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An Example of a Quasiconvex Function that is not 
Polyconvex in Two Dimensions 

JEAN-JACQUES ALmERT & BERNARD DACOROGNA 

Communicated  by J. BALL 

Abstract 

We study the different notions of convexity for the function f T ( ~ ) =  
1~12 ( ] ~ 1 2 -  2)~ det ~) where ~E R 2x2, introduced by DACOROGNA & MARCEL- 
Elm. We show that f7 is convex, polyconvex, quasiconvex, rank-one convex, if 
and only if ]Yl - ~ -/2, 1, 1 + e (for some e > 0), 2/x/3, respectively. 

w O. Introduction 

Let R 2x: be the set of 2 •  real matrices endowed with the Euclidean 
norm 

2 

2: E 
i,j=l 

The main result of this paper is 

Theorem 1. Let y E R and let fy:  [E 2•  [E be defined as 

f~(~) = I ~l~(I ~l ~ - 2 y  det 4). (0.1) 
Then 

fy is convex e, l Y[ < ~ x/2, 

f~ is polyconvex ~ ]y] =.N 1. 

There exists an e > 0 such that 

f~ is quasiconvex ** [y[ _< 1 + e, 

2 
fr is rank-one convex ~ ]y I_< x/3 " 
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The last result as well as the fact that if f~ is polyconvex, then l Y] --< 1 
have been established by DACOROa~A & MARCELLINI [1]. All the other results 
are new. The most interesting fact is the third one. 

We now put our results into perspective and define the terminology used 
in Theorem 1 (as a general reference we use DACOROONA [1]). 

Definitions. Let f :  R2x2~[R. ( i ) f  is said to be polyconvex if there exists a 
convex g:  N2XZx•--,R such that 

f (~ )  = g( ( ,  det ~). 

(ii) f is said to be quasiconvex if 

~ f ( A  + V(o(x)) dx >=U(A) meas ~2 

for every bounded convex set g2 C R 2 (or  equivalently for some [2 C rR2), for 
every A E R 2x2 and for eve.ry ~0 ~ W~~ R2). (W~ ~176 (D, N2) is the space of 
Lipschitz continuous functions vanishing on 0D.) 
(iii) f is said to be rank-one convex if 

f ( R A  + ( 1 - 2 ) B )  _< 2f (A)  + (1 - J . ) f (B)  

for every 2 ~ [0, 1] and A, B ~ [R 2x2 with det (A - B) = 0. 

It was well established in the work of MORREY [1], [2] and later of BA~ 
[1] that, in general, 

f is convex = f is polyconvex = f is quasiconvex = f is rank-one convex. 

The important notion with respect to minimisation problems is 
quasiconvexity, which is equivalent to the weak lower semicontinuity of the 
functional 

I(u)  = ~ f ( V u ( x ) )  dx. 
Q 

It turns out that, in general, it is very hard to check whether or not a given 
function is quasiconvex. The conditions of  rank-one convexity or polyconvexity 
are a lot easier, though still difficult, to verify. 

In particular, there are very few examples of quasiconvex functions which 
are not polyconvex. One such example has been given recently by SVERAI~ [11. 
The question of finding rank-one convex functions which are not quasiconvex 
is still open, despite numerous attempts since the work of MORRWY (for a 
survey on this question see Bm.L [2] or DACOROO•A [1]). 

DACOROGNA & MARCELLINI [1] showed that (0.1) gives rise to a rank-one 

convex function which is not polyconvex if 1 < [71 --< 2/x/3. They, however, 
were unable to settle the quasiconvexity of  such an fy. Later a numerical 
computation (cf. DACOROGNA, DOUCI-IET, GANGBO & RAPPAZ [1]) seemed to in- 

dicate that fr is quasiconvex if ly I __< 2/a/3. 
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Our result does not completely solve the problem, and in particular we have 

been unable to decide whether or not 1 + e = 2/'4~. However, our theorem 
shows that the case ]7] > 1 gives rise to examples of quasiconvex functions 
which are not polyconvex. In addition, these examples do not satisfy 

f (~)  _> -o~( I~l 2 + 1), (0.2) 

where ot > 0. This answers a question raised by BALL [3]. It is therefore 
unreasonable to expect that quasiconvexity implies some lower bound, contrary 
to the case of polyconvex functions which, in the two-dimensional case con- 
sidered here, necessarily satisfy (0.2). 

Theorem 1 shows how these different notions of convexity arise in a par- 
ticular example when one changes a single parameter. Perhaps more in- 
teresting, however, is the proof. Note that it is not even obvious that fy is 
quasiconvex at 0, i.e., that 

~ I V(O(X)I 2 (I V~O(X)I 2 --2)~ det V~0(x)) dx >= 0 
s 

1 ,  Co �9 for every ~0E Wo (f2, [R 2) and for some Y > 1, since the integrand is not 
pointwise positive and can become arbitrarily negative. In addition to some 
algebraic computations, the key point is the following inequality: There exists 
an e = e(f2) > 0 such that 

(]V(o(x)12• (0.3) 

for every ~0 E W ~ ( s g ;  N2). This inequality shows that the functional on the 
left-hand side of (0.3) is coercive in W~4(D; R2), even though the integrand 
is not coercive (not even up to a null Lagrangian which can here be at most 
quadratic). 

w 1. An Important Inequality 

Before proceeding with the proof, we introduce some notations which will 
simplify the computations. 

Let A = (A l l  A12] E E2• we define the matrices 
\A2~ A22, / 

/ 1 : = | [  A22 -A21},\ A + : = ~  (A + A ) ,  A - : =  1 ( A - A ) .  
\ -A12 All./  

For A, B E [~2X2 we let (A B) 2 �9 = ~ - ~ i , j = l  A~Bo. We easily obtain the following 
properties. 
(i) det (A + B) = detA + (A.B) + det B and 2de tA = (A-A),  
(ii) A = A  + + A -  a n d ~ = A  + - A - ,  
(iii) 2de tA + = ] A + ]  2 and 2 d e t A - = - ] A - I  2, 
(iv) IA[ 2=[A+[  2 + I A - [  2 and 2 d e t A = l A + [  z - I A - ]  z = 2 d e t A  + + 2 d e t A - ,  
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(v) ( A . B )  = ( A + . B  +) + ( A - . B - )  and ( A + . B  - )  = ( A - . B  +) = 0 ,  
(vi) [AI 2 - 2de tA = 2[A-[  2 and IA[ 2 + 2de tA = 21A+l 

Remark LL The decomposition (ii) of ~2x2 corresponds to the splitting of 
matrices into a direct sum of a "conformal"  matrix (i.e., one for which 
(A+)TA+ = (detA +) I) plus an "ant iconformal"  one (i.e., one for which 
( A - ) r A -  = - (det A - )  I).  

Remark 1.2. Observe that for every ~e tR 2x2, 

fy(~)=(1-y) l~+14+21~+121~-12+( l+~) l~- I  4. (1.a) 

We now establish the following result which will play a central role in the 
proof of Theorem 1. 

Theorem 2. Let s C ~2 be a bounded domain with a sufficiently regular bound- 
ary. Then there exists an e = e( f2) > 0 such that 

[]A + V0(X) I 2 + 2 d e t  (A + V0(x))]2 dx 
O 

>_ (IAI 2 + 2 d e t / )  2 meas s + 4e I I V0(x)] 4 dx 
f2 

or equivalently, in the above notation, 

f ]  (A q- V 0 ( X ) ) •  4 dJf ~ / N  :t=14 meas [2 + e ~1V0(x)[ 4 dr 
~2 t2 

for  every A ~ R 2x2 and every 0 E W~ ~ ([2; JR2). 

(1.2) 

Remark 1.3. In the proof of Theorem 1, we require (1.2) only for A = 0. 

Proof of Theorem 2. We shall prove (1.2) only for the minus sign, the proof 
being identical for the plus sign. Adapting an idea of SVERAK [1], we also 
prove first the result for A = 0. 
Step 1. Let 0 = (01, 02). Then denoting 00j/Oxi by 0i0 j, i, j E {1,2}, we have 

41V-0(x)l 4 dx = ~ [ (0101(X ) -- 0202(X)) 2 -t- (0201 (X) n t- 0102(X))2] 2 dl: 
12 12 

->_ ~ [(0101(x) -0202(x))4 + (0201(x) + 0102(x)) 4] dx. 
a 

It will be sufficient to prove that there exists a fl = fl(f2) > 0 such that 

4 110111w-+ [1o2114',4 
_-< fl ~ [(0101(x) - 0202(x)) 4 + (0201(x) + 0102(x)) 4] dx (1.3) 

a 

for every 01, O~E W~4([2) to get (1.2) with A = 0. But (1.3) expresses the 
regularity of solutions of the inhomogeneous Cauchy-Riemann equations. 
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Indeed, for 
31(p 1 --  32(02 = a i n  f2, 

32(O 1 + 01(02 = b i n  f2, 

(Ol = (o2 = 0 on 3~2, 

the classical regularity results for elliptic equations give (1.3) (see for example 
SeaaDEg [1]). This establishes (1.2) for A = 0. 
Step 2. Since (O = 0 on 3f2, we have 

.i 11-  + V-~(X)I 4 dx = ,~ [11-12 + 2 ( A - .  V-(O(x)) + I V-(o(x)1212 dx 

= I A-14 meas ~ + ~  f lV-(O(x)I 4 dx 

+ 2  

+I 
s"2 

.~ [I A -I 2 ] V-(o(x)[ 2 - (1 - -  V-(o(x)) 21 dx 
f2 

[ 6 ( A - .  V-(o(x)) 2 + 4 ( A - .  V-(O(x))I v-(o(x>l 2 

[ v-~(x)[41 d,c. 

Observing that the last integral is positive, while the second is positive by the 
Cauchy-Schwarz inequality, and using Step 1 for the first integral, we establish 
the result. 

w 2. Proof of the Theorem 

Proof of Theorem 1. The fourth part as well as the fact that if f~ is 
polyconvex, then[y]  _< 1 have been established by DACOgOG~A & MARCELLIm 
[1] (see also DACOgOCXA [1]). To be complete we shall however prove these 
two facts again. 

We divide the proof into four parts, each dealing with the corresponding 
convexity condition. 

Part I. We prove that fr is convex if and only if ]Yl - ~  ~ -  We divide the 
proof into two steps. 

Step 1. We first show that if [y] _< ~ x/2, then fy is convex. This is equi- 
valent to showing that 

2 02fY (A) BijBkl > 0 for every A, B E R 2x2.  (2.1) 4g/y (A, B) :=  E Or O C k ~  l = 
i,j,k,l=l 

A direct computation gives 

~ ( A ,  B) = 2(1 - y) (A +. B+) 2 + 4(A + . B  +) ( A - . B - )  + 2(1 + y) (A- .  B - )  2 

+ (1 - y) lA+l  2 IB+l 2 +11+[  2 IN-[ 2 + I A - I  2 IB+I 2 

+ (1 + y ) I A - [  2 IB-[  2. (2.2) 
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Since I?~l _<_ 2 x/2 < 1, we may rewrite (2.2) as 

q/r(A, B) = [2(1 - 9) ( A + ' B + )  2 

+ 4 x / 1 - ? , , 2  (A + . B  + ) ( A - . B - )  + 2 ( 1 + 9 ) ( A - . B - )  2] 

+ [11+12 [B-I 2 + I1-12 IB+I 2 + 2 ( 1  + . B  +)  ( A - ' B - ) l  

+ [ ( 1 - 9 )  I / + 1 2 1 B + l  2 

+ 2 ( 1  -2x / -1  -? ,2  ) (A+.B +) ( A - . B - )  + (1 + 9 ) [ A - ]  2 [B-J2] �9 

Observing that  the first bracketed term is positive, while the second and third 
are positive by the Cauchy-Schwarz inequali ty for  every 9 such that  

(1 - 9) (1 + 9) - (1 - 2x/1 - ? '2 ) 2  ~- 0, i.e., such that  [9[ ___< ] x/2, we obtain 
the result. 

Step 2. We now show that  if fy is convex, then [9[ < ] x/2. We assume 

therefore that  I >__ I?'1 > ] x/2 (since by Part  III below, the convexity o f  f~ 
implies the polyconvexity o f  fy, which implies tha t  [9[ -< 1). We then show 
that  f~ is not  convex, which is equivalent (cf. (2.1)) to showing that  there ex- 
ist Ay, Byfi R 2x2 such that  qJy(Ay, By) < 0. This is easily done  by choosing 

.,=(; 7) 
b 2 

A direct computa t ion  gives 

with b any root  o f  

4?' b + l = O  
4 - 3?' 2 

with a def ined below. 

(2.3) 

gty(Ay, By) = a2(3b 2 - 39b + 1) - a (39  b2 - 4b + 3?') + (b 2 - 39b + 3).  

To show that  we can choose a so that  l, vr(A ~, By) < 0, it is sufficient to show 
that  

A = (39 bz - 4b + 3?'') 2 - 4 (3b  2 - 39b + 1) (b 2 - 39b + 3) > 0 

for 1 >__ I)~1 > ] x/2 and b satisfying (2.3). It turns out  that  in fact 

A = ]292b 2 9?'2 - 8 
4 - 3?' 2, 

which is strictly positive if  1 =>17'1 > ] x/2. This concludes the p roo f  o f  
Par t  I. 
Part II. We now prove that  fy is rank-one convex if and only if ] ?'1 --< 2 / @ .  
We divide the p roo f  into two steps. 
Step 1. We first show that  if I?,,I = 2/,/5, then fy is rank-one convex. This 
is equivalent to showing (see, for  example, Daco~oG~a  [1]) that  the Legendre- 



A Quasiconvex Function that is not Polyconvex 161 

Hadamard condition holds, i.e., 

4~ty(A, B) =>0 for every A, BER 2x2 with d e t B = 0 .  (2.4) 

Using (2.2) and the fact that det B = 0 if and only if I B + [2 = I B -  12, we im- 
mediatly obtain 

~y(A, B) = 2 ( 1  - y) (A + .B+)  2 + 4 ( A + . B  +) ( A - . B - )  +2(1  + y) ( A - - B - )  2 

+ (2 - y) ]A+I 2 [O+] 2 + (2 + y) ]A-[ 2 [O-] 2. 

= [(4 - 3 7 )  (A+'B+) 2 -t-4(A+.B +) ( A - . B - )  + ( 4 + 3 ? )  ( A - . B - )  2] 

+ [(2 - y) ([A+I 219+12 - (A + .B+) 2) 

+ ( 2 + y )  ( [ a - [  2 [B- [  2 -  ( A - . B - ) 2 ) ] .  

Thus 
2 

q/y(A, B) __> 0 for every [y[ __< x/3 ' 

since the second bracketed term is positive by the Cauchy-Schwarz inequality 
for every ]Yl---2 and the first is positive for every y such that 

( 4 -  3y) ( 4 +  3y) - 4  __> 0, i.e., [y[ __< 2/x/3. The proof of Step 1 is complete. 

Step 2. We now prove that if fy is rank-one convex, then ]y[ __< 2/x/3. We as- 

sume therefore tha t [y ]  > 2/x/3. We then show that fy is not rank-one con- 
vex, which is equivalent (cf. (2.4)) to showing that there exist Ay, By E R 2• 

with det By = 0 such that q/y(Ay, By) < 0. This is easily done. Choose 

(; 00) ' (; 0) 
with a defined below. A direct computation gives 

q/y(Ay, By) = 3a 2 - 3ya + 1. 

To show that we can choose a so that !uy(Ay, By) < 0, it is sufficient to show 
that 

2 
A = 9 y 2 - 1 2  > 0  for [y[ > ~ - ,  

which is trivial. This concludes the proof of Part II. 
We now turn our attention to the polyconvexity and quasiconvexity of fy. 

Observing that f y ( Q ~ ) = f - y ( O  for every (y, ~, Q) 6 R • 2 1 5 2 1 5  with 
QTQ = I and det Q = - 1, we easily see that fy is polyconvex if and only if 
f_y is polyconvex and that fy is quasiconvex if and only i f f _ y  is quasiconvex. 
Hence, we may asume without loss of generality that y __> 0. 
Part Ill. We prove that fy is polyconvex ~ 0 __< y __< 1. We do this in two 
steps. 
Step 1. We first show that if fy is polyconvex, then 0 __< y __< 1. Observe that 
if fy is polyconvex, then fy must be bounded from below by a quasiaffine 
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function, that is, 

f~(~) _-> Co + Cl det ~ + (~o" ~) (2.5) 

for some Co, cl ~ R, some Go fi [R2X2 and for every ~ ~ R 2x2. Combining (1.1) 
and (2.5) (and choosing ~-  = O) we immediately obtain 

cl ~+12 ~+ (1 -y)l~+14 ~Co + 21  + ({0" ) for every ~ E ~  2x2, 

which is possible only if 1 - y _  0. This concludes the proof of Step 1. 
Step 2. We now prove that if 0 ___ y __< 1, then f~ is polyconvex. Observe that 

(~ j_  Of' ( A ) B i j - 2 7 I A , 2 d e t B )  (2.6) f~(A + B) - fv(A) = ay(A, B) + ~ij 
i , - 1  

where (cf. (2.1)) 

2 Of 7 B) +2~,]AI 2 aT(A, B) :=fv(B) + E ~ij (B)Aij + 2q/y(A, det B. (2.7) 
i,j=l 

If  we show that av(A, B) >= 0 for every A, B fi N2x2 and every y fi [0, 1] then, 
since the second term in (2.6) is a null Lagrangian, we should have (cf., for 
example, DACOROGNA [1]) that f~ is polyconvex whenever y E [0, 1]. Observe 
that a~ is affine in ? and therefore 

ay (A, B) _> min [a0(A, B), al(A, B)} for every 7 ~ [0, 1]. 

Since a0 is trivially positive and al is positive by Lemma 3 below, we have 
indeed established the second statement of the theorem. 
Part lid. We now proceed to establish the third statement of the theorem. We 
do this in two steps. 
Step 1. We prove that if f~ is quasiconvex, then 0 < y < 1 + e for some e > O, 
as follows. Let 

Iv(A, (o):= j [fr(A + V(0(x)) - fT(A) l  dx 
f2 

for every A E R 2x2 and every ~0E W ~ ( f 2 ;  ~2). In view of Step 2 below, the 
fourth part of Theorem 1 and the general fact that if f~ is quasiconvex, then 
f~ is rank-one convex, it will be sufficient, in order to obtain the result, to 
prove that Ir(A, ~o) >= 0 implies I~(A, ~o) >__ 0 provided 0 _ fl __< ?. This is easi- 
ly done by observing that the two following cases imply the result. 

Case 1. I [I A + V~o(x)I 2 det (A + Vq~(x)) - I A l 2 d e t A l  dx_<_ 0. 
f2 

Then, since fl => 0, it is clear that I~(A, (o) >= O. 

Case 2. I [I A + V~~ 2 det (A + V~0(x)) - [ A I  2 detAl dx>= O. 
~2 
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We then have 

IB(A, (p) - I : , (A,  ~o) 

= 2 ( ? - f l )  j [ IA+  V~0(x)l 2 d e t ( A +  V(o(x)) - I A I  2 d e t A ] d x > _ 0 .  
12 

Step 2. We finally obtain that if 0 __< y < 1 + e for some e > 0, then fy is 
quasiconvex. Since this is the most interesting part of  the theorem, we shall 
prove an intermediate result (Step 2), which is unnecessary but might clarify 
the argument. 
Step 2. We prove the quasiconvexity of f~ at 0 for y = 1 + ot with ot > 0 small 
enough. We have to prove that 

~fy(V~o(x)) dx >= 0 
12 

for every ~0 ~ W~ = (O; •2) and for some ~ > 0. Recall that by (1.1) we have 

L(O =-~1~+14+21~+121~-12+ (2 + ~ ) l u I 4 - > z l u I 4 - ~ l ~ l  4 

for every ~ [R 2• By Theorem 2, we immediately obtain 

~fy(V~o(x)) dx >= (2e - c~) I IVo(x)l 4 dx. (2.8) 

Therefore choosing 0 < o~ < 2e, we have the result that fy is quasiconvex at 0. 
Step 2. We now prove that if 0 < y _ _ < l + g  for some e > 0 ,  then fy is 
quasiconvex. We write y = 1 + o~ and assume that o~ > 0, the case 0 _< y __< 1 
having been dealt with in Part III. We want to show that 

[f~(A + g(o(x)) - f ~ ( A ) ]  dx >= 0 (2.9) 
12 

for every A E [R 2x2, (o~ W~~ N2) and for some a > 0. By (2.6) this is 
equivalent to showing that 

I o'y(A, V~0(x)) dx e 0. 
12 

Keeping in mind that y = 1 + o~ and using (2.7) we rewrite o~v as 

~2 
ay(A, B) = a~,~(A, B) + ef l (B)  - 2~[BI 2 det B -  - -  IB] 4 

2 
where fa(B) = IB]Z(]B[ 2 - 2 det B) and 

e2 2 Of r 
o'e,~(A, B) :=  (1 - e ) f l ( B  ) + 2 IN[4 q- ~j~l', = ~ 0  (B)Aij 

+ (2~/r(A, B) +271AI 2 det B) .  (2.10) 

By Lemma 3 below, a~,, __> 0 for e and e~ small enough. Therefore (2.9) and 
the quasiconvexity of  fy are implied by 

eft(We(x)) -2~/v~o(x)l 2 det V~o(x) - 2 ]v~~ dx __> 0 

12 
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for every ~o E w~ ~ (g2; ~2). This follows from (2.8) (with ot = 0) and Theorem 
2 by choosing a _< 82/2 and using the fact that - 2 [ V~012 det ~7~0 _>_ - ]  V~0[ 4. 
Therefore the proof of the theorem will be complete once Lemma 3 is 
established. 

Lemma 3. For every e, ~ >_ 0 sufficiently small, ae,~ given by (2.10) satisfy 

6e,~(A,B) >=0 for every A , B ~ R  2x2. 

In particular, the result holds for e = ~ = O, i.e., at (A, B) >= 0 in (2.7). 

Proof. The idea of the proof is to establish that for every B fixed, there exists 
an A = A (B) that minimizes o-e,~, and then to show that ae, ~ >= 0 at every sta- 
tionary point of  a~,~(A, B) for sufficiently small e and a. 
Step 1. In the following we shall always assume that B :~ 0; otherwise the 
result is trivial. We now fix B, B :~ 0. To show that a~,~ has a minimum, we 
need to show that the quadratic term in (2.10) is always positive, i.e., that 

min {N~(A, B) + YlA] 2 det B} > 0. (2.11) 
IAI =~ 

If this holds, then for fixed B .  0, ae,~ attains its minimum. Our aim will 
then be to show that this minimum is positive. 

To prove (2.11), observe that the minimum is always attained. Let p be the 
corresponding Lagrange multiplier. We therefore have 

Oqzy (A, B) + 2y(det B)A = l~A, (2.12) 
O.4 

that is, 

2 [ B I 2 A - ~ I B I = A + 4 ( A . B ) B - 2 ) ' ( A . B ) B - 2 ) ' ( A . B ) B = ~ , A .  (2.13) 

By multiplying (2.13) by A, we see that (2.11) is equivalent to showing that 
> 0. Multiplying (2.13) first by B and then by B we find that 

( A . B )  (/~ + 4)' det B -  6[B[ 2) + (.4. B)(3) 'IBI 2) = 0, 

(A-B) (3), I BI 2 - 8 det B) + (zi. B) (/~ + 4)' det B - 2 1 B I  2) = 0. 

Thus two cases can happen, either (A. B) = (.g. B) = 0 and therefore (2.11) 
is satisfied for a = )' - 1 > 0 small enough, or 

(/1+4)'  d e t B - 6 ] B I  2) ( /~+4y de tB  - 2 ] B ]  2) -3 ) ' IB]2 (371BI2 -8  det B) = 0 ,  

i.e., 

_ 8 (IBI2 _) '  det B) + [(12 - 9)' 2) In] 4 - 8 ) ' l n t  2 det B + 16)'2 (det B) 2] = 0. 

This implies that for ~ = )' - 1 > 0 small enough the roots of the last equa- 
tion are positive if they are real. Therefore, the proof of (2.11) is complete. 
Step 2. We compute the stationary points of a~,~ for B fixed: 

Oa,,= (z ,  n)  = 4l nlZ n - 4)'( det B) n - 2yl nl2 B + 4] nlz  A - 2)'[ B[ z~i 
OA 

+ 8(A. B) B - 4)'(A. B) B - 4~,(~i. B) B = 0. (2.14) 
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We now multiply (2.14) first by A, then by B and finally by B to get 

2(A.B)  IBI 2 - 2 y ( A . B )  det B -  y(,~-B)[BI a 

= 21hi= Inl 2 - 2yl nl 2 detA + 4(A. B) 2 - 47~ (A. B) (d .  B) 

+41Bla(A.B)  - -4y(A.n)  de tn- -2~( .g .n) lBI  a, (2.15) 

-)~(.g. B)lBI 2 = -  ~lnl 4 + ~ ylBI 2 det B - - 2 ( A . B )  IBI 2 

+ ~ r (A.  B) det B, (2.16) 

2(X.  B) ( In l  2 - 2 r  det B) = (A. B) (39,1812 - 8 det B) + p[BI 4 

- 4 [ B [  2 det B + 49,(det B) 2 . (2.17) 

We now will use (2.14) to (2.17) to show that a,,~ => 0 at a stationary point 
provided oe = 9, - 1 and e are small enough. Combining (2.16) and (2.17) we 
find that 

(A-B) [3(1 - 6or - 312) [B[ 4 - 8(1 + oe)1812 det B + 16(1 + ~)2 (det B) 2] 

= - I B I 2  [(1 - 6o~ - 3~2)1BI 4 - 4 ( 1  + a) lBI  2 de tB +4(1  + =)2 (det B)2]. 

(2.18) 

We now use (2.15), (2.16) and (2.18) to compute a~,~ at the stationary point 
to get 

3ae,~ 
IBI2 [ 3 ( 1  - 6~ - 3o~2)[B[ 4 - 8 ( 1  + ~)IBI 2 detB + 16(1 + a)  2 (det B) 2] 

= [~ e2[B] 2 + (1 - 3e)[BI  2 - 2(1 - 3e - 200 det B] 

x [3(1 - 6a  - 3a  2) [BI 4 - 8 ( 1  + odIB[  2 det B + 16(1 + a )  2 (det B) 2] 

+ 2(1 + o0 det B[ (1  - 6c~-  3o~2)1B]4-4(1  + o d [ B [ a d e t  B 

+ 4(1 + a) 2 (det B)2]. (2.19) 

Therefore the positivity of  a~,~ at the stationary point is equivalent to the 
positivity of the right-hand side of (2.19), denoted by ve,~. Since ot will be 
chosen very small even with respect to e we shall group all the terms depending 
on c~ together; we find 

re,=(A, B) = [(1 - 3e) IBI 2 + I  e21Bt 2 - 2 ( 1  - 3e) det B] 

x[3tB] 4 -  81B[ 2 det B + 16(det B) 2] 

+ 2 det B[[B[ 4 -41B[  2 det B + 4(det B) 2] + O(a,  [B[ 6) 

= [IBI 2 - 2  det B][3(1 - 3e)lBI 4 -  6(1 - 4e) lBledet  B 

+ 12(1 - 4e) (det B) 2] 

+ ~ e2[B[ 212[B] 4 + ([B[ 2 - 4  det B) 2] + O((,, [B[6). 

and oe sufficiently small compared to ~ e z 
3. 

Therefore choosing e small enough 
we have indeed established Lemma 
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