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Abstract. This paper deals with the propagation of shock and acceleration wave fronts in 
elastic media with temperature dependent properties. The partial differential equations 
governing the evolution of such waves are derived and solved using the method of Charpit. 
Solutions for wave front propagation in a thermoelastic layer with exponentially temperature 
dependent properties are obtained. 

I. Introduction 

Some elastic materials, for instance metals, change their mechanical proper- 
ties under temperature loadings, and a representation by means of a classical 
Hookean model does not adequately describe their behaviour [8]. To deter- 
mine the interaction between the fields of deformation and temperature it 
can be applied the theory of thermoelasticity for isotropic materials with 
temperature dependent properties. The list of references connected with the 
problems of thermoelastic bodies with temperature variable elastic properties 
is given in [9]. 

Consider a disturbance suddenly applied over a surface S in an isotropic 
homoegenous elastic medium, which is initially undeformed and at rest. 
Then it is well known that the subsequent positions of the wavefront S~ 
which separate the disturbed from the quiescent regions of the medium, will 
constitute a system of parallel surfaces and will propagate with constant 
speed, cf. [2, 11]. Hence for a given initial wave shape the problem of wave 
evolution is solved. In non-homogeneous, but isotropic media, the situation 
is complicated by the fact that the wave speed is no longer position indepen- 
dent, cf. [3, 5]. 

In this paper our aim is to investigate the effect of material inhomogeneity 
caused by temperature dependent properties of the elastic bodies on the 
propagation of wave fronts. We confine attention to the class of singular 
waves of the order k /> 1, which include both shock and acceleration waves. 
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Within the framework of the theory of thermal stresses [7], we restrict our 
consideration on finding the shape of the wavefronts arising from given 
initial disturbances in elastic bodies exhibiting certain specific choices of the 
temperature-dependent properties. 

2. The fundamental equations 

Restrict considerations to the certain dynamic problems within the flame- 
work of the linear thermoelasticity for materials with temperature dependent 
properties. Let 2, # denote the Lain6 coefficients, c~,, co be the coefficients of  
linear thermal expansion and heat conduction, respectively. We assume that 

2 = 2(0), # = ~(0), y = 9(0), co = &(0), (2.1) 

where ~(.), /~(.), ~(.), c5(.) are given functions, 0 = O(x,, t) denotes the 
temperature increment measured from the reference state, (xi), i = 1, 2, 3 
and t comprise rectangular Cartesian coordinates and time, respectively, 
and ~ = (32 + 2#)et. 

The equations of motion and heat conduction in the case under consider- 
ation take the following form, cf. [7, 9]: 

l~U~,kk + [(2 + 2#)Uk,~],i- /~Uk,k~ -- 2#,/Uk, k 

+ (u,,k + uk,,)U,k + E -- (~0),, = ~ ,  

(O90k),k -- COO = -- W, (2.2) 

where ui are components of the displacement vector, F~ are components of 
the body forces, 0 is the mass density, c is the quantity of heat required for 
unit increase of temperature of unit mass and IY/denotes the quantity of heat 
generated in unit volume and unit time. The comma and dot denote partial 
differentiation with respect to the space variables xi and the time t, respect- 
ively. Subscripts i, k run over 1, 2, 3 and summation convention holds. 

Solving the nonlinear partial differential equation (2.2)4 with adequate 
initial and boundary conditions we obtain the temperature distribution in 
the body. Knowing the temperature field and the dependence of the coef- 
ficients 2, #, 7 on the temperature (given by (2.1)) and hence also on position, 
the equations (2.2)13 constitute a system of linear partial differential equations 
with variable coefficients. Let f~, f~ c R 3 be the region which is occupied by 
the thermoelastic body under consideration and I -= (to, tl) denote the time 
interval. It has to be emphasized that Eqs. (2.2) hold for every (x, t) e f~ x I. 
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Consider now the problem of singular wave front propagation in the 
thermoelastic bodies with temperature dependent properties. We assume 
that the singular moving surface St of  the order k ~> 1 (i.e., the surface of 
discontinuity in the k-th order of derivative of the displacement vector u) in 
space-time is given in the form: 

St: ~(t, xl, x2, x3) = 0, (2.3) 

where ~(-)  is a function of class C2(tl × I). 
A straightforward calculation, using the geometrical and kinematical 

compatibility relations, cf. [2, 11], and Eqs. (2.2) reveals that this surface 
must satisfy the nonlinear partial differential equations: 

[~,,(t, x,, x 2, x3)] 2 + [(I)2(t, x,, x 2, x3)] 2 + [~3(t, xi, x2, x3)] 2 

= eg2(O(t, x2, xl, x2, x3)] 2 

y = 1, 2, (2.4) 

where 

ci -2 -= 0(2 + 2/~) -1, e2 -2 -- ~#-' .  (2.5) 

Equation (2.4) governs the front of the longitudinal wave of the k-th order, 
k /> 1, for 7 = 1 and the front of the transversal wave for y = 2. We 
observe that wave speeds c~, 7 = 1, 2, given by Eqs. (2.5) are dependent on 
the temperature (according with Eqs. (2.1)). The temperature 0(.) must be 
determined from the heat conduction equation (2.3)2 and adequate initial 
and boundary conditions. 

The nonlinear partial differential equations (2.4) may be solved by appli- 
cation of the Monge and Cauchy method, cf. [10]. Since the basic equations 
(2.4) are of the same form for both cases of the longitudinal and transversal 
wave fronts we shall drop the subscript 7 from this point on. The Monge and 
Cauchy method reduces the solution of Eq. (2.4) to the solution of the 
system of ordinary differential equations: 

dxl 
2p 

dx2 dx3 dt 

2q 2w 2rf(xl, x2, x3, t) 

dOO 
2(p2 + q2 + w 2 _ r2f(x~, x2, x3, t)) 

dq dw 

r 2(Xl, x2, x3, t) r 3(x,, x2, t) 

dp 
r2f.i(xl, x2, x3, t) 

dr 
r2~(Xl, X2, X3, t ) '  

(2.6) 
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where 

f -  ci -2 or f =  c22 (2.7) 

and 

P - ~ t ,  q =-q)2, w - ~ 3 ,  r - + ,  f ~ -  Ofo~, f : Ofo. 
' " ' 0 0  ' 0 0  

(2.8) 

The system of equations (2.6) can be solved for special cases of material 
properties by using the Charpit method, cf. [6]. The procedure will be 
applied in Section 3. 

3. Wave fronts in a thermoelastic layer 

Consider now the thermoelastic layer which occupies the region f~ = 
{(xl, x2, x3) e R3:0  <~ xl <~ h, xz ~ R, x3 ~ R}. We assume that there are 
any heat sources in the body under consideration and that the coefficient of 
heat condition is described by 

co = coo e~°, (3.1) 

where co 0, e are given constants. 
Let the boundary surfaces of the body be kept in constant but not the 

same temperatures. We take the boundary conditions of the heat conduction 
problem in the form 

O(x~ = 0, x 2 , x  3 , t )  = 0, O(x~ = h, xz, X3, t) = 01, 

(x2, x3) e R 2, t s R, (3.2) 

where 01 is a given constant temperature. 
We confine attention to the steady temperature problem assuming that 

0(xl, x2, x3, t) = 0, (xl, x2, x3, t) s ~ ) x R + ,  (3.3) 

The equation of heat conduction (2.2)4 and the assumptions given by 
Eqs. (3.1) and (3.3) lead to the following equation 

V(e~°VO(x)) = 0. (3.4) 
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Let U be a new dependent  variable defined according to Kirchhoff  trans- 
formation,  cf. [10], as 

U(x) - f~(x)e~0,d0 , = _ l (e~0(x)_  1). (3.5) 

Then by substi tution of  Eq. (3.5) into Eq. (3.4) we obtain the Laplace 
equation for unknown function U( ' )  

V2U(x) = 0. (3.6) 

The boundary  conditions (3.2) and Eq. (3.5) lead to the boundary  conditions 
for function U( . )  

U(Xl = 0, x2, x3) 

(x2, x3) e R 2. 

= O, U(x~ = h, xz, X3) = ~-l(e~°~ - 1), 

(3.7) 

The solution of  the problem given by Eqs. (3.6) and (3.7) takes the form 

U(x 1, x 2 ,x3)  = Axe, (3.8) 

where 

A = (eh)-~(e ~°~-  1). 

F rom Eqs. (3.8) and (3.5) it follows that 

O(xl, x2, x3) = e-1 in (A~xl  + 1), (3.9) 

for A e x  I + 1 > 0, i.e., for every xl e (0,  h) .  Assume that the density of  
mass Q is a constant  and the Lam6 coefficients 2, # given by Eq. (2.1) are 
chosen as 

~(0) = 20e ~°, ~(0) = #0e~°, ~ = const., (3.10) 

where 20, ~ ,  fl are given constants, 20, #0 > 0. This choice corresponds to 
the Poisson ratio v and the Young modulus  E defined by 

2o #0(32o + 2#0)eP0. v - - const., E = (3.11) 
2(20 + #0) 20 + #0 
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The identical material properties given by Eq. (3.11) were considered in 
numerous papers, cf. [9]. 

Suppose that the thermoelastic layer under consideration propagates a 
singular wave of the order k, k ~> 1. Making appeal to the equations 
describing the wave front propagation given by Eqs. (2.3), (2.4) and (2.5), 
for the case of material properties defined by Eqs. (3.10), (2.1) and the 
temperature distribution determined by Eq. (3.9), we have 

q~(t, Xl, x2, x3) -- t - ~/(Xl, x2, x3) = O, (3.12) 

where unknown function ~( . )  satisfies the following equation: 

[0,1(Xl, X2, X3)] 2 "t- [0,2(Xl, X2, X3)] 2 "-}- [0,3(Xl, X2, X3)] 2 

= Co2(AO~Xl -}- 1) -~/~. (3.13) 

Here we have Co 2 = Q(20 + 2//o) -1 or Co 2 = ~ # o  1 in the cases of the 
longitudinal and transversal waves, respectively. The equation (3.13) consti- 
tutes the special case of Eq. (2.4) and it can be solved by the Monge and 
Cauchy method. Using Eqs. (2.6), (2.7) and (2.8) the equation (3.13) reduces 
to the system of ordinary differential equations 

d x  1 d x  2 d x  3 dt  

2p 2q 2w 2c42(A~xl + 1) -~/= 

dp dq dw 
-2Co2~A(A~xl + 1) -l-p/" 0 0 

(3.14) 

To solve Eqs. (3.14) we can employ the Charpit method, cf. [6], which was 
used in our previous papers [3-5]. The complete integral of Eqs. (3.14) can 
be written in the form 

t = ~9(xl, x2, x3) = f {co2(A~xl + 1) -~/~ - e - 6}m dx 1 

+ ,//x2 + 43x3 + 6 > o, (3.15) 

where e, 6 are parameters and q)(.) is an unknown function. If we adopt the 
notations: 

H(x 1, ~, 6) -- f {CoZ(Ac~xl + 1) -p/~ -- E -- 6}1/2 dxl (3.16) 
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and 

a ( x i ,  t, e, 6, ~(a, 6)) = t - H ( x , ,  ~, 6) - x/~x2 - N / -~x3  - ~)(F. ,  6), 

I'(s, z, e, 6, ~(~, 6)) 

E,(s, z, e, 6, ~(e, 6)) 

r z(s, z, e, 6, ~(e, 6)) 

where F is defined by 
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(3.17) 

F(s, z, e, 6, ~ (e ,  6)) = G(x i ( s ,  z),  t(s,  z) ,  e, 6, ~ (e ,  6)). (3.21) 

Solving the system of equations (3.20) for the unknown function ~(e, 6) we 
obtain a two parameter family of solutions G which satisfies the initial 
conditions (3.19) along their envelope. The required solution of wave front 
problem is obtained by elimination of e and 6 between the equations 

G = 0, G,~ + G,,(~,~ = 0, G,~ + G,,~,~ = 0. (3.22) 

We consider now special cases of the initial data (3.19). 

Case  1 

Let the initial data (3.19) be specified as follows 

So: t = O, xl  = h, x2 = S,  X 3 = Z, s, z s R .  (3.23) 

Thus, the region of disturbance in the time t = 0 is the plane xl = h. 

the complete integral (3.15) takes the form 

G(xi, t, ~, 6, ~(~, 6)) = o. (3.18) 

Consider now the initial data for the singular wave under consideration 
given over a surface So c~ I'~ in space-time by 

S0:t = t ( s , z ) ,  xi = x i ( s , z ) ,  i = 1 ,2 ,3 ,  (3.19) 

where s, z are parameters. We require that the complete integral (3.17) 
satisfies initial conditions (3.19). This requirement is met along an envelope 
of (3.18) if we impose the conditions: 

= 0 ,  

= 0 ,  

= 0, (3.20) 



104 S . J .  M a t y s i a k  

We consider now the material properties defined by (3.1) and (3.10), 
where constants e, fl satisfy 

= - ft. (3.24) 

Using the procedure described by Eqs. (3 .16~3 .22)  and Eq. (3.24) we 
obtain for the initial data (3.23) that the solution of  the wave front problem 
takes the form 

t = 2col(A~)- l{(~z~o~x 1 -q- 1) 3/2 -- ( A ~ h  + 1)3/2}. (3.25) 

Case  2 

We now consider the initial data  in the form 

St: t = s, x l  = O ,  X 2 = VS, X 3 = Z, s , z ~  R ,  (3.26) 

where v > 0, is a constant. Thus, the initial disturbance takes place over the 
plane Xl = 0 and the wave source is the line x2 = v t  moving with a constant  
speed v. 

We take into account  the material properties defined by Eqs. (3.1), (3.10) 
and (3.24). 

F rom the form of  the complete integral (3.18) and (3.17), with the H given 
by Eq. (3.16), and the initial data  (3.26), it follows on solving Eqs. (3.20) that 

= v -2, 6 = 0, q)(e, 6) - Zc2(A~) -~(Co  2 -  v-2) 3/2. (3.27) 

The solution of  the problem under consideration can be written in the 
form 

t = ~ c ~ ( A a ) - ~ { [ e o 2 ( A ~ x a  + 1) - v-2] 3/2 - (Co 2 - v-2)  3/2} + v - i x 2 .  

(3.28) 

In the limit case, v ~ ~ ,  we obtain the solution given by Eq. (3.25) for 
simultaneous disturbance initiation. 

Case  3 

N o w  we will consider the thermoelastic layer which propagates a singular 
surface due to a moving source on its boundary  xl = 0. We assume that the 
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St: t = s, x I = 0, 
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x 2 = v s c o s z ,  x3 = v s s i n z ,  (3.29) 

where s > 0, 0 ~< z < 2re and v > 0 are parameters. The wave front 
problem is obviously axisymmetric. The moving source is a circle of  radius 
r = vt, which is expanding with constant  speed v. 

Solving Eqs. (3.20) for the case of  complete integral given by (3.18), (3.17), 
(3.16) and the initial data  (3.29) we obtain 

z = t an - l (&- l ) ,  6 = v - z -  2, ~(e, 6) = - eg(A )- (Co 2 - v - 2 )  3/2. 

(3.30) 

Substituting formulas (3.30) into equations (3.17), (3.16) and (3.18) results 
directly in the complete integral 

t = 2cg(Ac~)-l{[coZ(ActXl -k 1) -- v 2]3/2 _ (Co 2 _ ,/.)-2)3/2} 

-~- N/~X2 + N ~ -  BX3" (3.31) 

Now, using (3.22)2 we obtain for this case that 

7.) - 2X2 

e - x22 + x32. (3.32) 

Finally, we substitute (3.32) into Eq. (3.31). We have the required solution, 
namely 

t = ~cg(A~)- l {[Co2(A~x,  + 1) - v-z] 3/2 - -  (Co 2 - -  7.)-2) 3/2} 

+ v ~(x 2 + x~) 1/2. (3.33) 

In the limit case v --* oe we obtain from equation (3.33) that for a simul- 
taneous disturbance initiation 

t = 2col (AcO-~[(AeXl  + 1) 3/2 - 1]. (3.34) 

The solution (3.34) coincides with equation (3.25). 

4. Final remarks 

In this paper within the framework of  the theory of  thermal stresses, the 
propagation of  shock and acceleration wavefronts are considered in elastic 
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bodies with temperature  dependent  properties. The obtained equations (2.4) 
governed the front  o f  the longitudinal and transyersal singular waves of  the 
k-th order,  k ~> 1, show that  in case o f  a uniform temperature  distribution 
the wave fronts will propagate  as in isotropic homogeneous  bodies, i.e., as 
parallel surfaces to the initial wavefronts. I f  the temperature field is dependent 
on position and time, this proper ty  of  wavefront  propagat ion  will be distri- 
buted. In this case the shape of  the wavefront  is dependent  on the initial 
wavefront,  the temperature  distribution and the temperature-dependent  
material  properties. Hence, the wavefront  problem may be treated by using 

the procedure  given in Section 2. 
The knowledge o f  wave front  may  be applied to solve the dynamic 

problems o f  stress distribution in the body under  considerat ion by using the 
methods of  series expansion given in [1, 12]. 

References 

1. J.D. Achenbach: Wave Propagation in Elastic Solids. North-Holland, American Elsevier, 
Amsterdam (1979). 

2. P. Chadwick and B. Powdrill: Singular surfaces in linear thermoelasticity, Int. J. Engng. 
Sci. 3 (1965) 561-595. 

3. H. Cohen and S.J. Matysiak: Wave fronts in nonhomogeneous elastic media, Int. J. 
Engng. Sci. 21 (1983) 113-122. 

4. H. Cohen and S.J. Matysiak: Wave fronts in nonhomogeneous three-dimensional elasto- 
dynamics, S.M. Archives 9 (1984) 451 471. 

5. H. Cohen and S.J. Matysiak: Wave fronts due to moving sources, Journal de Mecan. 
Theor. et Appl. 2 (1983) 1003-1011. 

6. A. Dou: Lectures on Partial Differential Equations of First Order. University of Notre 
Dame Press, Indiana (1972). 

7. W. Nowacki: Thermoelasticity. Pergamon Press and PWN, Warszawa (1962). 
8. J.L. Nowinski: Thermoelastic problem for an isotropic sphere with temperature dependent 

properties, ZAMP X (1959) 565-575. 
9. J.L. Nowinski: Theory of Thermoelasticity with Applications. Sijthoff and Noordhoff 

Inter. Publishers B.V., Alphen aan den Rijn (1978). 
10. M.N. Ozisik: Heat Conduction. Wiley-Interscience Publ., New York, Chichester, Brisbane, 

Toronto (1980). 
11. T.Y. Thomas: Plastic Flow and Fracture in Solids. Academic Press, New York, London 

(1961). 
12. Z. Wesolowski: Dynamic problems of the nonlinear elasticity (in Polish), PWN (1974). 


