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On the Asymptotic Behavior and 
Radial Symmetry of Positive Solutions of 

Semilinear Elliptic Equations in R" 
II. Radial Symmetry 

YI LI  & WEI-MING N I  

Communicated by J. SERRIN 

The main purpose of  this paper is to prove Theorems i and 2 of  the 
preceding paper, Part I, together with their extensions and related symmetry 
results. To make this part essentially self-contained, we shall apply the method 
developed in Section 2 to equations with radial symmetry. Combining the 
asymptotic behavior and the "moving plane" technique, we are then able to 
obtain the desired results. 

Throughout  this part of  the paper we shall consider, for simplicity, bound- 
ed positive solutions of  

Au -4- K ( l x l ) f ( u )  = 0 

in R n, n => 3. For the convenience of the reader, we list all the hypotheses on 
K and f that we shall need from time to time although perhaps not always 
simultaneously. 
(K1) K > 0  in R ~, K ~ C ~ ( R  ~) for some o r > 0  and K ( l x [ ) = O ( l x [  -~) 

near x = o o  for some r>=0. 
(K2) K(r )  is nonincreasing in r >0.  
(K3) There exists a constant C such that 

]g(lxl) - K(lYl)l ~ c] Ix[ - ly l [  [Ixl-qy1-1 _[_ Ix l - l ly l -q  

for all x ,y  ~ R n with I x l, l Y I large. 
(fl)  f ( u )  > 0 if u > 0, and f ( u )  is Lipschitz continuous for u __> 0. 
(f2) f ( u )  = O(u p) near u = 0 for some p __> 0. 
(f3) There exists a constant C such that 

I f (u)  -f(v)]---_ Clu - v I ( I u l P - I  "] - Ivl p - l )  

for all u, v small and positive. 



224 Y. LI & W.-M. NI 

We should remark that in case K is in C 1, then (K3) is equivalent to 
I K ' ( t ) l  <- Ct -(~+1) for t large. Similarly, if f is in C 1, then (f3) is equivalent 
to I / ' ( t ) [  _-__ Ct p-1 for t > 0 and small. 

3. Asymptotic Behavior for Equations with Symmetry 

One key ingredient in proving our symmetry results is a more detailed 
asymptotic behavior of solutions of the equation 

(3A)  Au + K(Ix I ) f ( u )  = 0 in R ~, n _> 3. 

Our first result deals with the zero limit case. 

fl n--T) Theorem 3.2. Suppose that (K1), (fl), (f2) and (f3) hold with p > max  ( ,n~_2 3 . 
Let u be a positive solution o f  (3.1) such that 

(3.3) u(x )  = 
O ,x,mm[0'~2-2 i f  r *  2, 

(( i) 
o (log[x [ )Yzi-1 i f ' c = 2  

near co. Then 

(3.4) u(x) Ixl~-~+lx[~-2 klxl/  +[xP n-2 

near oo, where 

(3.5) W(r)  = - 

r t 

0 0 

for  some function ~o such that (o(s) = O(s y-z) near s = 0 with 

y = p (n - 2) + r - n, and R is a Lipschitz function with R (0) = O. 

Note that W defined in (3.5) is the same as W(~o) defined by (2.69). 

Proof of Theorem 3.2. First, observe that u ( x ) =  O([xl 2-n) near co. (This 
follows from Theorem 2.9 and the proofs of Theorems 2.25 and 2.31 in [LN1]. 
In fact, Theorems 2.25 and 2.31 in [LN1] are proved for radial solutions only, 
but their proofs work for general solutions after very minor modifications.) 
Then Theorem 2.4 in Part I applies and we may proceed as in the proof of 
Theorem 2.16. Setting 

X 
(3.6) y - 

[xl 2 '  
v(x)  = l x [ 2 - n u ( y )  = l y [ n - 2 u ( y )  = G + Vl(X), 
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where Vl(X ) = O(]x[ fl-e) near x = 0 with f l =  min[y, 11 for all e~ (O, fl) and 
C1 > 0 (by (2.6)), we have 

(3.7) O = Av + lxl -n-2 K ( ~ [ )  f(lxln-2 v) 

where 

= Av + [xl -n-2 K (~x[t  f(lxln-2 Ca) +k(x )  

f l (x )  = I x [ - n - 2 K ( [ ~ [ )  [f(lx[n-2cl+lx]n-2vl)-f(]xln-2c1)] =O([x[  ~'-2+/~-e) 

near x = O. Setting 

Wl(r  ) = _ 

t 

0 0 

we obtain from (3.7) that 

(3.8) v(x) = c1 + w (lxl) + v2(x) 

with v2(x) = O(lx[ min{t#+fl-el) near x = 0. (The function W1 defined here is 
clearly related to the W1 defined in (2.70). This abuse of  notation should not 
cause any confusion.) Noting that w (Ixl)= O(Ixl near x = 0  and that 
min{1, y + fl - e} => fl if e is small, we have v(x) = C1 + vl(x) with va(x) = 
Wl([x[) + v 2 ( x ) =  O([x[/~) near x = 0 .  Returning to (3,6) we see that the 
original estimate on v~ is improved from O(]x[ p-~) to O(Ixl near x = 0. 
Repeating the above arguments, we again obtain (3.8) but with v 2 ( x ) =  
O([X[ min{l'y+fl}) near x = 0. 

Now, substituting this (3.8) into (3.7) we deduce similarly that near x = 0 

0 = AV 4-: iX[-n-2K (~x[) f(]x[n--2 [C1 q- W1 ([X[)]) "4- f2(x) ,  

where f2 is defined by the last equality, and f2(x) = O([X] y-2+min{l'y+fl}) near 
x = 0. Let k be the integer such that ky __< 1 < (k + 1) y. Then iterating the 
above argument k times we arrive at 

(3.9) O= &v+lx[ -n -2K(~x[ ) f ( l x l n -2 [C ,  + Wk(lx[)]) "-]-fk+x(X) 

near x = 0, where 

fk+l (X) = O(Ix[ e-2+min/a'(~+1)al) = O(Ix] y- l )  

near x = 0, and 

f , ~ - -  r 1 i ( 1 )  (3.10) Wl(r) = - - I t n _  1 s -n -eK f(sn-2[C1 + Wl-l(s)])sn-idsdt 

0 0 
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for l = 1, 2 . . . . .  k + 1 with Wo(r ) =-- O. From (3.9) we conclude that 

(3.11) V(X) = C 1 "4- w~+~(lxl) + R<x) 

where R(x )  is the sum of  the Newtonian potential of  fk+l and a harmonic 
function and R(0)  = 0. Thus R is in C l+r and in particular R(x)  = O(]x[) 
near x = 0. Q.E.D. 

For the positive limit case we have to assume that r > 2 in (K1) in view 
of  Theorem 3.10 in [N], and then Theorem 2.32 in Part  I applies. (The more 
general nonlinear term f ( u )  causes no extra difficulties at all in the proof  of  
Theorem 2.32.) Here we further divide the case into two subcases: r > n and 
n _ _ _ r > 2 .  

Theorem 3.12. Suppose that (K1), (fl)  and (f3) hold with r >n and that u is a 
bounded positive solution of  (3.1). Then Co=l imx_,~u(x)  always exists. 
Moreover, if  C O > O, then 

C1 (3.13) u(x)  = Co + 

near x = oo where 

1 (1@1) 
1 

ili (3.14) W ( r ) = -  ~ (o ( s ) sn- ldsd t  

0 0 

for some function (o such that (o(s) = O(s ~-n-2) near s = O, 
Lipschitz function with R(O) =0.  

and R is a 

Proof .  The fact that  Co = limx_.~ u (x) always exists follows f rom the proof  of  
Theorem 2.32 (Lemma 2.8 in [LN1], to be precise). We now proceed as in the 
proof  of  Theorem 2.41. First, we set y = r - n, and u(x)  = Co + Ua(X) where 

1 I K ( y ) f ( u ( y ) )  
Ul(X) - - n ( n  --2)( .O n ~=~i1~_2  dy. 

Rn 

Then the arguments used in the proof  of  Theorem 2.4 imply that  

(3.15) lim Ix ln-2ul(X)  -- 1 I 
x-~ n(n  - 2) o) n 

R n 

K ( y ) f ( u ( y )  ) dy ~ C I > O. 

Now letting 

X 

Ixl 
y - v ( x )  = I x l 2 - ' u l ( y )  = C1 + v l ( x )  
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where vl is defined by the last equality, we see that vl(x)  = O(Ix[ a-e) near 
x = 0 ,  where f l = m i n { 1 ,  y} and e~(O, fl), again from the proof of  
Theorem 2.4. Then straightforward computation shows that 

where 

O = Av + Ixl -n-z  K (~x~II f (  Co + IX["-z v) 

= f (  o + Ixln-2c1) + f l ( x )  

/ N  
f l  (X) = Ixl -n-2  K { k ~ )  I f (  CO "[- Ixln--2( C1 -Jr Vl) ) -- f (  C 0 if-IXl n-2 C1) ] 

= O(Ixl~+~ -4-~) 

near x = o. Noting that r + fl - 4 - e > n - 4 + fl + e > -1 ,  we conclude 
similarly as before (see, e.g., the proof  of Theorem 3.2) that 

v(x) = C1 + W(]x]) + R(x)  
near x = 0 where 

; 1 i ( 1 )  (3.16) W ( r ) = -  ~ s - n - 2 K  f ( C o + s n - 2 G ) s n - l d s d t  

0 0 

and R is a C 1 function near x = 0 with R(0)  = 0. Q.E.D. 

Theorem 3.17. Suppose that (KI), (fl) and (f3) hold with 2 < r < n and that u 
is a bounded positive solution of (3.1). Then Co = limx_~oou(x) always exists. 
Moreover, if  Co > O, then 

(3.18) u(x) = Co + Ny, k+l(lx[) + l x ~  + lx[,_2 + ] x ~ S R  

near x = oo, where k is the first integer such that k ( r - 2 ) <  n - 2  __< 
(k + 1) (r  - 2) and Nf, k+ 1 is given by (2.93) in Part I, R is Lipschitz continuous 
near 0 with R(O) = 0 and 

r t 

0 0 

with ~p(s) = O ( - s Z - 4 1 o g s )  near s = O. 
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Proof .  We only consider the case 2 < r < n, because the case z = n may be 
treated similarly. As in the proof  of  Theorem 2.94 or 2.75 (by the arguments 
leading to (2.64), (2.65)) we have 

(3.20) 

n e a r  x -----. oo, a n d  

u(x) = Co + N:,k+~(Ixl) + u~+2(x) 

c k + 2 - - o ( ~ l i )  " 
uk+~(x) i x l . _  z 121~+._ = 

near x =  co for all ~ < min{1,r/] with t / = r - 2  and 

(3.21) ck+ 2 - 1 I K [ f ( C  ~ 
n(n - 2 )  a~ n Rn 

"[-Nfk-']-Uk+l) -f(Co+NLk)] 

where Nf, k and uk+l satisfy the appropriate estimates between (2.59) and 
(2.64). (Note that  the function N:,~ defined by (2.93) is radial since K is 
radial, and that  the constant ck+2 here may be zero or negative. However, if 
we assume that  f is monotone ,  then ck+2 is always positive as in 
Theorem 2.75.) 

We now proceed in the usual manner. Setting 

for x near 0, where v 1 is defined by the last equality, we have vl(x) = O(Ixl ~) 
near x = 0 for all fi < min{1, ~/}, and 

0-~ ~v-~-'x]-n-2K(~x[) [f(Co-[-Nf, k+l ( ~ )  +Ck+2[xln-2"[- IxIn-2Vl(X) ) 

x n -.]- Ck+ 2 

(3.22) 

where f l  is defined by the last equality, and it follows from (2.61) that 
fl(x) = O(Ixl ~+a-2) near x = 0 for all ~ < m i n I l , q ] .  Therefore we conclude 
similarly as before that  

~(x) = c~+2 + wl( lxl )  + vz(X) 
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near x = 0 where v2(x) = O(Ix[ ~n/~+~'ll) near 0 and 

t 
Wl(lXl) --'-- -- itnl~_l Is-n-2g (~1 If (fo 'l- gf, k+l I l l  "-]- Ck+2 Sn-2) 

0 0 

Iterating the above argument h times where h is the first positive integer such 
that (h + 1) t / >  t, we arrive at 

O: Avq-lxl-n-2K (~x[ ) [f(Co-l-Nf, k+l (~[) q-Ix]n-2(Ck+2-[- Wh-l(lXl) ~ 

1 
near x = 0  with f h ( x ) =  O(Ixl  h~+~ near x = O  for all d <  min{i,r/} and 
l, Vl, l = 0, l ,  2 . . . . .  h, defined recursively as follows: Wo --= 0, and 

t 

W t ( r ) = - i t n ~ I S - n - 2 K ( : ) I f ( C o + N f , , ~ + l ( 1 ) + s n - 2 ( c t + 2 + W l - l ( s ' ) )  

0 0 

Since h r / +  O - 2 > - 1  if  5 is sufficiently close to min{l ,  1/}, it follows that  

(3.23) V(X) : Ck+ 2 "~ Wh(lXl) "Je R(x) 

near x = 0 where R(x)  is in C 1 and R(0)  = 0. It  is easy to see f rom (2.61) 
that  W h takes the form (3.19) with the desired estimates. Q.E.D. 

4. Some Technical Estimates 

In this section we collect a number of  technical estimates which will be 
needed in proving our symmetry results in the next section. 

Let x = (xl ,x2 . . . . .  xn) be a point in R'*; we denote its reflection with 
respect to the hyperplane T z = { y =  (Yl . . . . .  Yn) ERn I Y l - - ~ }  by xZ; i.e., 
x z = (22 - Xl,X2 . . . . .  xn). First observe that 

4 2 ( 2  -- X1) 
(4.1) Ix z] - ] x l  - > 0  if 2 > x  1 and 2 > 0 .  
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Lemma 4.2. Suppose that Z > O, m >-_ 1. Then for  x E R ~ with Ix j > 2 and xl < 4 
the following estimates hold: 

4Z (2 - X l )  1 (4.3) < 
Ix jmlx~l ( Ix l  + Ix ~ I) = Ix l "  

1 4mA ( 2  - x l ) 

ixXl , . =  IxlmjxXl(Ixl + Ix~l) ' 

x xX ] ( 4mZ(X-.xl)  2 ( Z - x l ) ~  
(4.4) ixim IX~I m <_ Ix lm_l ix~l( ix  [ +lx~ D + ~ i i ~  , /  

Moreover, i f  R is Lipschitz continuous in the unit ball with R (  O) = O, then 

(4.5) R x 1 _ R 
Ixl m 

[ 4 ( m + Z ) Z ( Z - X l )  2(Z_- xl)1 
_--< c(m kj.,cl~-l~l ~ i  + 171) § Ix~l "+z J 

where C ( R )  is the Lipschitz constant for  R in the unit ball. 

Proof .  Since 
m b m - l ( b  - a)  >_ b m - a m >= b m - l ( b  - a)  

for b > a > 0, (4.3) follows immediately from (4.1). For (4.4) we have 

ixx l  
ixl ~ ix~[ m --< ixlm ixZl m + ix~l~ i Z i  m 

1 1 [ (x  - xX)l 

--Ixl [xim ix~l m + ix~l m , 

and then (4.3) applies. Finally using (4.3) and (4.4) we have 

R ixl~ - R  

= R  m [xYl m + R R 

C ( R )  4mA(4 - x l )  C ( R )  x I xTx~] 2 < + 
= Ixl I x l ~ l x ~ l ( l x l + l x X l )  ~ l x l  2 

4mA(2 -- xl) 84(3t -- xl) 
<=C(R) ixl, .+!lxXl(lx I + l x ~ l )  + Ixilx~Im+~(Ixl + l x ~ l )  

and then (4.5) follows since [x[ < [x ~[. 

( ~ )  ( x]  x@[  2) 1 + R x 1 _ R  
Ix~t ~ 

2(4 - x l ) ]  

+ ~ l ~ - j ,  
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Lemma 4.6. Let F (x )  = O([x I -q) near oo for  some q > n and 

I F(y) Rn" 
u (x )  = I x - y [ " - 2 d y '  xE 

Rn 

Suppose that 

(4.7) (f(x) F(xZ)) (x - xa) = O(Ixl -q) 

near co for  every ). sufficiently close to )t o. I f  2i ~) to  and {x i} is a sequence of  
points in R n such that x i ~ r as i ~ oo and x• < ) i, then 

/ .AI  n 

(4.8) Xk~ Ix~i-- (u (x i )  - u(xi'~i)) ~ 2(n - 2) I ( r ( y )  - V(y'~o)) ( )~o-  Y l ) d y  
[Y 1 < .t o] 

as i --+ o~. 

Proof .  We first observe that 

u(x )  _ u(x~)  = S [ i x  f ( y )  f ( Y )  ] =y[,,-2 ix -yin-2A dy 
Rn 

1 1 in_2] dy = I f ( Y ) [ l x _ y l . _ e  [xX-y 
[Yl < 2] 

S [1 + f ( Y )  I x - y [ ' * - 2  
[Yl > A] 

: i [ f ( y ) - f ( y a ) ] ( l x _  
[Yl < ;q 

where a change of  variables from y to yZ is used for the integral over the 
region [Yl > 2]. Next we note that as i -~ 0% 

]_Yi2 _n ( 1 1 2) __+ 2(n _ 2) (2o _ yl) 
~.i -- X~ Ixi -- y[ n-2 IxiXi - yl  n-  

uniformly on compact subsets of R ~. Now the proof  is similar to that of 
Lemma B in Part I (see Appendix A in pp. 394-397 in [GNN]) and therefore 
the details are omitted. Q.E.D.  

[xa_yln - dy 

1 1 Ody ' 
y]  " - 2  IxX - y ]  ~ -  

Our next lemma is important and interesting in its own right. 

Lemma 4.9. Let F (x )  = O(]x I -q) near co for  some q > n and let (4.7) hoM 
near oo for  every 2 ~ R. Then the function I()~ ) defined by 

(4.10) 1(2) = I [F(y) - F(y'~)] (~ - Yl) dy 
[Yl < 2] 
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has the property that 

(4 .11)  

for every 2, 2' ~ R. 

1 ( 2 ) - 1 ( 2 ' )  = ( 2 - 2 ' )  I F ( y )  dy 
R n 

Proof.  Let r be a large number and it be fixed. Then 

1(2) = ~ (F(y)  - F(y2))  (2 - Yl) dy + O(r  n-q) 
[Yl <2] nBr(0 ) 

= ~ F(y)  (2 - -  Yl) dy + ~ 2 F(y)  (2 -- Yl) dy + O(r  n-q) 
[Yl < 2] •Br(O ) [Yl > 2] nBr(0 ) 

= ~ F(y)  (2 - Yl) dy + ~ F(y)  (2  - Yl) dy + O(r  "-q) 
Br(O) S 

where 0 z =  (22, 0 . . . . .  0) is the reflection of  0 with respect to Tz and 

S = f { ( [ Y l < 2 ] A B r ( O ) ) u  ( [ Y l >  2 ] A B r ( O 2 ) ) ] \ B r ( O )  if  2 = 0 ,  

(.Br(0) \{([Ya < 2] n B d 0 ) )  u ([Yl > 2] n Br(0Z))} if 2 < 0. 

In case 2 => 0, then IsI _-< C[(r + 22)" - r n] <_ c2 rn-1 where the constant C2 
depends on 2. Similarly IS] _ Czr "-1 if 2 < 0. It then follows that 

[F(y) (2 - Yl)] dy <= C2r-q+l IS I = O(r  n-q) 
s 

for r large. Thus 

(4.12) 1 ( 2 )  = 1 F ( y )  (2 -- Yl) dy + O ( r n - q ) ,  
Br(O) 

which in turn implies that 

(4.13) 1(2) - 1(2')  = ~ F(y)  (2 - 2") dy + O(rn-q) ,  
Br(O) 

and (4.11) follows immediately by letting r--* oo in (4.13). Q.E.D. 

Remark 4.14. It follows from (4.11) (by setting 2'  = 0) that 1(2) = c2 + I (0)  
where c=~RnF(y)dy.  In particular, this implies that there exists a unique 

such that I(X) = 0 unless I x  Constant (i.e., ~RnF(y)dy = 0). 

It will be ,necessary to estimate the function W defined by (3.5), (3.14) or 
(3.19). Observe that they all take the form 

(4.15) W(r)  = -  ~ ~p(s) s n-l dsdt  

o o 

where ~0(s) = O(s p-2) near s = 0 for some 0 < fl =< 1. 



Positive Solutions of Semilinear Elliptic Equations 233 

I.emma 4.16. Let W be given by (4.15). Then 

(4.17) [W(r)[ ___ Cr ~ for r near O, 

(4.18) I W ( ~ )  - W ( ] ~ I )  < C[~(2-x l ) l  ]x[lxZl(lx ] +]x~[)  

for Ixl and Ix~l large. 

Proof.  Inequality (4.17) follows directly from (4.15). For (4.18) we compute 

1/)x I t ] 1/!ixltfl-1 dt I ( ~ ] )  ( ~  /!I l X W - W -'- ~ (o(s)sn-ldsdt <= C 

~I o ~11 1 

I (  I ~ P - 1  ( 1 ~P-I"~I 1 1 
< Cmax \ ~ 1 }  , k,]xZ],] .} Ix[  ]x~. t . 

Our conclusion then follows from (4.3) and the assumption that 
fl __< 1. Q.E.D. 

Finally we come to the estimates of Nf, k+ 1 in Theorem 3.17. Recall that 
t 1 = z- - 2 and 

1 o~ K(ly Df(C0[x yl n-2 +Nf'I-I(Y)) Ny, l(X) --n(n f 2)oa" dy, I = 1 , 2  . . . .  

Rn 

with Ny,0 ~ 0. Note that Nf,1 is radial for every l, as we pointed out in t h e  
proof  of Theorem 3.17, and that we can virtually duplicate the proofs of 
(2.59)-(2.61) to obtain 

(4.~9) O < = N f l ( l x l ) < = c O + l x b - " ,  l = 1 , z  . . . . .  k + l ,  

(4.20) 

(4.21) 

INf, l(Ixl) -Nf, t-l(lXl) ~ C(1 + lx]) -/~, l=  1,2 . . . . .  k, 

[Ui, k+l(Ixl) --Uzk(tXl) I <_ C(1 + Ixl)Z-"log(Ixl + 2) ,  

for all x~R ~. It then follows from (4.19) that limx_,ooNf, l ([xl)=0 and 
therefore 

(4.22) ;1i N~,l(txl) = K(s)f(  Co + Nf, l_l(S)) sn-l dsdt. 

The estimates we need are given by the next lemma. 

l_emma 4.23. Suppose that (K1) and (fl) hold with 2 < r <= n. Suppose further 
that K(r) >= C(1 + r n) -1 for all r >_- 0 and for some constant C > O. Then for 
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x E Rn \ B~_ ( O ) with xt <) .  and )~ > O, 

(4.24) 
C& (2 - xl) loglx ] 

uz,,(l l) - uz, z(lx  l) >= ix[n_Zjx  l (ix I + [x l) 
for l =  1,2 . . . . .  k +  1. 

Proof.  Since Nfj >= 0 and f >  0 in R +, from (4.22) we have 

Ix~l t S1S 
N f a ( l x l ) - N f ,  AlxZl ) - -  ~ g ( s ) f ( C o + N N ,  1-1(s ) ) sn- ldsd t  

Ixl o 

>_ C ~ 1 + s s ds dt 

Ixl o 

= C  ( l ~  
J tn-1 
Ixl 

d t > = C l o g ( l + l x l n ) ( ]  1 1 i) 
xl n-z  i n-= , 

and our conclusion (4.24) follows from (4.3). Q.E.D. 

The last preliminary resuk we need is the following version of Hopf ' s  
Strong Maximum Principle and Boundary Point Lemma. 

Lemma 4.25. Let u be nonnegative and satisfy the inequality 

Au + c(x) u <= 0 in s 

where ~2 is an open set in R n with 012 smooth and c E Lloc(l-2). Then either u = 0 
in s or u(x) > O for all x~f2.  Moreover, if  u ~ O  in s and u(Y) = O for some 
point Y: ~ 3g2, then (3u/Ov) (if) < 0 where v is the unit outer normal of 3(2 at 

The proof  is standard; see for instance Chapter 3 of  [GT]. 

5. Symmetry 

We are now ready to prove our main results in this paper concerning radial 
symmetry of  positive solutions of  the equation 

(5.1) Au + K( [x l ) f ( u )  = 0 

in R n, n = 3. We remark again that our method of  proof  does apply to more 
general equations (see Remark 5.18 at the end of  this section). First, we treat 
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the zero limit case. In case K--= constant and f is "nice", the following result 
improves Theorem I in [GNN]. 

T h e o r e m  5 . 2 .  

P> max[1,  nnn _- ~1 �9 

Suppose that (KI) - (K3) and (fl) - (f3) hold with 

Let u be a positive solution of  (5.1) such that 

f (t O X t mtrt 0 ' ~  if r4=2, 
(5.3) u(x )  = 

near x = oo. Then u must be radially symmetric about some point z in R" (z 
must be the origin i f  K is not a constant) and Ur < 0 for  r = Ix - z] > O. Fur- 
thermore, 

(5.4) u( r )  = ~ + 0 near r = co, 

where B = min[1,?} and Y = r + p ( n  - 2) - n. 

Proof. In order to apply the moving plane and reflection device, we set 

(5.5) 

A [ A E R l u ( x ) > u ( x X )  for a l l x ~ R n w i t h x l < 2  and Ou 1 = - - < 0  on T~ . 
0X 1 

(Recall that Tz is the hyperplane perpendicular to xt-axis at xl = 2. ) 
Step 1. 2 ~ A for  all sufficiently large 2. 
Since u > 0 in R n and u(x )  ~ 0  as x--* c~, we have that for every r > 2, 

there exists 2(r)  > r such that if 2 = 2(r),  then u(x )  > u ( x  ~) for all Ixl <-- r. 
on  the other hand, by Theorem 3.2, u satisfies (3.4). Thus for 2 N 2(r),  

lxl > r ~ 2  and x~ < 2 ,  we have, by (4.17), (4.18), (4.3) and (4.5), that 

(5.6) 

( 1 ~ )  [ C l - t - w ( ~ ) ]  1 [ w ( ~ )  u ( x )  - u ( x 2 )  = 

Ixl n-2 Ix z + ix~[. - ~  

(1~2]-)] 1 ( [ ~ )  1 (Xlx~12) 
- w  ] + ~ e  ixXl~_2e 

[ i~lp] C~ (2 - xl) (max[Ix I' [xa I }) t-B > 42(2 --xt) C] -- - 

[ + 4n2(2 -- xt) x 
-C(R) ixl._Xlx~l(ixl +lx~l) ~-x~ i 

[ c nC(R) C~)] 4~ (2 - X l )  C 1  _ 

I J"- ix ii i; p ixl 
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since ]x [ < Ix ~ [ and 

2(2 - x~)Ix~] ~-~ 
Ix~l"-~lx I(lxl + Ix~l) 

2(2 - x l )  Ix[ "-3 
Ixl"-2lxXl(Ixl  + [x~l) [xXl  " - 3 + f l  

2(1 --Xl) 1 

- ._2[x~ I Ixl (Ixl + [x~l) Ixl p 

Choosing r so large that C1 > Cr-f l+ (n+ 1) C(R)r  -1, we see that 
u(x) > u ( x  ~) for all 2 = 2 ( r )  and for all x with x i < 4 .  

It remains to show that Ou/ax 1 < 0 on Tt for all 2 >_ 2(r) .  This follows 
easily from the Maximum Principle (Lemma 4.25). For 2 >_ 2 (r),  in the region 
{x~R"Ix~ < 2} we have u(x) - u(x "~) > 0, and 

(5.7) A(u(x) - u(x*)) + K(lx]) f ( u ( x ) )  - f ( u ( x i ) )  (u(x) - u(xX)) 
u(x)  - u(x ~) 

= (K(]x*t) - K ( l x l ) ) f ( u ( x a ) )  <= 0 

since Ix[ < txil and g is monotone. Observe that u(x) - u ( x  a) = 0 on Ta; 
thus Lemma4.25 implies that ( O / O x a ) ( u ( x ) - u ( x a ) ) < 0  on Ta. Since 
(O/OXl) u(x i) = - (O/Oxl) u(x) for xE Tt, our assertion is established. 

Step 2. Let F(x) = K(]x[) f (u(x))  for x eR" and for 2 fiR let 

1(2) = ~ [F(x) - F ( x l ) ]  ( 2 - x i ) d x .  
[x~ <,~] 

Then 1(2) = Ct  + I(0) where C = ~R,F(y) dy > O. In particular, there exists a 
unique ~ such that I (~ ) = O. 

This follows immediately from Lemma 4.9 and Remark 4.14 provided that 
F defined here satisfies the hypothesis of Lemma4.9.  Since F ( x ) =  
K( lx[) f (u(x) )  = O([x[ -v-p(n-2) ) near oo by Theorem 3.2, it remains to 
verify that F satisfies (4.7). By (K1), (K3), (f3), (4.1), (4.3), Theorem 3.2 and 
a computation similar to (5.5), we obtain 

I F ( x )  - F(xX) l <= K(x) ] f (u(x)  ) - f (u (xZ)  ) ] + [K(x) - K(x ~) [f(u(xZ) ) 

< C Ix [ -~- (,-2)(e-l) [ u (x) - u (x x) [ 

+ Cllxl - Ix~ l l  (Ixl-~lx~ I - ' +  Ixl-alx~ I-~)[x~ I-p(.-2) 

[2(2 --Xl) [ Ixl-~-  (n-2~-1> 
= Clx l . -Z lx~I ( Ix  I + IX~[) 

+ C  
1 2 ( t - x l ) l  ( 1 1 ) 

= < C~lxl-~-.(.-2~-1 
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for Ix[ large, where the constant Cz is bounded uniformly in 2 for ;t in a 
bounded set. Thus (4.7) holds for every )~ E R. 

Step 3. I f  K ~ c o n s t a n t ,  then (0, oo) c= A.  
We first show that ( 5 ' , o o ) n A  is open, where 5' = max [5, 0}. Suppose 

that this is false, i.e., there exist a sequence Ix i] in R" and a sequence 
{)~i} C= (5', oo) such that 2i ~ ~ (5', co) n A and u(x i) < l~(x iRi) with x] < 2i. 
If  Ix i] has a subsequence, denoted also by {xi}, which converges to if, 
then u(2) =<u(ff ~) and 2:=<2.  Since 2 ( A ,  we must have Y l Z [  and 

(Ou/Ox:)(Y) >=0. On the other hand, in x~ < i ,  K(lxl) __>K(IxXl) since 
> 0, and the function w(x) = u(x) - u(x ~) satisfies 

Aw + K([x[) f ( u ( x ) )  - f (u (x2) )  w = [K([x21) - K(lxl)lf(u(x?~)) <_ 0, 
(5.8) u(x) - u(x ~) 

w > 0  i n x x < i  and w = 0  o n x : = 2 .  

But then Lemma4.25 implies that 0 >  (Ow/Oxl)(2)=2(Ou/Oxa)(ff), a 
contradiction. Therefore we must have Ixil ~ co as i ~ ~.  From the proof of  
Step 2 we see that Lemma 4.6 applies and we conclude from (4.8) that 
1 ( i )  ____ 0. This is again a contradiction since ~ > 2 and I(~)  = C(~ - 2) > 0 
by Step 2. This proves that (5', ~ )  n A is open. 

Next we assert that (5', ~ )  ___ A. Suppose for contradiction that (it, ~)  
is the unbounded component of  (5', ~ ) n  A with ). > 5'. (By Step 1 this 
u n b o u n d e d  component does exist). Then the continuity of  u guarantees that 
u(x) >_ u(x ~) for all xER" with xl < 5. Moreover, in xl < 2, K(Ixl) >= K(Ix~]) 
since 2 > 0, and the function ~(x)  = u(x) " u(x 7') satisfies 

A~, + K(lxl)  f ( u ( x ) )  - f ( u ( x ] ) )  ~ = [K(lf i l )  - K(lxl) l f (u(x '~))  <_ O, 
(5.9) u(x) - u(x ?~) 

___0 for x t < ) ~  and ~ = 0  f o r x : = 2 .  

Then Lemma 4.25 implies that either u(x) =-- u(x -~) for Xl < ~- or ~ EA. Since 
2 r  by our assumption, we must have that u(x)=---u(2) for x: < ~. This 
in turn implies that K(tx])------K(lxX]) for x: < 5 which is impossible since 
K , c o n s t a n t .  Thus our assertion holds. 

Note that exactly the same arguments in the paragraph above applying to 
the function u(x) - u(x ~) in Xl < 5 yields that 2 E A  if 2 > 0. It then follows 
from Lemma (H~') in [GNN; pp. 387, 388] that for some /1 > 0 

(5.10) u(x) - u(x ~) >= p(5  - Xl)IX]-~ 

in xl < 2 with Ix] large (provided that 5 > 0), since 

K ( l x l ) f ( u ( x ) )  -- f ( u ( x 2 ) )  = O([xl*+C,-:)(--2~) 
u(x) - u(x x) 

near x =  ~ (in view of (K1), (f3)) and Since r +  ( p - l )  ( n - 2 )  > 2 .  
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To finish the proof  of  Step 3, we only have to show that ). < 0 since it 
would then follow that ~ ' =  0. To this end we suppose that 2 > 0 and we 
shall use (5.10) to derive a contradiction. 

Observe that for every 2 ~(0,2) ,  there exists an rz such that u(x) < u(x ~) 
for all Ix i >  rz with Xl < 2. For otherwise there is a sequence {x i} with 
u(x i) >= u(xiX), x~ < ). and [xil -+ oo. Then Lemma 4.6 implies that I (2)  > 0, 
which is not possible since 0 = I (~)  > 1(2) by Step 2. 

For 0 < 2 < ~ we have, by (5.10) and Theorem 3.2, that 

(5.11) 

u(x)  - u (x  ~) = u (x )  - u (x  ~) + u (x  i )  - u (x  ~) 

'0[ = i x l n  x~t,,_: iX.~-~n - C 1 "l- W 

+ ix~l._ ~ w - w  

+ I n-2 R R Ix ~ Ix~l "-2 

for xl < 2 ( < 2 )  and Ix I large, where W and R a r e  given by Theorem 3.2. 
To estimate the various terms involved in (5.11), we proceed as in Section 4. 
As in the derivation of  (4.3) we have, for m => 1, 

(5.12) I x)~l '~ =< CIx~l,._ x Ix~l ix~l lx~l,.lx_l(lx.~l +lx~l) 

(5 .13)  ix  ~ e - ~ R 
Ix~t ~ 

R (  X[x~)t 1 t t 1 ( X l x ~ 5 ] 2 )  ( x ~ )  < - + R - R  

c(~.-,~)(~+2-x~) c(;.~-~.) < + 
=[x~lm+llx-~l(Ix~ I + [xXI) ]xX[ m+2 

since IxZt < Ix ~l. Also, as in the proof of  (4.18), we deduce 

(5 .14)  w - w __< . . . . . . .  _- . 

To simplify our estimates, we choose txl large with Xl = 0 in (5 .1 t ) - (5 .14)  
and obtain, by txl ____lx~l <[x~l ,  that 

/x~. c ( ~ .  - ~ )  c ( 5 .  - ~ )  c ( ~ .  - ,~) 
(5 .15)  l /(X) -- /,t(X 2) ~_~ IXl n IXl n i x ln+]  3 i x l n + l  , 
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where the constant C is independent 2 E (0, ~). From (5.15) we conclude that 
if 2~ ,> 2 > (1 - g/C)  2, then u(x) > u(x  ~) for Ixl large with xl = 0. This is 
a contradiction and Step 3 is established. 

Step 4. I f  K ~ constant, then u is radially symmetric about the origin and 
u'(r) < 0 for r = Ix[ > 0. 

Step3 implies that u ( x ) > u ( x  ~) for all x e R  ~ with x 1 < 2  and for all 
> 0. Letting )~--+0 we obtain that u(xa . . . . .  x,)  >= u ( - x l , x 2  . . . . .  xn) for 

xl < 0. Reversing the xa-axis, we conclude that u is symmetric about the 
hyperplane xl = 0 and Ou/Oxl < 0 for Xl > 0. Since the equation (5.1) is rota- 
tionally invariant, the xl-axis may be chosen arbitrarily, and it follows that 
u(x) is radially symmetric and u'(r) < 0 for r > 0. 

Step 5. I f  K =  constant, then (2, co) co_ A.  
The proof  is very similar to the first and second paragraphs of  Step 3. In 

fact, it is simpler. For, when K =  constant, the equation in both (5.8) and (5.9) 
now takes the following form 

f ( u ( x )  - u(xX)) 
A ( u ( x )  - u(x'~)) + K" 

u(x)  - u(x  ~) 
( u ( x )  - u ( x Z ) )  = O, 

which allows Lemma 4.25 to apply no matter 2 ____ 0 or 2 ___ 0. 
Step 6. When K =  constant, let z I = ~ and define zj similarly by repeating 

Step 2 with respect to xj-axis, j = 2 . . . . .  n. Then u is radially symmetric about 
the point z =  (Zl . . . . .  z,) and u'(r) <O for r=lx-zl > 0 .  

When K=-- constant, equation (5.1) is both translation- and rotation-in- 
variant. Thus we first perform a translation so that the point z becomes the 
new origin and then repeat the arguments in Step 4 to conclude Step 6. 

Finally, (5.4) follows from Theorem 3.2. Q.E.D. 

Next, we consider the positive limit case. 

Theorem 5.16. Suppose that (K1), (K2), (K3), (fl) and (f3) hold with r > 2. Sup- 
pose further that K(r)  >= Cr -n near co in case 2 < r <= n. Let u be a bounded 
positive solution of (5.1) with lim SUPx_~oo u(x) = Co > O. Then u must be radially 
symmetric about the origin and u'(r) < O for r = Ix I > O. Furthermore, the asymp- 
totic behavior of  u is given by (3.13) or (3.18) with the remainder term R being 
radial as well. 

Proof.  The case that -c > n can be treated in the same manner as Theorem 5.2 
in view of  Theorem 3.12. Thus we only consider the case that 2 < r =< n here. 
Following the general procedure in the proof  of Theorem 5.2, we define A by 
(5.5). To establish Step 1, i.e., 2 ~A for all 2 sufficiently large, we also proceed 
analogously. Since Theorem 2.32 and (2.34) in Part I hold (see Section 2 of  
[LN1]), we have u ( x ) >  Co for all x ~ R  n. Thus for every r=> 2, there exists 
2(r)>__ r s u c h  that u ( x ) >  u(x ~) for all Ix[ __< r and x 1 < ~ if ~. >__-- 2 ( r ) .  On 
the other hand, for I x [ >  r with Xl < 2 and 2 > 0 we have, from (3.18), 
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(4.24), (4.17), (4.18), (4.3) and (4.5), that 

(5.17) u(x) - u(x a) = Ui,~+l(lX l) - Ni, k+~ (IxX l) 

+ ( , x  i~_ 2 1 

+ - -  
lx ; i ._  2 w - w + ~ R  ix~l._2 R 

C2 (). - xl) loglx I C)~ (4 - xl) C2 ()~ - xl) 

Ixln-2]x'~f(Jxl +lx~l) Ixln-2+elxl( lxl  +lx~l) = ixl.-21x~l(ixl + Ix~l) 

C2(2 - xl) C(2 - xl) 

Ixl"-llx~l(Ix[ + Ix~l) tx~l" 

C' C" C" ] > C2(2 - Xl) loglx ] 1 

=txl ' -21xZl( lxl  +lx~ l )  loglxl  Ix[~loglxl  ,~loglx[ 

since Ix I < ]xa[ and where fl is a number between 0 and 1. Now we choose 
r so large that 

C'  C" C"  1 
1 > -  

log r r e log r r log r = 2 " 

Then u(x) > u ( x  a) for all Ix] > r  with x 1 < 2  and 2_>2(r)__>r.  Thus 
[2(r) ,  co) ____ A. 

Next we assert that A c~ (0, oo) is open. Suppose that this were false; i.e., that 
there exist a sequence {2i} and a sequence of  points {x i} such that 2i ~ 
A n (0, oo) and u(x i) <= u(x ai) with x] < 2 i. If  any subsequence of  Ix i} con- 
verges, say to 2, then as in the proof  of  Theorem 5.2 we apply Lemma 4.25 

to u(x) - u(x i) in the region x l <  2 to reach a contradiction. Therefore we 
must have that x i --* co as i + oo. But then (5.17) implies that u(x i) > u(x i;e) 
for all i sufficiently large since 1 > C' ( log[xi l )  -1 + C"lxi[-~(loglxil)  - 1  + 
c,,, (2ilog[xil) -1 for i large. This is again a contradiction and our assertion 
is established. 

It then follows from exactly the same arguments (since K ~ constant) as in 
the proof  of  Theorem 5.2 (Step 3) that A c~ (0, oo) = (0, c~), i.e., u(x) > u(x ~) 
for all x ~ R n with Xa < ). and for all ,~ > 0. Finally we conclude our proof  
by the same arguments used in Step 4 of  the proof  of  Theorem 5.2. Q.E.D. 

It is obvious that Theorem 2 follows from Theorem 5.2 while Theorem 1 
follows from Theorem 5.16 and from Theorem 1.4 in [LN1]. 

Remark 5.18. The results in Sections 3 and 5 for equation (3.1) (or (5.1)) also 
hold for the more general equation 

(5.19) Au + g([xl ,  u) = 0 
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in R ", n _  3, where g satisfies the following conditions which are analogous 
to ( K 1 ) - ( K 3 )  and ( f l ) - ( f 3 ) .  
(gl) g ( l x [ , u )  > 0 for all x e R  ~ and for all u > 0, and there exists r, p _> 0 

such that  

g(Ixl,u) <= C(1 + Ixl)-~u~ 
for all x ~ R  n, and for u near 0. 

(g2) g(Ix[, u) is H61der continuous in x and is Lipschitz continuous in u >_ 0. 
(g3) g ( r , u )  is strictly decreasing in r > 0 (for every u > 0 fixed). 
(g4) For every compact  subset S of  [0, c~) there exists a constant C > 0 such 

that  

Ig ( Ix l ,u )  - g ( l y l , u ) l  <= CIIx l  - l y l  I [ Ix l -~ ly l  - '  + I x l - l l y l - q  up 

for every u ~ S and for all x, y ~ R n with Ix I, l y[ large. 
(g5) There exists a constant C > 0 such that 

Ig ( Ix l ,u )  - g( Ix l ,v) l  _-__ f i n -  v l ( I . l " - '  + l v l  p-a) ( l  + j x l )  -z 

for every x ~ R n and for all u, v small and positive. 
We do not repeat the statements or the proofs of  those results because they 

are very similar to the results in Sections 3 and 5. We point out that the strict 
monotonici ty assumed in (g3) is necessary as the following example shows. 

Example 5.20. Let  u o be a fixed classical radial positive solution of  
n + 2  

A t l  -]- U n - 2  : 0 

in R n, n >= 3; for instance, 
n - - 2  

= r > O .  
1 + r  2 ' 

Define 

. n + 2  
/ 

~u n~5 if u <_ U o ( ( r -  1)+ ) ,  
g ( r , u )  ) n + 2  

)]n-2 if U > Uo((r - 1)+ ) k [u0((r - 1)+ 

where ( r -  1)+ = m a x { r -  1,0}. Then obviously u ( x )  = U o ( I X - Y l )  is a solu- 
tion of  Au + g ( ] x l , u  ) = 0 in R n for every lY[ =< 1, and g satisfies ( g l ) - ( g 5 )  
except the strict monotonici ty in (g3). (Note that g is in fact, monotonically 

n + 2  

nonincreasing in r > 0.) It  is also clear that we may replace u n-2 above by 
other nonlinearities. 

6. C o n c l u d i n g  R e m a r k s  

A few remarks concerning the various hypotheses and consequences of  our 
results are in order. 
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Remark 6.1. Obviously there must be some decay conditions near oo imposed 
on solutions u in order to derive the radial symmetry of  u. (It is easy to con- 
struct counterexamples otherwise.) However, it is still natural to ask how 
restrictive the decay condition in Theorem 5.2 is. First, observe that (5.3) and 
the condition on p in Theorem 5.2 substantially improve that of  Theorems 1' 
and 1" of  [GNN; p. 378 and p. 380, respectively]. Then we notice that  if  
K ( r )  ~ r -~ near oo for some 0 < r __< 2, Theorem 3.35 in [N] guarantees that  
all positive solutions u of  (5.1) with f ( u )  = u p, p > 1 must  satisfy 

(6.2) 
~(r)  = < i "r--2 Cr p-1 if 0 < z < 2, 

1 
C( logr )  p-1 if r = 2, 

where r =  Ixl and ~(r )  is the average of  u on the sphere [x I = r. (Compare  
(6.2) and (5.3).) 

As for the condition imposed on solutions near oo in Theorem 5.16, it 
seems very minimal.  

Remark 6.3. Comparing our symmetry results to the previous ones in [GNN, 
e.g., Theorem 1"], we see that  the monotonici ty assumption of  g(r,  u) in u > 0 
is now removed in both Theorems 5.2 and 5.16 (see Remark 5.18 also). The 
key new ingredients here are Lemmas 4.6 and 4.9, and of  course Theorem 3.2. 
We should point out that  the H o p f  Boundary Point Lemma at oo for the half- 
space obtained in [GNN; Lemma (Hi')] also plays a crucial role in our 
estimates. 

Remark 6.4. Combining Theorem 2 above, Theorem 2.1 in [LN2] and a recent 
result of  YANA~IDA [Y], we see that  the Matukuma equation (1.2) with 

n + 2  
1 < p < - -  possesses exactly one solution with f ini te total mass; moreover, 

n - 2  n - 1  
it is radial. This fills in the gap 1 < p < - -  left open in [LN2]. 

n - 2  

Finally, we mention that  other related recent papers include [BN1,2], [CGS] 
and [CL]. 

Note added in p roo f  In a very recent paper  of  the first author, YI LI, " O n  the 
positive solutions of  Ma tukuma  equation",  it is proved that all positive entire 
solutions of  equation (1.2) (without any conditions imposed on such solutions) 
are radially symmetric about  the origin. Thus, a complete understanding of  
all positive solutions of  the Ma t ukum a  equation is achieved. 

Acknowledgment. This research was supported in part by the National Science Founda- 
tion. 
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