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Abstract. We present a general neural model for 
supervised learning of pattern categories which can 
resolve pattern classes separated by nonlinear, essen- 
tially arbitrary boundaries. The concept of a pattern 
class develops from storing in memory a limited 
number of class elements (prototypes). Associated with 
each prototype is a modifiable scalar weighting factor 
(2) which effectively defines the threshold for categori- 
zation of an input with the class of the given prototype. 
Learning involves (1) commitment of prototypes to 
memory and (2) adjustment of the various 2 factors to 
eliminate classification errors. In tests, the model ably 
defined classification boundaries that largely separated 
complicated pattern regions. We discuss the role which 
divisive inhibition might play in a possible implemen- 
tation of the model by a network of neurons. 

I. Introduction 

A common concern of neural models has been the 
problem of relating the function of complex systems of 
neurons to what is known of individual neurons and 
their interconnections. In this paper we discuss a neu- 
ral model that displays a form of learning manifested 
in human behavior: supervised learning of pattern 
categories. The terms pattern and event are used here 
synonymously to refer to a state of the environment 
that is characterized by a set of measurements. A 
category of patterns is a set of patterns in the same 
class. Their members may yield "roughly" the same 
value for some measurement (or collection of measure- 
ments) made on them (e.g. with reference to some 
feature set). However, one can imagine a category 
resulting from an association between a collection of 
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very unlike events and a particular system response 
(e.g., calling "a" and "A" by the sound of the first letter 
in the alphabet). In this case, the criterion defining the 
category is the association itself. 

There are several difficulties in the problem of 
pattern classification that we address here. A given 
pattern class appears in the primary sensory neurons 
in a vast variety of manifestations. Consider all of the 
recognizable distortions of the Arabic numeral "three". 
All of these must be classified as "three" and at the same 
time be distinguished from other classes (1, 2, 4, etc.) 
and all of their distortions. Therefore, the problem of 
classification involves a separation of "different" clas- 
ses as well as a grouping together of all distorted 
members of the same class. Our model is capable of 
making the separation as well as the grouping with a 
simple instruction procedure that seems at least rough- 
ly comparable to that employed in human learning. 

There is a growing body of research dealing with 
the general problem of learning in an adaptive system 
composed of neuron like elements. Early work in this 
field introduced the notion of correlation matrix me- 
mories, showing how it was possible for a system to 
learn associations between pairs of input and output 
vectors (x i, y~) (Kohonen, 1972). Category learning has 
frequently been viewed as learning an association 
between y~ and a set of noisy versions of x ~. Models for 
such concept formation have been proposed which 
make use of varying amounts of interaction with an 
external "teacher" (e.g., Amari, 1977 ; Grossberg, 1978 ; 
Barto et al., 1981; Bobrowski, 1982). Among the 
various approaches in such systems, learning rules 
incrementally adjust elements of some weight vector w 
whose inner product with the input x is an important 
contributing factor to the output of the system. 

In our approach pattern classification is accom- 
plished through prototype formation. Evidence from 
psychological experiments suggests that learning of 
pattern classes might involve abstraction of a pro- 
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Fig .  l .  Architecture of the model. Shown are coding neurons (F), 
prototype cells (G), classification cells (H), mapping (A) from F to G, 
mapping (B) from G to H, and the external instructor (T). Arrows 
mark information flow 

totype to represent a category of stimuli (e.g., Posner 
and Keele, 1968, 1970; Franks and Bransford, 1971). 
Some knowledge of class variance must also be learned. 
A closely related argument holds that categories 
are learned by retaining in memory examples of each 
class (e.g., Brooks, 1978 ; Medin and Schaffer, 1978). In 
pattern recognition theory, the technique of nearest 
neighbor classification is effectively an exemplar learn- 
ing scheme (Cover and Hart, 1967; Duda and Hart, 
1973). The focus of algorithms for such training has 
been to find and store the example set of minimal size 
which can guarantee performance within some accept- 
able error rate. 

Here no distinction is made between the single 
(prototype) and multiple exemplar theory. Any class 
member stored in memory will be referred to as a 
prototype for that class. We will discuss learning in a 
system of neurons and, in particular, a model for 
prototype formation and development in a class of 
distributed memory neural networks. 

II. Overview 

In the architecture we consider, afferents from coding 
neurons, F, project onto prototype cells, G, which in 
turn synapse with classification neurons, H (see Fig. 1). 
Each class of events will be represented by the activity 
of a unique H neuron. An input event is coded by a 
vector of firing rates (f) in the F bank. If it causes 
activity in an H cell, it is classified as belonging to the 
category associated with that cell. 

We define four possible network responses to an 
input pattern. Let f(c) represent an incoming pattern 
belonging to the c th class of events, and let h be the 
vector of output firing rates of the H neurons. Further, 
let h x be defined as a vector with components 

(hX)j = (}x j" (1) 

Table 1. Classification of system responses for various values of 
and Q as defined by (2) 

Classification c( Q h 

Correct 
Unidentified 
Incorrect 

Confusion 

1 0 h ~ 
0 0 0 
0 1 hr, r4=c 

Q 
0 >2 ~ h r 

r~c  
Q 

1 >1 h C + ~ h  r 
r * c  

The response h can be written, in general, as 
(2 

h=~h  ~+ ~ h  ~. (2) 
r ~ c  

If c~=l and Q=0,  then the system has correctly 
classified the input pattern. A response characterized 
by c~ = 1 and Q > 1, or ~--0 and Q > 2, we refer to as 
confusion, since the system is unable to decide upon 
any of several pattern classifications. The case where 

= 0 and Q = 1 is an outright incorrect response. When 
c~ = 0 and Q = 0, no categorization has been made and 
the pattern is unidentified. Table 1 summarizes the 
responses. 

The synaptic connections between G and F are 
represented in the mapping A. In our learning models, 
a prototype for a class is "imprinted" on the synapses 
between a G cell and the F set, thus becoming the most 
effective stimulus for that cell. For  any given class, 
there may be more than one prototype; each will 
correspond to a different G i. The mapping B, between 
cell groups G and H, develops so that the subset of G 
cells which can cause a given H cell to fire consists of 
prototypes representing the same class. A sufficient 
stimulus for an H cell to fire will be supraliminal 
activity in any member of its corresponding G cell 
subset. 

The H set of neurons (and indirectly, G) has an 
additional source of input, that diagrammed by the 
block T in Fig. 1. Through T, an external supervisor 
can correct the network classification responses. The 
specific form of the mapping B, along with some 
aspects of A, will develop as a result of interaction with 
input patterns and with T. Essentially, T can cause the 
commitment of a G cell to a prototype and the 
strengthening of the association between this G cell 
and the proper classification cell. We assume synaptic 
modification as the vehicle for these network changes. 
One can imagine a variety of ways in which synaptic 
changes can result in cell coupling between the G and 
H sets. For  example, simple Hebbian modification can 
produce the desired association if the particular H cell 
was receiving concurrent stimulation from T. The only 
requirement of this procedure is that cell commitment 



never involve a previously committed cell. For sim- 
plicity, we further assume that 

(1) cell commitment is rapid (i.e., occurring within 
the duration of event presentation) 

(2) only one cell is committed to any one 
prototype. 

In the mapping A, an element Aij represents the 
logical synapse between G~ and F j; i.e., it summarizes 
the total effectiveness of neuron Fj in firing G~. In 
accordance with a distributed memory model studied 
by Anderson and by Cooper, among others (e.g., 
Anderson, 1970, 1972; Kohonen, 1972, 1977; Cooper, 
1973 ; Nass and Cooper, 1975 ; Anderson and Cooper, 
1978), we take the firing rate of Gi (call it gi) to be a 
weighted sum of the firing rates of the F neurons (f)), 
gated by some threshold function 

where 

O(x) =0  if x<O 

= x - b  if x>O.  (4) 

Given a prototype P(c) representing a class c of inputs, 
the equality 

Aij=Pj(c),  al l j  (5) 

establishes a correspondence between the i th G cell and 
a particular class of patterns c. The synapse vector of 
G i takes on the value of the prototype. 

Each prototype ceil has a "region of influence" in 
the input space of events. It is defined as the set of 
input patterns that satisfies the threshold condition for 
cell firing. For convenience, assume input events to be 
normalized (f. f =  1). The region of influence defined by 
cell G~ with threshold 0 is the intersection of the surface 
of a unit hypersphere with a cone of angular width 7, 

= cos- 10, (6) 

where 7 is the angle between P(c) and an input f at 
threshold. 

A class of patterns defines a region or set of regions 
in the pattern space of input events. Class regions 
corresponding to different pattern categories are as- 
sumed to be strictly disjoint. A priori, we choose not to 
restrict the complexity that the shape of class bound- 
aries may display. To identify the class of an input 
event, the neural network must characterize and learn 
the arrangement of class regions. Our model develops 
by itself a set of prototypes whose influence regions 
map out the areas belonging to different categories in 
the pattern space without prior information of what 
these areas are. One approach to such prototype 
organization will be discussed. Several others, differing 
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in their methods of cell modification and in their 
assumptions about interaction between G cells, or 
equivalently, between prototypes stored in memory 
will be discussed elsewhere. 

III. Prototype Formation and Development 

For the present, we continue the assumption of nor- 
malized input patterns (f. f =  1). Each committed pro- 
totype cell has a synapse vector of the form (for the i th 

cell), 

Ai=2ip i , (7) 

where p~ is a normalized (pi.pi= 1) prototype vector 
and 2i> 1. The vector pi corresponds to some pre- 
viously seen input pattern whose presentation failed to 
excite the H cell of the appropriate class. Modification 
to prototype cell synapses is governed by the following 
conditions. 

1. New Classification 

If f(c) is presented and 

hhC=O (8) 

i.e., the H cell for the c th class does not fire, then a new 
G cell (call it Gk) is committed to f(c) and the synapse 
between G k and H c is assigned strength 1. The synapses 
of G k with F are modified according to 

Akj -* Pkj=)~ofj, (9) 

where )~o > 1. 

2. Confusion 

If presentation of f(c) causes firing rate activity in some 
H~ where w # c, then this results in a signal from the T 
channel to reduce the )o factors of each currently active 
G cell associated with H~. The quantity 2 is diminished 
until the response of the cell to f(c) lies at threshold. If 
G r is such a unit, then 

Ar  - '~  r 

such that 

2;p ". f(c) = 1. (10) 

For convenience, we have taken 0 = 1. 
These two rules for prototype acquisition and 

modification will enable the network to learn the 
geography of the pattern classes. 

In an untrained network, all G cells are uncom- 
mitted. The strengths of the synapses between G and H 
are all zero or some arbitrarily small number. When a 
pattern f(c) is presented to this system, no H cell 
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responds above threshold. Information from the T 
element enters the system, identifying the correct class 
of the input. A single G cell is committed to f(c) as a 
prototype for that class and, simultaneously, the syn- 
apse between this G cell and H C is set equal to 1. Since 
this input represents the first example of any pattern 
class, we can let c = 1. If the same pattern were to be 
presented again to the system, the response of the G 
cell would be 

2oP1(C)-f(c) =)~o > 1. (11) 

The output signal, 20, from this G cell would cause H c 

to fire. 
Suppose a second pattern f2(c') is presented to the 

system. Assume c'=c.  If 

20pl (c )  ' f2(C) > 1 (12) 

then H c will fire and the pattern will be correctly 
classified. Thus no change occurs. If 

2o pl(c), f2(c) < 1 (13) 

then f2(c) will be committed to a new G cell [-prototype 
p2(c)] and the synapse between this G cell and H c will 
be set equal to 1. In this way, a class can be character- 
ized by more than one prototype. 

Consider the situation in which c':# c. Whether or 
not the existing prototype cell fires past threshold, 
there will be no active H cells of the class of f2. The 
subsequent T signal causes a new prototype cell to be 
committed to f2, along with the setting of the synaptic 
connection between this G cell and a new H cell. If, in 
addition, 

20 pl (c)" f2(c') > 1 (14) 

then 4 o is reduced to 21 such that 

~q pl(c), f2(c')= 1. (15) 

As the system learns, the 2 factors associated with any 
active incorrect class prototypes will be reduced, leav- 
ing only the correct H cell to respond to the pattern. 

The strategy of this network learning scheme is 
made clearer by considering the problem geometri- 
cally. The size of the influence region of a prototype 
cell is directly proportional to the magnitude, 2, of the 
prototype. Class territories in the space of events are 
defined by covering them with the overlapping in- 
fluence fields of a set of prototypes drawn from class 
samples. Should the influence region of a given pro- 
totype extend into the territory of some differing class 
to the point of incorrectly classifying or confusing a 
member of that class, the 2 factor of the prototype is 
reduced until its region of influence just excludes the 
disputed pattern. Prototype modification only de- 
creases 2 factors. Influence fields of existing prototype 

cells are never enlarged in an effort to include (classify) 
an event, since for many of these elements, even slightly 
larger regions of influence have previously resulted in 
incorrect identifications. Consequently, a pattern that 
is excluded from the influence regions of all existing 
prototypes for its class is an occasion for commitment 
of a new G cell, with the pattern assuming the role of 
the new prototype. 

Note that the prototype ceils in memory are com- 
pletely decoupled in that there are no mutual in- 
hibitory or excitatory interactions among them. In the 
network's classification response, there is no vote 
counting among prototypes. The activity of a single 
prototype cell counts as heavily as the possibly con- 
certed activity of a set of prototype cells, all specific to 
some other class. 

This model was tested in computer simulations 
using a design set of input patterns. The patterns were 
vectors randomly generated in a normalized three 
dimensional pattern space. Samples were constrained 
to lie on the top half of a unit sphere (z>0) and 
represented two classes of patterns labelled A and B. In 
one arrangement the A region was chosen as a spheri- 
cal cap centered on the z axis and ringed by the B 
region, a surrounding band on the sphere's surface. 
The projection of this design is a pair of concentric 
circles on the x - y  plane. A second geometry pictured 
the A and B regions as separated by a sinusoidal 
boundary on the sphere's surface. 

Patterns arrived in cycles (trials). A trial consisted 
in presentation of 200 novel A vectors and 200 novel B 
vectors, randomly distributed with respect to class. 
After some number of trials, the distribution of pro- 
totypes was graphed together with the effective 
boundaries between the A and B classes. In this space 
these boundaries are paths along a spherical surface. 
They are displayed by graphing projections on the x -  y 
plane. 

The graphs in Figs. 2-4 illustrate the performance 
of the model in resolving class boundaries for the two 
different geometries. In Fig. 2, the class regions were 
separated by a gap, i.e., an area of pattern space 
containing no input patterns. When the angular width 
of this gap is less than (20)-1, there can develop 
prototypes for each class which have influence regions 
extending right up to the boundary with the other 
class. Consequently the gap is claimed for both pattern 
categories. Should a pattern from this region be selected 
as an input, its contested status (response confusion 
by the model) would cause the influence region of one 
or the other class to withdraw from a portion of the 
gap. 

Note that in practice, the model need not develop a 
single decision surface separating pattern classes. In 
Figs. 3 and 4, there is no gap between the hypothetical 
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Fig. 2. Prototype regions for the concentric cone geometry with a 
gap. Region A: shaded area within innermost (first) dotted circle. 
Region B: shaded annulus defined by second and third dotted 
circles. Projections of prototype vectors on sphere's surface are 
plotted as crosses (A) and squares (B). Pictured are graphs of 
prototype boundaries (solid lines) as they appear after the first and 
fourth trials. Total numbers of prototypes are given below each 
graph 

category regions�9 A single border separates them, yet 
in the model, this border is approximated by a double 
line. If either the prototype or the classification cells 
were coupled by some mutual interaction (e.g., in- 
hibition), this double border could, in places, be re- 
placed by a single boundary. The nature of such a line 
would be a function of the specific form of the in- 
teraction. Excepting such coupling, it is only in the 
limit of studying a very large number of design samples 
that the double line category borders could be ex- 
pected to merge into a single curve lying along the 
actual class boundary. The response to any input 
located in an area where the double lines extend 
beyond each other will be confusion. Patterns falling in 
regions from which both prototype generated bound- 
aries have retreated will be identified with neither 
pattern class. 

In the case of prototypes committed to inputs near 
a class border, the initially large influence regions can 
result in many incorrect or confused responses until 
the magnitude of the prototype is appropriately scaled. 
This creates a somewhat unstable learning process 
which does not converge smoothly to the final pattern 
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Fig. 3. Prototype regions for concentric cone geometry with no gap. 
Region A : shaded area within innermost (first) dotted circle. Region 
B: shaded annulus bounded by first ans second dotted circles. 
Prototype boundaries (solid lines) pictured after 10 trials 
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Fig. 4. Prototype regions for sinusoidally separated pattern zones. 
Region A: bottom scalloped semicircle (shaded area within dotted 
lines). Region B: upper scalloped semicircle (shaded area within 
dotted lines). Prototype boundaries (solid lines) pictured after 50 
trials 

region mapping 1. Nonetheless, it is clear that this 
model can resolve pattern classes of arbitrary 
complexity. 

IV. Possible Neural Realization 

It is likely that category learning is conducted in 
different areas of the brain by a variety of.cell assem- 
blies. Indeed, one can imagine a number of specific 
networks of neurons that could implement the impor- 
tant features of our model, We consider a possible 

1 There are a variety of means of improving this. For example, the 
magnitude of the initial 2 o may decrease in time so that prototypes 
committed late in the process leave smaller initial regions of 
influence. Alternatively, each new prototype may be automatically 
tested against each existing prototype (treated as an incoming 
pattern) 
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neural substrate whose function could relate to one 
aspect of prototype development in the model. 

It has been calculated that under certain con- 
ditions, activity in inhibitory fibers whose synapses are 
located on or near the cell body can have a divisive 
effect on the somatic membrane potential (Blomfield, 
1974). Inhibitory current across these synapses is pos- 
tulated to increase membrane conductance, thus 
shunting off a fraction of the summed post-synaptic 
potential arriving at the cell from its dendrites. The 
result is to scale the cell output by some multiplicative 
factor. Inhibitory synapses occurring amidst the excit- 
atory ones further out along the dendritic spines and 
shafts would have their normal subtractive effect on 
cell firing rate. Divisive or shunting inhibition has also 
been considered elsewhere (Poggio, 1981 ; Kogh et al., 
1982). 

Cells have been found in different areas of the 
brain with significant numbers of synapses on or near 
the perikaryon that are predominantly characterized 
by flat vesicles and/or symmetric membrane differen- 
tiation (e.g., Davis et al., 1979 ; White et al., 1980). Such 
morphology is widely considered to be indicative of 
inhibitory function. By contrast, synapses located on 
the dendritic shafts and spines of such cells are both 
excitatory and inhibitory. This anatomy is consistent 
with that assumed for divisive inhibition. Indeed, other 
investigators have observed scaling of cell response as 
a function of inhibitory transmitter released into the 
soma (Rose, 1977) and under certain conditions of 
visual stimulus presentation (Dean et al., 1980). 

Divisive inhibition is a candidate mechanism for 
implementing the 2 factor scaling of prototype cell 
response assumed in the prototype learning model. 
There its principal effect is to provide for a modifiable 
cell threshold. The distinction which the model makes 
between prototype commitment and changes in 2 is in 
the same spirit as the functional distinction which 
Blomfield's model suggests for synapses. The initial 
commitment of a prototype might involve changes in 
the spiny synapses and those in general distal to the 
soma. Such modification could occur according to any 
of a number of schemes previously suggested (e.g., 
correlation learning). Cell tuning, on the other hand, 
would be controlled largely by adjustments to in- 
hibitory synapses proximal to the soma. Long term 
changes in somatic membrane conductance might even 
result from very different inhibitory effects (e.g., chemi- 
cal deposition within the cell body due to active 
inhibitory afferents). 

The processes of modification to sites distal and 
proximal to the soma might be mutually interactive in 
a number of ways. For example, one can imagine the 
somatic membrane conductance of a cell increased to 
such a point that the cell rarely fires. (In the model, 

such was the case for a cell committed to a prototype 
near a class boundary). Lack of post-synaptic response 
in conjunction with pre-synaptic activity might cause, 
as some have suggested (Cooper et al., 1979), the distal 
synapses of such a cell to lose the information of the 
stored prototype. This could free the cell to become 
committed to a new preferred pattern. At the same time, 
distal modification could be an ongoing process which 
performs some type of averaging over those inputs able 
to cause cell firing (the Hebbian requirement). If the 
environment presented a sequence of smoothly varying 
events of sufficient duration, the distal modification 
might cause the cell to "follow" the inputs. In this way, 
the preferred pattern of the cell could change with only 
a minimum of change in the degree of cell tuning. 

V. Conclusion 

Category learning plays an important role in a broad 
range of mental activity, from learning sequences of 
task oriented sensori-motor controls to very complex 
problems in conceptualization. As such it is probably 
implemented in different ways by different cell assem- 
blies throughout the brain. A successful model for 
category learning should be consistent with the general 
features of this host of sub-networks and with their per- 
haps locally unique architectures. We have presented 
one such model with properties thought to be charac- 
teristic of the neural system as a whole. Among these 
are: coding of information by neuron firing rates, syn- 
aptic transmission of information from cell to cell, 
excitatory and inhibitory interactions among cells, 
distributed memory stored over the entire set of syn- 
aptic junctions and initially unspecified cell inter- 
connections that are modified by the history of the 
system's experiences. This model suggests that it is 
possible to construct plausible neuron networks that 
incorporate these features and that can display a 
powerful ability to learn to identify and distinguish 
categories of events. In a separate publication we will 
report on the application of this and a related model 
to a practical problem in categorization (Reilly et al., 
1982). The model learning systems were trained to 
classify examples of unconstrained handwritten numer- 
als. By detecting only very simple information about 
patterns, the system achieved a high degree of accuracy 
(approximately 98%) in tests against patterns not 
viewed during training. 
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