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Review 

Potential applications of viable, immobilized 
fungal cell systems* 

F. Federici 

Immobilized cell technology attracts considerable attention because of the many advantages it offers over 
conventional suspended-cell fermentations. Important advances continue to be made in the potential use of 
immobilized cells as biocatalysts. This review is mainly devoted to the analysis of recent literature on the 
applications of immobilized fungal cell systems, ranging from the production or transformation of useful compounds 
(e.g. organic acids, enzymes, antibiotics, steroids, etc.) to wastewater treatment. The problems and future industrial 
applications are also discussed. 
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Cell immobilization, one possible method for enzyme and multi-step enzyme reactions can take place); and (3) 
immobilization, can be used to overcome the problems and viable and growing (all cellular physiological functions are 
limitations (co-factor regeneration and arrangement of maintained). In this review, which is devoted to the potential 
enzyme molecules in ordered clusters) frequently connected applications of immobilized fungal cell systems, only the 
with direct enzyme immobilization. latter two categories will be considered. 

Among various definitions of the ‘immobilized cell’ 
concept, the most correct appears to be that proposed by 
Abbott (1977), in which immobilization is taken as a physical 
confinement or localization of microorganisms that permits 
their economic re-use. This definition is sufficiently broad 
to extend the concept beyond the basic techniques of 
adsorption and entrapment, to include film-reactor systems 
in which immobilization is the result of natural adhesion and 
film growth. It says nothing, however, about the 
physiological state in which the cells are maintained within 
the carrier or on the carrier surface. It is, however, of great 
importance to know the level of cell viability so that the 
optimum carrier and method of immobilization can be 
selected and all the possibilities that immobilized-cell 
technology offers in the field of industrial fermentation can 
be determined. 

Advantages and Disadvantages of 
Immobilized Viable Cells 

Immobilized living cell systems offers several advantages 
over conventional suspended-cell cultures: 

(1) 

(2) 

(3) 

when immobilized cells are kept in a growing state 
within or on the surface of inert matrices by a 
continuous supply of suitable nutrients their 
biological functions are completely maintained. These 
cells can be seen as renewable or self-proliferating 
biocatalysts located in a defined space and protected 
against unfavourable environmental parameters out- 
side their functional area. 

Mosbach (1983) described three different levels of 
viability, based on the biocatalytic capabilities of the 
immobilized cells: (I) non-viable (giving single enzyme 
activities); (2) viable but resting (co-factors are not limiting 

the physico-chemical interactions which take place 
between carriers and cells often give rise to increased 
stability of the entrapped cells which may, in turn, 
lead to increased cell productivity (Baklashova et al. 
1984; Kopp & Rehm 1984; Li et al. 1984; Federici ef 
al. 1987, 1990). 
the capacity for re-use of immobilized cells, in a 
resting or growing state, makes repeated or 
continuous operations possible in various types of 
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reactors. In fact, the density of immobilized cells in 
or on their carriers is higher than that of freely 
suspended cells, indicating that faster reaction rates 
should be achieved using the immobilized cells. 
wash-out of the cells can be avoided, even at high 
dilution rates, and the immobilized cells can be easily 
separated from the reaction system, making the 
separation of product from biomass easier. The latter 
is of great importance from an industrial point of 
view. 

There are, however, also several disadvantages in the use 
of immobilized living cells: 

(I) yields of products may be lowered by the 
cons~ption of substrates as carbon and energy 
sources for the maintenance of cell viability or 
multiplication. However, cell growth can sometimes 
be restricted, by limitation of specific nutrients, while 
preserving the desired catalytic activities. 

(2) unwanted side-reactions can occur because various 
metabolic systems, in addition to the desired ones, 
are found in living cells. 

(3) in the case of immobilized growing cells, products 
may be contaminated by cells leaking from the 
carriers. Too much growth within the carrier can 
cause breakage of the carrier itself, although this does 
not seem to be a real problem when using filamentous 
fungi because their growth takes place mostly on or 
immediately below the carrier surface (Baklashova et 
al. 1984; Eikmeyer ef al. 1984; Kopp & Rehm 1984; 
Horitsu et al. 1985; Petruccioli ef al. 1987; Federici et 

al. 1991). 

Selection of Carrier and Immobilization 
Method 

The selection of a suitable carrier and immobilization 
method is of great importance if high performance is to be 

achieved in immobilized cell systems. It is clear that a direct 
relationship exists between the efficiency of a reaction and 
the physico-chemical features of a carrier. However, it is still 
difficult to find the optimal carrier for a given reaction except 
by trial and error (Tanaka & Nakajima 1990). 

Almost all the methods employed for the immobilization 
of enzymes can be utilized for the immobilization of whole 
cells, although, generally, more care must be taken with the 
cells to prevent inactivation of the required metabolic 
activity. Of the various methods currently available, 
adsorption and entrapment appear to be the most 
extensively used techniques for filamentous fungi (Anderson 
1983; Powell 1990; Tanaka & Nakajima 1990). However, 
the mildest method of immobilizing fungal mycelia is 
probably by natural adhesion and subsequent surface 
growth, as occurs in rotating disc fermenters (Anderson & 
Blain 1980; Anderson et al. 1981; Ju & Wang 1984, 1986). 

Application of Immobilized Fungal Cell 
Systems 

Most studies on cell immobilization have used bacteria and 
yeasts. However, use of filamentous fungi has recently 
increased because these fungi can produce (or transform) 
many compo~ds of commercial interest, including organic 
acids, enzymes, antibiotics and steroids. 

Organic Acids 
Organic acids, including citric, itaconic and lactic acids, are 
largely used in the food, chemical and pha~aceutical 
industries. They can be synthesized from carbohydrates by 
immobilized, growing fungal cells (Table 1). 

Production of citric acid from sucrose by growing cells 
of Aspergilh njger immobilized on various carriers has been 
extensively studied (Vajia et al. 1982; Eikmeyer ef al. 1984; 
Horitsu et al. 1985; Tsay & To 1987; Lee et al. 1989; 
Vassilev & Vassileva 1990; Roukas 1991). Vajia et al. (1982) 
used an air-lift completely-stirred tank reactor to study the 

Table 1. Production of organic acids by lmmobiilz~ growlng fungal cells. 

Organic acid Organism 

Citric acid Aspergillus niger 

itaconic acid Aspergillus terreus 

Lactic acid Rhizopus oryzae 
Gluconic acid Aspergillus niger 
Fumaric acid Rbjzopus arrbizus 

Support material 

Ca-alginate 
x-Carrageenan 
Poiyacrylamide 
Polyurethane 
Poiyacrylamide 
Ca-alginate 
Polyurethane 
Ca-alginate 
Glass 
Polyurethane 
Ca-alginate 

Reference 

Vajiaetal.(1982);Tsay&To(1987); Roukas(1991) 
Eikmeyer et a/. (1984) 
Horitsu et a/. (1985) 
Lee et a/. (1969); Vassilev & Vassileva (1990) 
Horitsu et at. (1983) 
Kautola et al. (1985) 
Kautola et al. (1989); Vassilev et a/. (1992) 
Hang et al. (1989) 
Heinrich 8 Rehm (1982) 
Kautola B Linko (1989); 
Petruccioli et al. (1992) 



continuous production of citric acid by Ca-alginate 
entrapped cells of A. niger and obtained a maximum 
production rate of 70 mg/g mycelium.h, with an overall 
efficiency of 40%. Greater efficiencies (45 to 48%) were 
obtained by Roukas (1991) with the same organism but in 
a repeated-batch process. It is interesting that, according to 
Roukas (199x), a shake-culture would be a better 
fermentation system than a bioreactor for citric acid 
production. Very high production rates (about 96 mg/h per 
80 g gels) were obtained by Horitsu et al. (1985) after 8 
days of continuous cultivation of polyacrylamide-entrapped 
growing cells of A. niger in a two-stage bioreactor; the 
half-life of the immobilized cell system was approximately 
96 days. 

in repeated-batch processes and in a fluidized-bed reactor 
operated either semi-continuously or continuously. The 
volumetric productivity increased from 6.2 U/l.h for the free 
cells to 21.3, 53.3 and 71.0 U/l.h for the immobilized cells 
in shake-culture and in the fluidized-bed reactor operated 
semi-continuously and continuously, respectively. 

High levels of glucoamylase and cl-amylase activity were 
obtained, in shake-culture in repeated-batch processes, by Li 
et al. (1984) and Linko et al. (1988) with Ca-alginate 
immobilized cells of A. niger. 

Itaconic acid can be easily synthesized using immobilized 
cells of Aspergilhts terretls. Kautola et al. (1985, 1989, 1990, 
1991) studied the production of this acid by A. ferreus 
immobilized on various supports, including Ca-alginate, 
agar, polyurethane foam, nylon and celite, with xylose and 
sucrose as carbon sources. The highest productivity (0.33 g 
itaconic acid1day.g of carrier) was obtained on glucose in a 
packed-bed bioreactor which was continuously operated for 
4.5 months (Vassilev et al. 1992). The remarkable stability 
of the biocatalytic activity of this immobilized fungal cell 
system indicates considerable potential for transfer to 
commercial production. 

Of great interest are the results of studies on the 
production of cellulase by growing cells of Trichoderma reesei 
immobilized on various supports (Frein ef al. 1982; Taniguki 
ef al. 1983; Kumakura et al. 1984a,b). The industrial 
conversion of cellulose into mono- and oligo-saccharides 
and, eventually, into microbial biomass, through enzymatic 
hydrolysis, is mainly limited by economic problems, 
particularly the cost of cellulase. This cost could be reduced 
by the use of immobilized cellulolytic cell systems. Frein et 
al. (1982), for instance, obtained relatively high volumetric 
productivities (26 U filter paper activity/l.h, 600 U 
carboxy-methylcellulase/l.h and 9 U /?-glucosidase/l.h) in a 
continuously-operated column bioreactor with growing cells 
of T. reesei immobilized in a 4% K-carrageenan gel. 

Producfion of Enzymes 
The large majority of enzymes currently utilized in food 
and other technological processes are produced aerobically 
by fermentation of free cells in submerged cultures. 
However, the production of some, mainly carbohydrate- 
hydrolysing and proteolytic enzymes, has been studied 
using immobilized growing fungal cells (Table 2). 

In spite of their considerable commercial interest, 
relatively little work has been carried out on the use of 
immobilized fungal cell systems for the production of acid 
and alkaline proteases. Aleksieva et al. (1991) recently 
immobilized the mycelium of Humicola lufea in poly-2- 
hydroxyethyl-methacrylate for the production of acid 
proteinases in repeated-batch processes and obtained a 
volumetric productivity of 70 U proteinase1l.h. 

Production of Antibiotics 
Federici et al. (1987, 1990) and Gallo Federici et al. (1990) Presently, the production of antibiotics by fermentation is 

investigated the production of glucoamylase by Ca-alginate almost exclusively based on batch processes in which the 
immobilized cells of Aureobasidium pullulans in shake-culture cells are induced to produce the desired antibiotic after 

Application of immobilized fungi 

Table 2. Production of enzymes by immobilized growing fungal cells. 

Enzyme 

Glucoamylase 

Glucoamylase, a-amylase 
Cellulase 

Acid protease 
Alkaline protease 
Pectinase 
Lignin peroxidase 

Organism 

Aureobasidium pullulans 

Aspergillus phoenicus 
Aspergillus niger 
Penicillium funiculosum 
Talaromyces emersonii 
Trichoderma reesei 

Humicola lutea 
Conidiobolus sp. 
Aspergillus a wamori 
Phanerochaete chrysosporium 

Support material 

Ca-alginate 

Ca-alginate 
Ca-alginate 
Polyurethane 
Ca-alginate 
ti-Carrageenan 
Poly (2-hydroxyethylmethacrylate) 
Nylon 
Poly (2-hydroxyethylmethacrylate) 
Various 
Not specified 
Nylon 
Glass (Rashing) 

Reference 

Federici et a/. (1987, 1990); 
Gallo Federici et al. (1990) 
Kuek (1991) 
Li eta/. (1984); Linko eta/. (1988) 
Linko et a/. (1988) 
McHale (1988) 
Frein et a/. (1982) 
Kumakara et al. (1984a, b) 
Taniguki et al. (1983) 
Aleksieva et al. (1991) 
Star et al. (1988) 
Blieva 8 Belkhodjaeva (1990) 
Linko (1988); Linko et al. (1988) 
Jlger & Wandrey (1990) 
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Table 3. Production of antibiotics by immobiiized growing fungai ceils. 

Antibiotic Organism 

Penicillin G Penicillium chrysogenum 

‘%-Penicillin G Penicillium chrysogenum 
Patulin Penicillium urticae 
Cyclosporin A Tolypocladium inflatum 
6-APA Pleurotus ostreatus 

Support material 

K-Carrageenan 

Ca-alginate 
Celite 
Ca-alginate 
K-Carrageenan 
K-Carrageenan 
Chitosan 

Reference 

Deo et al. (1963, 1964); 
Jones et al. (1966) 
El-Sayed & Rehm (1967) 
Keshavarz et a/. (1990); Lilly et a/. (1990) 
Kurzatkowski et al. (1984) 
Jones et al. (1983); Deo 8 Gaucher (1985) 
Foster et al. (1983) 
Kluge et al. (1982) 

exponential growth has stopped. Continuous production 
processes are very difficult when organisms forming 
mycelia, such as actinomycetes and filamentous fungi, are 
employed. Several studies, however, have shown the 
feasibility of continuous production processes by using 
immobilized living cells that guarantee higher cell densities 
within the bioreactors and an easier control of the process 
operations (Deo et al. 1983; Foster et al. 1983; Deo & 
Gaucher 1985; Jones et al. 1986; El-Sayed & Rehm 1987; 
Lilly et al. 1990) (Table 3). 

Immobilized mycelia of Penicillium chrysogenwn have been 
used for the production of penicillin G (Deo et al. 1983; 
Kurzatkowski et al. 1984; Jones et al. 1986; El-Sayed & Rehm 
1987; Lilly et al. 1990; Keshavarz et al. 1990). Lilly et al. 

(1990) and Keshavarz ef al. (1990), in particular, have shown 
the feasibility of continuous antibiotic production with low 
cell growth using a temperature-sensitive mutant of the 
fungus in a 320 1 (working volume) air-lift tower reactor in 
which the fermentation was carried out for > 500 h. 
Immobilization on celite effectively avoided wash-out of 
poorly-growing cells from the reactor. 

The production of cyclosporin A by carrageenan- 
entrapped Tolypocladium inflafum in an air-lift reactor with 
an external circulating loop was reported by Foster et al. 
(1983). The antibiotic, recovered by a single ethyl acetate 

Table 4. Transformation of steroids by immobiiized fungai ceils. 

extraction, was essentially free of contaminating media and 
other microbial by-products. 

Finally, 6-aminopenicillanic acid was produced by a 
specific enzymatic cleavage reaction from penicillin-V using 
chitosan-immobilized cells of Pleuroftcs osfreafzts (Kluge et al. 
1982). Compared with free cells, the immobilization led to 
a lo-fold increase in the half-life of the biocatalyst. 

Biofrunsformafion of Steroids 
Use of immobilized-cell technology for the biotransforma- 
tion of steroids has attracted considerable attention (Mahato 
& Mukherejee 1984; Tanaka & Nakajima 1990). Several 
immobilized fungal cell systems have been studied for 
hydroxylation processes, which involve complex reactions 
characterized by activation of molecular oxygen and a 
continuous supply of reducing power (Table 4). A good 
example of their application is the conversion of the 
Reichstein compound S (cortexolone) to prednisolone via 
cortisol by the immobilized fungus Curmlaria lunafa 
employed in conjunction with an immobilized bacterium, 
Coynebacferium simplex (Mosbach & Larsson 1970). The 
process, which was further improved by immobilizing spores 
of C. lunafa in preference to vegetative mycelium (Ohlson 
ef al. 1980), appears to be the first genuine immobilized 

Substrate 

Cortexolone 

Reaction Organism 

11 /I-Hydroxylation Curvularia lunata 

Progesterone 1 la-Hydroxylation Rhizopus nigricans 
Rhizopus stolonifer 
Aspergillus ochraceus 

Androstane 

Aspergillus phoenicus 
15a-Hydroxylation Aspergillus phoenicus 
Dehydrogenation Rhizopus sp. 

Aspergillus sp. 

Support material 

Ca-alginate 

Photo-crosslinked resin 
Agar 
Photo-crosslinked resin 
Polyacrylamide 
Celite 
K-Carrageenan, Ca-alginate, albumin 
K-Carrageenan, Ca-alginate, albumin 
Various 
Various 

Reference 

Ohlson et al. (1980); Sukho- 
doloskaya et a/. (1990); 
Ghanem et a/. (1992) 
Sonomoto et al. (1981, 1983) 
Maddox et al. (1981) 
Sonomoto et al. (1982) 
Elihari et a/. (1984) 
Broad et al. (1964) 
Kim et al. (1982) 
Kim et al. (1982) 
Fukui et al. (1960) 
Fukui et al. (1980) 
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Table 5. Productlon of alkaloids, gibbereiiic acid and methyl-ketone. 

Product Organism Support material Reference 

Clavine alkaloids Cllviceps purpurea Ca-alginate Kopp & Rehm (1984); Kopp (1987) 
Ca-alginate, pectate, ic-carrageenan Kren (1990) 

Claviceps fusiformis Ca-alginate, pectate, K-carrageenan Kren (1990) 
Ergot alkaloids Claviceps purpurea Ca-alginate Kopp & Rehm (1984); 

Lohmeyer et al. (1990) 
Ca-alginate, pectate, rc-carrageenan Kren (1990) 

Claviceps purpurea (protoplasts) Ca-alginate Komei et al. (1985) 
Lysergic acid derivatives Claviceps paspali Ca-aiginate Pertot et al. (1988) 

Ca-aiginate, pectate, rc-carrageenan Kren (1990) 
Roquefortine Penicillium roqueforti Ca-alginate Kusch 8. Rehm (1986) 
Gibberellic acid Gibberella fujikuroi h--Carrageenan Jones 8 Pharis (1987) 

Ca-aiginate, agar, rc-carrageenan Kumar & Lonsane (1988) 
Ca-alginate Nava Saucedo et al. (1989) 

Fusarium moniliforme Ca-alginate Kahion & Malhotra (1986) 
Methyl-ketone Penicillium roqueforti Ca-alginate Larroche et a/. (1989) 

fungal cell system developed to an industrial, though 
limited, scale (Cheetham 1980). 

Production of Other Compounds 
Ergot alkaloids are fungal secondary metabolites of 
considerable pharmaceutical interest due to their broad 
spectrum of therapeutic applications. Since their chemical 
synthesis is too costly, industrial production is mainly based 
on the saprophytic culturing of Claviceps mycelia. However, 
cultivation in large fermenters with conventional batch 
processes presents many difficulties as the organisms are 
sensitive to mechanical stress and have a strong tendency 
to degenerate (Kopp 1987). Immobilization of the fungal 
mycelium can overcome these problems and stabilize 
alkaloid production (Table 5). 

Kopp & Rehm (1984) and Kopp (1987) reported 
semi-continuous production of alkaloids by Ca-alginate 
immobilized mycelium of Claviceps purpurea which retained 
high catalytic activity for over 200 days (16 cycles). In 
contrast, free cells lost their production capacity after only 
60 days of cultivation. Limitation of phosphate was 
extremely important to achieve long fermentations and 
alkaloid production (Lohmeyer et al. 1990). Also, the 
morphological development of the immobilized fungus 
appears to be of great importance. According to Pertot et 
al. (1988), the immobilization of Claviceps paspali mycelium 
in Ca-alginate would shift the fungal metabolic activities 
towards secondary metabolism because of the physically 
restricted growth and morphological differentiation of the 
mycelium into arthrosporoid-like cells. 

Gibberellic acid, a potent plant growth promoter, is 
currently produced in submerged culture using free 
mycelium of Gibberella fujikuroi (Pitel et al. 1971). In recent 
times, however, a number of studies have been reported on 
the use of immobilized growing cells of G. fujikuroi (Jones 

& Pharis 1987; Kumar & Lonsane 1988; Nava Saucedo et 
al. 1989) and Fusarium moniliforme (Khalon & Malhotra 
1986) for batch- and semi-continuous production of 
gibberellic acid. 

Wasfewater Treafmenf 
The well-known film-forming properties of fungi have been 
utilized to develop fixed-bed reactors in which mycelial films 
develop naturally by adhesion and subsequent surface 
growth. The rotating disc reactor seems to provide an 
exceptionally mild method of immobilizing mycelia 
(Anderson & Blain 1980) and a reactor of this type was 
employed in the productive processing of effluents 
containing low amounts of carbohydrates (Anderson et al. 
1981). 

Numerous studies have also been carried out on the 
continuous biotreatment of phenolic wastes with immobi- 
lized fungal cell systems. Takahashi et al. (1981) employed 
the yeast-like fungus Aureobasidium pullulans adhered to 
fibrous asbestos in a glass-column reactor and Anselmo et 
al. (1985) and Anselmo & Novais (1992) used Fusarium 
flocciferum immobilized on polyurethane foam. 

Another application of potential interest is the removal 
of colour from kraft-mill effluents using Coriolus versicolor 
mycelia immobilized in beads of Ca-alginate; in the presence 
of glucose, such treatment results in 80% decolorization 
within 3 days (Livernoche et al. 1983). 

Conclusions 

The number of studies carried out on the immobilization of 
filamentous fungi in the last 10 to 15 years is undoubtedly 
remarkable. As a consequence, considerable experimental 
know-how is now available which should really contribute 
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to innovative industrial fermentation processes based on 
fungi. However, in spite of the many potential advantages 
of immobilized fungal cell systems, the industrial world still 
shows a certain reluctance towards their utilization. The 
need for expensive plant reconversions, the requirement of 
new and more complex process controls and problems of 
sterility maintenance (Kristiansen & Bu’Lock 1980; Stafford 
1986) appear to be the major difficulties preventing the 
transfer of immobilization technology to a commercial scale. 
Further and more thorough studies of process scale-up, as 
well as the development of other and more adequate 
immobilization methods, should overcome most of these 
problems. The results obtained by Ju & Wang (X986), in the 
production of itaconic acid by A. terretls immobilized in a 
porous disc reactor, and Lilly et al. (1990), in the production 
of penicillin G by P. chysogenttm cells adsorbed to celite, 
appear particularly promising. However, only economic 
criteria will ultimately dictate whether or not immobilized 
fungal cell systems become commercial (Nava Saucedo et al. 

1989). 
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