q+c[mw%ﬂ s
0

This shows that u,(#) remains bounded in H for any fixed ¢ > 0. Hence we
may assume that u,; (#) - w(¢) as A — 0 weakly in H and therefore, for any
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peD(A"),

(u(2), ¢) = (u (1), (A + A)* ¢) = (w(1), 4%9).
Hence u(t) € R(A%) for all r = 0, and this proves (iv). The proof is complete.

Proof of Proposition 3.2. First we obtain the estimate

I8ll, = Clla%6 |l (3.6)

for 1/p=1/2 —a, and 0 = a < 1/2. This is deduced from the following:
(i) The family {D%; 0 = o = 1/2} of the completion D of D(A4®) in the norm
4% ||, forms a complex interpolation family (see, e.g., [17]); (ii) DY2 c BMO
with continuous injection (see, e.g., [7, Prop. 3.41); and (iii) [L%, BMO], =
LY0=9 0 < 0 < 1, where the bracket denotes the complex interpolation (see

[t11).
Now, estimate (3.6) implies that

(2 + )= P+ V)0, $)| =|(v- Vo, (4 +4)7 )|
= [Vollz [ollye | (A +4)7% 81,
= C| Vo3~ o[ |A%(A +A) ™% ¢ ],

= CVolz** vl 16
for « < 1/2, and

(A +A)T2 P(v-V) v, ¢)]
=|{v,v- VA + ) ¢)| |07V +4)77 ]
=Clv|i |4 (A + ) ¢l = Cllofa |Vl | ¢]2

for & = 1/2. This proves the first assertion. The second assertion easily follows
from the moment inequality

1+ flas A3 A+ )7 Fl3
and the estimate
[+ AT f =< fllon.
This completes the proof of Proposition 3.2.

Using the estimates
o), = Cll4a%6 |,

where 1/p=1/2 =23, 1[4 =a=1/2ifn=3;and p =4, a = 1/2 if n =4,
we can also prove

Proposition 3.3. Let veV and we H'(R*) with V-w = 0.
@ Ifn=3 and 1/4 = a =1/2, then for all 1 >0,

| (2 +4) = POw- V) vl 5 Cllwl3o2 | Tw |22 | 7],

with C depending only on «.
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(ii) If n =4, then for all 1 > 0,
12+ P(w- Vol = C|Vwlh | Vo),

with C independent of v and w.
(iii) R(A%) is invariant under the Navier-Stokes flow provided either n =3,
ld=asl/2; or n=4, a=1/2.

Finally, Corollary 1.3 is immediately obtained from Theorems 1.1, 1.2 and
the following

Corollary 3.4. The inclusion
Hn (L"(D))" CR(A%), oa=n(l/r—1/2)/2

holds for L <r<2ifn=2, for6/5=r=3/2ifn=3,andforr=4/3ifn=4
More precisely, to each a€ Hn (L"(D))" there corresponds a unique b € D(A®)
such that a = A*b and |b|, = C|lal, with C > 0 independent of a.

Proof. We consider only the case n = 2; the other cases are treated similarly.
The function a; = (A + A4) 7% g satisfies

(a1, &) =|(a, (A +4)"" @) =|la], || (A +4)7° ¢,
= Cllafl, [4*(A + )™ ¢ = Clal, |62

for all ¢ € H, where 1/r =1 — 1/r. This shows that a; is bounded in H for
A > 0; thus a subsequence converges weakly in H as A — 0 to a function be¢ H
with {|b{, = C||a|,. But then,

(a, ) = (a3, (A +A4)*¢) = (b, A7)

for all ¢ € D(A%), so a =A% and b is thus determined uniquely. The proof
is complete.

Remark. When n = 3 and D is an exterior domain of R” with smooth bound-
ary, the L'-theory of the operator A as developed in [3] gives the estimate

Il = Clla®el,

for I<r<n l<p<o and 1/p =1/r —2a/n. This implies that R{(4%) is
invariant under the Navier-Stokes flow (with f = 0) provided a < n/4, and that
the inclusion of Corollary 3.4 holds for all 1 < r < 2. More generally, the L’-
theory implies that

L, nLICRMAY

whenever n’' < g < », 1 <r< o, and 1/r = 1/q + 2a/n. Here 1/n’ =1 — 1/n,
L7, denotes the L'-closure of Cg,(D), and A, is the operator 4 regarded as
a closed linear operator in L. We can further show that the space L™ n H is
invariant under the Navier-Stokes flow provided 1 < r = n’. See [3, Secs. 4, 5]
for the details.
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4. Energy Stability of Exterior Stationary Flows

This section deals with the problem
dv
5—+v-Vv=Av—Vp+f0 (xeD, t>0),
t
Vv =0 (xeD, t>0), “.1)
vls=v% v->v" as|x| - oo,
]=0 = 1g
in an exterior domain D in R?® with smooth boundary S. Hence v* = v*(x)
is a given smooth vector field on S, v is a given constant vector, and
fo =folx) is a given external force.

Under some assumptions on v* »° and f;, Finn [4, 5] and BaBenko [1]
proved the existence of a stationary solution w to problem (4.1) satisfying

w—v*€L*(D), VweL*(D), Cy=sup x| -|w(x)—0v"|<+ow. (4.2)
D
In this section we study the stability of these stationary solutions with respect

to L? disturbances. Given a stationary solution w and disturbances f and
a = vy — w, the time-evolution of u = v — w is governed by

ad
a—u+u-Vu=Au—w-Vu—-u-Vw—Vq+f (xeD, t>0),
t

V-u=0 (xeD, t>0), P)
ulg=0, u—0 as|x|—> oo,
ul,—o =a.

The problem (P) is formally transformed into the integral equation

u(t) = e g — fe—('—S>L(P(u- VYu—f) (s)ds 4.3)
0

where
L=A+B, Bu=Pw -VYu+P(u-V)w,
and {e *f; ¢ = 0} is the analytic semigroup in H generated by —L. (See [181.)
Given a € H, a weakly continuous function u: [0, o) — H is called a weak
solution of (P) if u€ L= (0, T; H) n L*(0, T; V) for all T> 0, u(0) = a, and
u satisfies :

t
(u(), () + § [(Vu, Vo) + (w-Vu+ u-Vw + u- Vu, ¢)] dt
t t
= (u(s), ¢(s)) +§ (w, 0V dr+ | (f, ¢)dr  (4.4)

for all =520 and all ¢ € C1([0, o); H) n C°([0, ); V).
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For the existence of weak solutions, we already have the following result:

Theorem 4.1 ([18]). Given a € H and fe L% ([0, o); H), problem (P) possesses
a weak solution u which, moreover, satisfies the energy inequality in the form

lu@3+2 | Vu)ddr+2§ (u-Vw w)dr < |ju(s)|3+2 § (f, u)dr (SE)

Jor s =0, ae s>0, and all t = s.
In this section we shall prove

Theorem 4.2. Let Cy < 1/2, a € H, and suppose that f satisfies the assumption of
Theorem L1. Then any weak solution u of problem (P) satisfying the energy in-
equality (SE) has the following decay properties:

@ Ju()|,~>0 as i o.

(i) If | e "all, = O(t™%) for some o >0, then

u(t)|l, = O((log )*~1/2).

(i) If v* =0 and |[e "La|, = O(t™) for some o >0, then

lu@) |, = {0“__) z:fa < 1/2,
Ot 1/2) if oz 12

where € > 0 is arbitrary.

Theorems 4.1 and 4.2 mean that an exterior stationary flow w is globally
asymptotically stable in energy sense provided Cy < 1/2. The energy inequali-
ty (SE) was first deduced by LErAY [14] in the case D = R?, w =0 and f=0.
Part (i) of Theorem 3.2 was proved in [18]. HEywoop [8, 9] and GaLpI &
RIONERO [6, p. 41] discuss the decay of local L?-norms of strong solutions in
case Cy < 1/2. Contrary to these works, our Theorem 4.2 deals with global
L%norms of weak solutions satisfying (SE). The decay properties of strong
solutions in other function spaces are discussed in detail by HEywoop [10] and
Masupa [15]. For various problems related to the stability of fluid motions,
we refer to [6] and references therein.

We begin the proof of Theorem 4.2 by establishing the following

Lemma 4.3. Let Cy < 1/2, and let L* denote the adjoint operator of L. Then
@ fe ;t=0} and {e_’L*; t = 0} are contraction semigroups in H.

(i) e ™al, >0 ast— .

(iii) The estimate

| Epe ™ P(u- V) ull, = C(p'* + p"*) Ju|3? || Vue |37

holds for all u€V and p >0, where E, is the spectral measure associated
with A.
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(iv) If v* =0, then for all u€eV and t > 0,
le™ P(u-Vyul, = Ce a3 || Vu |37,

Proof. As shown in [15], we have the estimate

[(6- Vw, 8)| = 2G| Vo 3. 4.5)
Since (w- V¢, ¢) =0, (4.5) implies that
(Lo, ¢) = (¢, L*$) = (1 — 2Cy) || Vo |3 4.6)

for all € D(L) =D(L*) =D(A). Hence, we get (i) if Cy = 1/2. To show
(i), suppose first that a € R(L) and hence a = Lb for some b€ D(L). Then
e a= —v'(t) with v(z) = e b. Since

v”(t) + Lv'(t) =0,
we get .
o' (1) [} +2(1 —2Cp) § Vo' |13 de = ||v'(s) |3 .7)

for all #= s> 0. This implies that |Vo’|, is in L? on the interval [1, o).
Next, from the Sobolev inequality

1£les = 191; @9

we see that |Bvlh = (|wle + C||Vw|3)||Vv|,. Direct calculation thus gives
(v, v') = = (v, 4v) — (v', Bv) = ||V’ | | Vo2 + Cllv" |2 [ Vo[

=|Vo'lI3+ [ Vol3 + 5 )3 + ClIVoli3,
so that
Jv'[13 = C(|Voll3 + [ Vo'[|3)

and hence |v’[,€L? on [1, x). From (4.7) it follows that

t oo
(= Dv@3s [Iv|3dss [ o Bds < +e,
and we conclude that
le="al, =}v' (1)), = ©

as t — oo. This proves (ii) in case a€ R(L). To complete the proof, it suffices
to show that R(L) is dense in H. But this follows from the equation
N(L*) =0, which is a consequence of the assumption that C, < 1/2. The
proof of (ii) is complete.

To prove (iii), observe that (4.6) gives

Ve Eyg |, = CllL* ™ E,0 13 | E |3 = CL*E,0 |37 | 642,
By the definition of L we easily see that
IL*Ep¢ |2 S |AEpé [l + C(Iwlw + | VW 3) | VE, & 2
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The Holder and Sobolev inequalities then imply that
| (e ™ P(u-V)u, E,p) | =|(u, u- Ve """E,¢)|
= Clluli | Ve ™ E,¢||»
= CO' 4+ p") w3 | Va3 |6 .-
This proves (iii). To prove (iv), consider the problem
dv

— 4y =0, v(0) =a
dt

in the complexification of the Hilbert space H. The standard argument then
gives

t
[lo(#) |3 + 2Re | ("L*v, v) dr =] v(s)|3.
Estimating each term of
Re (e°L*v, v) = Re (¢%4v, v) + Re (e, w- Vo) + Re (¢!, v -Vw)
by (4.5) and the Sobolev inequality (4.8), we see that

|sin

Il +2 [eos 0 -2 (ot TR i) | fiofgars ooz,

Hence
lo@® ]2 =lal,
—tL*,

provided | €| is small enough. This means that {e ; 1 =0} is a bounded
analytic semigroup in H [19], so we have

[L*e = al, = ¢t als.
Thus (4.6) yields
IVe=Fp|3 = CllL*e T, lle o, = Ct™'| 3.
We therefore obtain
|(e™LP(u- V) u, ¢) = |(u, u- Ve_’L*cb)]
= G P w3 | Vu |3 6 |12,
which proves (iv).

Proof of Theorem 4.2. Since (Lu, u) =|Vull} + (u- Vw, u), inequality (4.6)
and the energy inequality (SE) yield

lu(e) |3 +2(1 —2Cy) s§ [Vuils dr < ||u(s)|3 + 25 (frwdr (49

for a.e. s >0 and all £ = 5. Thus, if Cy < 1/2, then as in Section 2, we see
that |u],€L®, |Vu|3€L'. As in Section 3 we get

lu(e) |3+ gz, 5) = ||u(s)||3 + Az, 5) (4.10)
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for ae. s>0 and all ¢+ = s, where
g(t,5) = C§p||u||2 dr, h(t,s) = c(sfp||E,,u||%dr+ jﬂf”z dr),
and the function p(7) >0 is to be fixed later. Since
%f = -G x@ = —@ i+ ) — ks, D],
we may assume the existence of a function F(z) > 0 with F’' = pF to obtain
F@0) u@) |3 = F(s) lus) 3 - jF%df
by Gronwall’s Lemma. Letting s — 0, we thus have

N} = CF()™ ! ) al3 + CF(:)“lof F'(1)||E,u )3 dr
+CF@) T R A+ 07 flk (0 + 1) de. @4.11)
0

Next, in (4.4) we take ¢(7) = e‘(‘_”L*E&y/, w € Cpy(D), and set s =0, to
obtain

[(u(2), Eg)| = |yl [l e all, + gHEAe—U'”LP(u' V) ulj, dil

1wl fIBie-0tp ]

Applying Lemma 4.3 and Holder’s inequality yields

s 1/4 s
|Eau() ] < e ~all + CAI2 + 2174 [( fiulB d-r) + {11 dr] .

4.12)

Here we set p(t) =2/(7 + ¢) log (t + ¢} and F= (log {t + ¢}}*. Assertions
(i) and (ii) follow from (4.11) and (4.12), by repeating the argument in the
proof of (i) and (ii) of Theorem 1.2.

We finally prove (iii). As in Section 2, applying Gronwall’s Lemma to (4.9)
gives

ggu(:>}Jz+2(1~ch)5);Vu ‘(<C(u(s)§ +;f);f )

for ae. s€ (0, ). Thus we get |ully€L®, || Vu|,€L% and

a3 cflos’ fuls s+ & | {1 ae] Vo
/2
o flubas+ | ft s

t
< Gt | full ds + 12, (4.13)
0



294 W. BorcHERS & T. MIYAKAWA

On the other hand, taking ¢(7) = ¢~ "Xy, we CL, (D), in (4.4) and then
applying Lemma 4.3 (v} vields

[l slle™alz + € J (s =07 Quld? | Vul3? + | £y de. @14

The result now follows from (4.13) and (4.14) in the same way as in the proof
of Theorem 1.1(i}). The proof is complete.
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