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1. Introduction 

Over the last twenty years, there has been a remarkable interest in the study of 
a class of non-Newtonian fluids, known as fluids of grade n, from both theoretical 
and experimental points of view, see, e.g., [7, 14, 15, 5, 9, 16, 19] and the references 
cited therein. For a general incompressible fluid of grade 2, the Cauchy stress T is 
given by 

T = --/~I + #A1 + ~1A2 + c~2A 2, (1.0) 

where ~t is the viscosity, ~ ,  c~2 are material coefficients (normal stress moduli), 
/~ represents the pressure and A~, A 2 a r e  the first two Rivlin-Ericksen tensors 
[17, 20], defined by 

As = Vv + (Vv) r, 

d 
A2 = ~A1 + A1Vv + (vv)r A1. 

Here v is the velocity field and ~ denotes the material time derivative. The 
thermodynamical principles impose some restrictions on e~ and e2 [7]. In particu- 
lar, the Clausius-Duhem inequality implies that 

# > 0 ,  ~1 + c<2 = 0  

and the requirement that the free energy be a minimum in equilibrium implies that 

~l=>0. 

With these conditions on the stress moduli, the equations of motion for an 
incompressible homogeneous fluid of grade 2 are given by 

~t(v-~Av)-vAv=Vp-curl(v-~Av)XV}v.v=O inf~x(0, T) (1.1) 
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(cf. [7]) with the initial and boundary conditions 

v ( x , t ) = O  on ~3~ x (0, r ) ,  
(1.2) 

v(x,O) = Vo(X ) in fL 

Here f~ is a bounded domain in R 3 with smooth boundary ~?f~ and ~ x (0, T) (T > 0) 
is a space-time region. The initial velocity is denoted by Vo(X) and p = !5/p, ~ = el~P, 
v = #/p, where p is the (constant) density of the fluid. For simplicity, we assume that 
there are no external body forces acting on the fluid. Under the assumptions 

v > 0, ~ > 0, 

problem (1.1), (1.2) has been studied by several authors. In particular, CIORANZSCU 
& EL HAC~NE [5] have given existence and uniqueness results for weak solutions 
global (in time) in two dimensions, and local (in time) in three dimensions. More 
recently, GALD~, GROBBELAAR & SAUER [10], by using a different approach, have 
shown for the general system (even without the restriction cq + ~2 = 0)  existence 
and uniqueness of classical solutions for short time. Furthermore, if the size of the 
initial data is suitably restricted, their solutions exist for all time. However, for this 
latter result to hold, it is crucial to require that ~1 ( = eP) is "sufficiently large". It 
should be remarked that such a condition looks - -  in a sense - -  artificial, since one 
expects that global solutions should be favoured by a "large" viscosity and 
a "small" constant of elasticity. The main objective of the present paper is to 
remove such a restriction on e. Specifically, we show that if fl is simply-connected 
and Vo is not too "large", problem (1.1), (1.2) admits one (and only one) classical 
solution, global in time, for  any ~ > 0.1 For the general problem (~1 + 0~2 :~= 0) the 
steady case has been studied very recently by CoscIa & GALDI [6]. 

The method we follow here is based on an appropriate splitting of the original 
problem along with the use of the Schauder fixed-point theorem. The key require- 
ment for this method to work is to obtain sufficiently strong a priori estimates on the 
higher-order derivatives of the solution. These are obtained by transforming the 
original problem into an equivalent one as follows. Using the elementary identity 

e u r l ( u  x v) = v . V u  - u ' V v  + (V.v)u - (V.u)v (1.3) 

with 
u = e u r l ( v  - ~ A v )  (1.4) 

and applying the curl  operator to the first equation of (1.1) we find that 

~u  
& +-V(ue - c u r l y )  = u . V v -  v . V u  in f~x(0, T), (1.5) 

V - v = 0  in f~ x (0, T), (1.6) 

u ( x , 0 )  = cur l (vo  - c~Avo) = Uo in  f~, 
(1.7) 

vlan = 0 Vte [0, T]. 

1 The main results of this paper still hold in two space dimensions (plane flow), and, in 
fact, their proofs are somewhat simpler. We also remark that for a = 0 the problem is 
well-known since, in this case, equations (1.l) reduce to the Navier-Stokes equations. 
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It is clear that for classical solutions problems (1.1), (1.2) and (1.4)-(1.7) are 
equivalent. In fact, if u is a solution of (1.4)-(1.7), then from relation (1.3) and the 
hypothesis on s it follows easily that there exists a function p such that (1.1) holds. 

The Schauder theorem is used in the following manner. In a suitable class of 
functions ~o, we introduce the map 

as the composition of the operator ~o ~-+ v, defined by 

euri(v - ~Av) = q~ in f~x(0, T), 

V . v = O  in f~ x (0, T), (1.8) 

v I~a = 0 

(where the time t is considered as a fixed parameter), with the operator v ~ u 
defined by 

0u v 
& + - ( u ~  - e u r l v ) = u ' V v - v ' V u  in f~x(0 ,  T), 

(1.9) 
u(.,0) = Uo in ~2. 

The existence of a solution to the problem (1.4)-(1.7) (and hence to (1.1), (1.2)) is 
guaranteed as soon as we are able to show that ~(q~) has a fixed point, which in 
turn will be achieved by making use of the Schauder theorem. 

The paper is organized as follows. In Section 2, we prove existence, uniqueness 
and a priori bounds for solutions to the linear auxiliary problems (1.8), (1.9). We 
also derive estimates of the solutions which hold for all times t > 0, provided the 
size ofuo is suitably restricted. The main results are stated and proved in Section 3. 
Taking advantage of the a priori estimates and standard compactness arguments, 
we apply the fixed-point theorem to show local existence in the time interval 
I-to,to + T ]  (to > 0), where T depends solely on an upper bound for the initial 
data U(to) in the appropriate norm. Successively, we use this result together with 
the global estimates of Section 2 and a standard "bootstrap" extension argument to 
prove global existence of classical solutions to the original problem for small data. 

2. Unique solvability of some auxiliary problems 

To begin with, we introduce some standard notations. By f] we denote a 
bounded domain of R 3. Throughout  the paper we assume that f] is simply- 
connected, so that any irrotational vector function in ~ is the gradient of some 
scalar function 2. 

2Actually, some of our intermediate results hold under more general assumptions on 
fl which, in particular, do not require simply-connectedness. However, such an assumption 
is crucial for Lemma 2.1, e.g., and our main Theorem 3.2 to be valid. 
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We follow the usual convention (cf, e.g., El0]) of defining wm'P(~)(Hm(f~), if 
p = 2) as the s tandard Sobolev space of order  m, with the usual no rm II Jim, p( II" tim) 
and scalar product  (',')m,, ((',')m). In H~ = Lz(f~) the norm is denoted by II " I[o, 
and for simplicity, the scalar product  by (','). The  space H m- 1/2 (~3f~) equipped with 
norm II " I[,,- 1/2, ~a is the trace space associated with H " ( ~ ) .  By Hm(f~) we denote the 
Sobolev space of the vector  fields v = (vl,vz,v3) such that  vi s Hm(f~), i = 1, 2, 3. 
In the sequel this convent ion will be applied to the other  function spaces and 
norms. Fo r  m > 0, we consider the Hilbert  spaces V,, = {v e H"( f~) :V-v  = 0}, 
X,, = {v ~ V,,: v .n = 0 on Of~}, where n denotes the unit outer  normal  vector. They 
are both  closed subspaces of Hm(f~); the norms in V~,X,, are also denoted  by II �9 lira. 
Moreover ,  for a Banach space Y with no rm ]l']lr and the given time interval 
I = (to, to + T), to > 0, T > 0, we recall the classical Banach spaces (1 < p < oo ) 

LP(I; Y) = {v measurable, v:t e I ~ v(t) e Y, S II v(t)II =~dt < oo } 
I 

and wm'P(I; Y), which is the space of functions such that  the distributional time 
derivatives of order  up to m are in LP(I; Y). For  p = oo, L~(I;  Y) is the Banach 
space of the (measurable) essentially bounded  functions defined on I with values in 
Y. We denote  by ]l" Ilk,,,,r the usual norm in Wk'~(I;Hm(f~)), for k > 0 .  In 
particular, for k = 0 we write II'[I 0,m, r = II']]m, r .  Finally, the space of functions of 
class C"  on I with values in Y is denoted by cm(I; Y). 

The purpose of this section is to study the unique solvability of certain auxiliary 
problems related to (1.4)-(1.7). We begin by considering the linear problem 

eurl(v - ~ A v )  = q~ in fir, 

V-v = 0  i n f e r ,  (2.1) 

vlon = 0 

for a known function q~, where f~r = f~ x I (the time t is a fixed parameter).  
We have 

Lemma 2.1. Let r ~ Wk'~176 Vm), k, rn > O. Then there exists a unique vector field 
qt ~ Wk' ~176 (I;Xm+ l ) such that 

curlqt = q~, (2.2) 

IIq~ I[k,.,+~.T < C H~ol[k,m,r (2.3) 

for a constant C = C(m,f~). 

Proof.  The existence of a unique vector potential  ~0 e X~ satisfying curl ~0 = q~ (for 
r ~ Vo) and the inequality [I ~b Irl =< C I[ q~ rio is proved, for instance, in [12]. The 
regularity result (2.3) for k = 0 follows easily from [8, Proposi t ion 1.4, page 41]. 
Finally, differentiating (2.2) k times with respect to t and using uniqueness, one 
easily sees that  O e Wk'~(I;X, ,+I)  and that  the estimate (2.3) holds for any 
k__>0. [ ]  
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Lemma 2.2. For any q~6Wk'~(I;V, , ) ,  k ,m >=O, there exists a unique v e  
Wk'~(1; V,,+3) satisfyin9 both (2.1) and the estimate 

IlvlJk, m+3, r < Cllq~[lk,,~,r. (2.4) 

Proof. By Lemma 2.1 we can write q~ = curl o for some ~ e W k' ~ (I;X,,+ 1)" Let us 
consider the following Stokes-like problem 

v -c~Av  + V ~  = ~  in f~r, 

V'v = 0 in f~r, (2.5) 

vlea = 0, 

where rc is a pressure term associated with the irrotational vector field v - ~ Av 
- 0. From known existence and uniqueness results I-4, 2] we find that the field 
v exists and satisfies the estimate 

I]vllk,.,+3,r < C [ l O I I k , ~ + l , r .  

From Lemma 2.1 it is clear that v satisfies (2.1) and inequality (2.4). It is also clear, 
in view of the assumption on f~ and of the uniqueness of problem (2.5), that v is 
uniquely determined. [] 

Our next goal is to show solvability and obtain appropriate a priori estimates 
for certain initial-value problems. To this end we need a preliminary lemma on 
inequalities involving norms in Hm(f~). 

Lemma 2.3. Let m > O. I f  v (3. X m +  2 and u 6 Hm(~)), then a 

I(v" Vu, u),,I < C1 IIv[l~+2[lu[l~. ( 2 . 6 )  

I f  v ~H"+3(f~) and u ~ Hm(~), then 

I[u'Vvll,, < C2 [IvH,.+3 IlUlIm. (2.7) 

I f v  ~H'~+2 (f~) and u E/-/m+ 1 (f2), then 

I[ v " V u  llm <--_ C311V [lm+ z ll u llm+ l . (2.8) 

Proof. Inequality (2.6) is proved as in [10]. Concerning (2.7), we notice that 

Ilu'Vvll,, < C l l v l l c - + l L l u l l , .  

and so, by the Sobolev embedding theorem [1], we deduce (2.7). Inequality (2.8) is 
proved in the same way. [] 

3Notice that if m = 0, the trilinear form (v. Vu, u) is identically zero. 
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We now consider the unique solvability of the initial-value problem 

~u v 
#-~+-(u~ - e u r l v ) = u - V v - v . V u  inl)T, 

(2.9) 
U(', to )  = U(to) in ~. 

Specifically, we have 

Lemma 2.4. Assume that vsL~(I;Xm+3),  m > 1, with Ilvll,.+3,T < M, and that 
U(to) ~ Hm(~). Then there exists a unique solution u to (2.9) such that 

u ~ L~176 W ~' ~ ( I ; H  m- ~(n)) 

d~t r n -  l ,  T 
IIUI[m,T + < C, (2.10) 

with C = C(f~,m,M, T,v,~, Ilu(to)14m). Moreover, if V'u(to) = 0, then V ' u  = 0 in 
~T. 

Proof. Let us derive an a priori estimate for the solution of problem (2.9). To this 
end, we apply the derivative operator D k (k is a multi-index) to both sides of (2.9)1, 
take the scalar product in L2(O) with Dku and sum over k, with 0 < Ikl < m. We 
thus obtain 

l d  v 
2dt [lul]Zm + V llullZ,, = -(eurlv, u)m + (u. Vv, u)m - (V. Vu, (2.11) 

By using the Schwarz and Cauchy inequalities along with Lemma 2.3, we find that 
2 I(eurlv, u),.I =<�89 + Ilull~), 

I(u" Vv, U)m I < II U" Vv Itm It u I1~ --< C2 II v lira+ 3 II u It 2, (2.12) 

I(v" Vu, u)ml <-_ Ca IlVllm+2 Ilull2m. 

Thus, collecting (2.11), (2.12) we conclude that 

l d  ~ v 
2dtl lul[2+ Ilult~ < ~llvll~m+l + (Ca  + C2) llVllm+3llullZ,,. (2.13) 

Integrating this inequality over I, with the help of Gronwall's lemma we find that 

][UHm ~ D1, (2.14) 

with D1 = D 1 (f~, m, M, T, v, a, II u (to)J] m). Moreover, from (2.9), with (2.14) and the 
estimates of Lemma 2.3, it also follows that 

du <-V(IlulIm-~,T + IlVJlm. T) 
Z m - l , T  = O~ 

+ C(llVllm+2, Tl[u]lm-l,T + I]vltm+I,TI[uL.,T) 
= D 2 (2.15) 

with D2 = D2(~, m, M, T, v, ~, I] U(to)lira)- 
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With estimates (2.14) and (2.15) in hand, we can show by using the Galerkin 
method [18] that there exists a solution to problem (2.9), satisfying the regularity 
properties stated in the lemma, for all T > 0. The uniqueness of the solution follows 
easily from Gronwall's lemma. 

Let us finally show that u is solenoidal in Dr, provided that U(to) has the same 
property. In fact, taking the divergence on both sides of (2.9)1 and using the general 
identity (1.3) we get 

~ t  + ~ = - V . ( v .  V u  - u. Vv) = - V . ( ~ v )  

with { = V.u.  
Now, from the equality 

v . ( ~ v )  = ( v . v ) ~  + ~ ( v -  v) 

it follows that 

e--;+ = - ( v . v ) ~ ,  ~ ( . , t o ) = 0 ,  

and we easily prove that the unique solution of this homogeneous transport 
equation is ~(t) = 0 for all t ~ I. The proof of the lemma is therefore com- 
pleted. [] 

The last result of this section 
problem (1.4)-(1.7) which for convenience we rewrite: 

concerns a priori estimates for solutions to 

in D• 

~U V 
+ ~ ( u  - c u r l y )  = u ' V v  - v ' V u  O--T 

c u r l ( v  - ~ A v )  = u 

V.v = 0  

vla~ = 0, t ~ [-0, T], 

u(x,O) = e u r l ( v o  - ~ A v o )  - U o .  

(2.16) 

In this analysis we often need a simple result on a differential inequality, which 
we prove here in the form of a lemma. 

Lemma 2.5. Let  y( t )  be a smooth positive function in [0, T]  satisfyin 9 the inequality 

y'(t) + (kl - kzyP(t))y(t) < F( t )  for all t c I-0, T], (2.17) 

where kl > O, kz ~ R, p > O and 

T 

F ( t ) a  < oo. 
0 



304 G .P .  GALDI 8r A. SEQUEIRA 

Moreover, let ~ > 0 be such that k~ - k2a p = k > O. I f  

T 

0 

then it follows that y(t)  < e for all t ~ [0, T ] ,  

Proof.  Assume for contradic t ion that  for some f we have 

y ( f ) = e  and y ( t ) < e  V t e [ O , f ) .  

Since k t - k2e p = k > O, we obta in  the inequali ty 

y'(t) + ky(t) < F( t )  Vt E [0, t ] ,  

which when integrated over  [0, f ]  gives 

f 

y( f )  < y(O) + S F(s)ds; 
0 

hence 
g 

y(f)  ___ y(0) + (5 < 5 + (5 < 

for (5 small enough. [ ]  

L e m m a  2.6. Assume that (v, u) is a solution to (2.16) and that Uo e Vm, m > 1, with 

u ~ L~176 (0, T ; H ' ( f ~ ) )  ~ W 1'* (0, T;Hm-l ( f~) ) ,  

vEL~(O,T;X ,n+3) .  

Then there exists (5 = (5 (f~, m, v, c~) > 0 such that if 

II Uo lira _-< (5, (2.18) 

then 

T 
2 [lUllm, T + S Ilu(s)ll~ds ~ (511juollL 

0 

where (51 and (52 depend only on ~, m, v, ~ and (5. 

du < 62, (2.19) 
" -~  m -  l , T  

Proof.  We replace u in (2.16)1 by curl(v - c~Av) and  use the identi ty (1.3) to obta in  

~tcurl(v -- c~Av) + V(eurl(v -- ~Av) -- curly) = eurl(curl(~ Av -- v ) x  v). (2.20) 

Setting ~ = curly and el iminating the curl on bo th  sides of  (2.20), we find that  
there exists a scalar field p such that  

0 
~ ( v  - c~Av) - vAv = (eAco - co) x v + Vp. (2.21) 



A Second-Grade Fluid 305 

Since V- v = 0, v [~n = 0, mult iplying (2.21) by v and integrat ing by par ts  over  f], we 
get 

~ ( I g [  2 -}-~x[Vl~[2)dx -]-- 2 v ~ ] V l p l 2 d x  = 0 .  
ga 

N o w  we set 

~o = min{1,~},  ~ = max{1 ,~}  

and  integrate  over  [0, t]  to ob ta in  

t 
C~ollvll~ + 2v~(IVvl  2 dx)(s)ds < ~l]lvo]l~ 

0 ~  
Vt~EO, T]. 

F r o m  the Poincar6 inequali ty (with cons tant  7) and with Vo = min  { v, vy } we obta in  

T 
C~o [[V[[2, T + VOS []r(s)][~ds < 2~1 11%1t2. 

o 

If  we take fi = 2cq/min { v o, C~o }, then this implies that  

T 
Itv[l~,r + ~ IIv(s)[]~ds </~llvo ]1~. (2.22) 

0 

N o w  let us prove  an energy est imate on u. Mult iplying (2.16)1 by u and integrat ing 
by par ts  over  f~, we easily find that  

l d  v v 
2dt~n lu]zdx +-~ ~n eurlv'udx + nSu'Vv'udx 

since it is clear that  ~nv'Vu'udx = 0. Using the Cauchy  inequality, the 
est imates of  L e m m a  2.3 for m = 0, and the est imate (2.4) of L e m m a  2.2 (with 
q~ = u), we get 

d v( 
d--t Ilull~ + 2vllutlgc~ <-- [Ivll~+ Ilullg) + 2Cllull 3 

O~ 

and thus the differential inequali ty 

d~ltullg+ -2CILu]lo Ilul/o z<-Ilvl[~,~ (2.23) 

which we can write in the fo rm 

y'(t) + ( V -  2cx~) )y ( t )  < F(t). (2.24) 

r ight -hand side of (2.24) is control led by the initial da ta  in the Since the 
sense that  

T 
S F(s)ds < a (from the est imate (2.22)) 
0 

for some a > O, then according to L e m m a  2.5, there exist a l ,  a2 > 0 such that  

Huo]lo < ~rl implies tha t  Ilu(t)llo < a2 V t e [ 0 ,  T ] .  
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Using this last estimate together with (2.22) in inequality (2.23) yields 

T 
2 Ifullo. T + ~ Ilu(s)ll~ds < 0-3 Iluo II~ (2.25) 

0 

for some 0-3 > 0. Now, let us write (2.11) for m = 1 as 

l d  v v 
2 dt II u II ~ + -~ It u II ~ = ~(eurlv,  u)l  + (u' Vv, u)t - (v. Vu,/g)l .  

Using the estimates (2.12) for m = 1, we get 

2dt llull d + v-Ilull~ < ~ (llvll~ + llull~) + 

and consequently 

(: ) v 
d~llull~ + -2C[Ivl l4  Ilull~ < -Ilvll~.e (2.26) 

Now, by (2.25) and Lemma 2.2, we find that 

T 

S II v(t)II 22 at <= 0-3 II u0 II ~. 
0 

Therefore, by Lemma 2.5, (2.25), (2.26), and by a reasoning similar to that which we 
used before, it readily follows that there exist constants 04, 0-5 > 0 such that, if 

Iluo 111 < 0-4, then 

T 

= k~ u(s)ll~ds < II u II 1, r + II = 0-5 II no II 
0 

with k > 0. Thus we conclude that the estimate (2.19)1 is valid for m = 1. We now 
prove the general case m > 2, by induction. Thus, assuming that (2.19)1 holds for m, 
let us show that it also holds for m + 1. By using the estimates (2.12) in (2.11) 
written for m + ! we deduce that 

d-~llull~+l+ -2CI lu l lm+,  Ilull2m+l_-<~ vl]~+2. 

In view of Lemma 2.5 and of the inductive assumption, it follows, for [I Uo lira+ 1 
sufficiently small, that 

T 

Ilutlim+,,r + j" Ilu(s)tI~+I ds < 0-6 Iluoll~+l. 
0 

Finally, we observe that the estimate (2.19)2 follows easily from (2.15), in view of 
(2.19)1. [] 

Remark. Concerning the two-dimensional case we must observe that the main 
results of the preceding lemmas remain essentially the same and are even stronger. 
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In fact, since the conditions determining the vector potential are more stringent 
than those defining the two-dimensional stream function, Lemmas 2.1 and 2.2 are 
still valid. On the other hand, in g 2 we rewrite problem (2.16) in the form 

Ou V(u 
& + ~  - c u r l y ) =  - v .  Vu } 

curl(v - c(Av) = u 

V.v = 0  

in f~ x (0, T), 

vl~n = 0 , t e  [0, T ]  

u(x,O) = curl(v 0 - ~Avo) - Uo, 

(2.27) 

where u is now a scalar function. This system is obtained from problem (t.1), (1.2) 
by taking the scalar curl on both sides of the main equation and using the 
two-dimensional result 

curl(curl(v - ~Av) x v) = v' Vcurl(v - c~Av). 

Following the proofs of the preceding lemmas we observe that the results 
remain valid in the two-dimensional case, in spite of the absence of the term u '  Vv 
on the right-hand side of the system (2.27)1. 

3. Global existence of classical solutions 

In this section we prove the existence of a unique global solution for 
problem (1.1), (1.2) (equivalent to problem (1.4)-(1.7)) when the initial data are 
small enough in the following way. First, by the Schauder fixed-point theorem, we 
prove the existence of a local solution in I - (to, to + T) for all to >_- 0 where 
T depends on an upper bound for H U(to)lira, but is otherwise independent of to. 
Then using the global a priori estimates of Lemma 2.6 we can show the existence of 
a solution to (1.4)-(1.7) for all t > 0. We begin by recalling the following well- 
known result. 

Theorem 3.1 (Schauder Fixed-Point Theorem). A compact mapping 4) of  a closed 
bounded convex set G in a Banach space Y into itself has a f ixed point. 

Take the Banach space 

Y = C ( I ; V m - 1 ) ,  r e > l ,  

and for D > 0 define 

G = {(p �9 Y: q~ �9 L~176 [I (P Hm, T < D, (p(x, to) = u(x, to) �9 Vm}. 

Consider now the map 
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defined in G as the composition of the operator to ~ v defined by 

carl(v --  ~Av)  = to in ~ T ,  

V ' v = O  i n ' T ,  

vl0a = 0 

(3.1) 

(where the time t is a parameter), with the operator v ~ u defined by 

0u v 
& + ~ ( u  - curly)  = u . V v  - v . V u  in ~'~T, 

(3.2) 
u(',to) = U(to) in ~. 

Notice that proving the existence of a solution to our original problem 
(1.4)-(1.7) is equivalent to showing that the map 

~b : G ~ Y - ~  Y 

admits a fixed point. 
First we prove 

Lemma 3.1. For all to and D the map �9 transforms the closed bounded convex set 
G into a relatively compact subset of Y. Moreover, for D sufficiently small, �9 is 
continuous in the topology of y.4 

Proof. The closedness of set G is obvious. In fact, every sequence ton (n = 1 , . . .  ) in 
G converging to to in Y has a subsequence to,, which converges weakly to a certain 
r in L~176 such that I[r T<liminfllto,k[lm, r.  Thus Iltollm, T =  
Ij0 Nm, r__< D. 

To prove the compactness property of W, let us denote by v. a sequence of 
solutions to problem (3.1), corresponding to the data to. e G, such that v. is 
uniformly bounded on I for the Hm+3(~)-norm (Lemma 2.2). Let u.  e G be the 
associated sequence of solutions to problem (3.2). Since 

un is bounded in L~(I;  Vm), 

dun 
dt 

is bounded in L~(I;  Vm-1), 

we have in particular that un is bounded in WI'Z(1;Vm-1), and by classical 
compactness arguments we conclude that u, ~ u in Y. 

To treat the continuity of �9 we still denote by u, u, ~ Y(n = 1 . . . .  ) the corres- 
ponding images of to, to, s G(n = 1 , . . . )  under the map ~b. Let us subtract the 

4The proof of continuity could be given without imposing restriction on D. However, 
this would be inessential for our purposes. 
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equations (1.9)1 written for u and u,, multiply the result by un - u and calculate the 
H m- l(f2)-inner product. Setting y(t) = 11 un - u lira- 1, after some easy calculations 
we get 

y'(t) + 2y(t) < C(1 + ]lullm-l,T + IlUllm, r ) I I q , . -  q, tl~, 

where 2 can be chosen positive for D sufficiently small. Then noticing that ]l u H,, is 
bounded (Lemma 2.4) we conclude that [I u, - u Ilr < C1 II ~o. - ~o lit, and thus the 
continuity of 0Ii is proved. [] 

We are now ready to prove 

Lemma 3.2 (Local Existence). Given arbitrary to > 0 and u(x, to) ~ Vm, m > 1, with 
]1U(to) lira < D, D sufficiently small, there exists T > 0 such that problem (1.4)-(1.7) 
has a unique solution in [to,to + T ]  with 

(u, r) ~ G • (C(I; Vm+e)~L*(I;Hm+3(f~))) ,  
(3.3) 

dr 
~ e L * ( I ; H m + 2 ( n ) ) .  

In particular, if  IlU(to)l[m < �89 then T can be chosen as 

K1, / 1 + K2 
T = -D-,n ~ ~9-+-~-2) > 0 (3.4) 

where the positive constants K I  and K2 depend only on f~, m, v and c~. 

Proof. We apply the Schauder fixed-point theorem. In view of Lemma 3.1, for 
existence and the proof of (3.3)1 we only need to prove that ~b maps G into itself. Let 
us take ~o e G( [] 9 I1,., r _-< D) and fix to > 0. From (2.13), proceeding as in the proof 
of Lemma 2.4 and using Gronwall's lemma, we get 

Nu[] am <= HU(to)llZ~e(G+C2)Mt+ 
vM 

C2) (e(C1 + C2)Mt 1), 
~(C1 + 

where M = CD (with C the constant in Lemma 2.2). Thus, if ]1 u(x, to)Jim < D, it 
follows that there exists T > 0 such that ~b(G) c G and that, in particular, for 
]1 u(x, to)lira < �89 we may take T as in (3.4). Condition (3.3)2 can be proved as in 
(2.15). Finally, the uniqueness of the solution follows from [5]. [] 

Using the global a priori estimates of Lemma 2.6, we can extend the local 
existence of the previous lemma to deduce our main result. 

Theorem 3.2 (Global Existence). Let  Uo~ Vm, m >_ 1. There exists eo = 
So (f2, m, v, ~) > 0 such that if 

II no I1~ ~ ~o, 
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then problem (1.4)-(1.7) has a unique solution for all t e [0, oo ) with 

v e C(O, T; Vm+2)c3L~176 T;Hm+3(f2)) 

dl~ 
~ L~176 (0, T;H~+2(fl)), 

for all T > O. Moreover, for m >-_ 2, 

d2v 
dt ~ e L~(O, T ;H "+ l(f~)). 

(3.5) 

(3.6) 

Thus in particular, for m = 4, v is a classical solution, i.e., 

v 6 C1(0, T; C3(f2)). 

Proof. We choose lluo LI,, < min{D,6} = e. By Lemma 3.2 we have existence on 
[0, T]. Moreover, by Lemma 2.6 (inequality (2.19)1) we have s 

I[u(Z)[/~ < Clluollm 

for C independent of I[Uo lira and T. Choosing Iluo lira < t i c  = to we get existence 
on IT, 2T]  and again by Lemma 2.6 we get 

Ilu(2Z)llm < Clluollm _-< to. 

Repeating this procedure we obtain the solution on [0, + oo) which satisfies 
properties (3.5). It remains to show (3.6). Differentiating (1.5) with respect to time t, 
we get 

02u v (c?u Or) a Vv) ~3 &--5- +-~ ~ - -  eur l~  = ~ ( u '  - ~ (v .Vu) .  

From Lemmas 2.6 and 2.2 we know that 

u ~ L ~176 (0, T;Hm(~)), 

Ou 
- ~ e  L~(O, T ; H ~ -  ~(fl)), 

v ~ L~176 y;Hm+3(a)), 

~v 
-~e  L~176 T;tt'n+ 2(fl)), 

SO that we have the estimates (cf Lemma 2.3) 

< + o o ,  ~u Ilvlt.,+l,r+ Ilull,.-z,r N m+l,T _--< C1 

v 'Vu)  < C 2  Ilull,.-1,r + Ilvllm, r < + o o .  
m - 2 ,  T m , T  m - l , T  

sit is clear that [[u(T)mm is finite, since u e C(O, T; Vm_I)~L~176 T;Hm(f~)). 
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Hence we find that 

~2 u 

8t 2 
- -  E L~ (0, T ; H " - z ( ~ ) ) ,  

and consequently from Lemma 2.2 we conclude (3.5). Now choosing m -- 4 we have 

~2 u ~2V 
&--T ~ L ~ (  0, T;H2(f~)) which implies that ~ -  ~ L~(O, T;HS(f~)). 

By a Sobolev embedding theorem we get 

v~ W2 '~176  C~(O,T;C3(f~)). [] 

Remark. The results of Theorem 3.2 can also be obtained by using the Leray- 
Schauder fixed-point theory, as shown in a previous version of this paper [11]. 
However, the proof  is more complicated than the one presented here. 
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