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Integral-Gradient Formulae 
for Structured Deformations 

GIANPIETRO DEL PIERO • DAVID R. OWEN 

1. Introduction 

The name integral-gradient theorem has been introduced by NoLL & VIRGA to 
denote a special version of the Gauss-Green formula stated without proof in their 
paper [3]. Their formula involves a class of domains which they callfit regions and 
which they show to be appropriate for the description of regions in space occupied 
when continuous bodies undergo classical deformations [1, Sect. 2]. 

In [1] we considered a larger Class of deformations which includes such 
non-classical deformations as the formation of macroscopic fractures, as well as the 
occurrence of microscopic changes in structure that we call microfractures. Here we 
prove for such deformations appropriate versions of the integral-gradient formula. 
Technically, this requires us to relax the assumptions on the regularity of the 
domain made in [3] in order to allow for the presence of finite unions of fit regions, 
which we call piecewise fit regions. By contrast, we are obliged to strengthen the 
regularity assumed in [3] for the integrands by requiring that their restrictions to 
each of the fit regions forming their domains have C 1 extensions to the whole space. 

Our proof is based on the fact that piecewise fit regions are sets with finite 
perimeter and that, as proved in Section 3, the integrands considered are functions 
of bounded variation. These facts allow us to make extensive use of the definitions 
and results developed i n [5, 6], starting from concepts in geometric measure theory. 
Moreover, we take advantage of the additional regularity enjoyed by our functions, 
and not by arbitrary functions of bounded variation, to prove a number of useful 
results. Namely, we are able to prove not only that an inward trace is defined area- 
almost everywhere on the essential boundary of the domain, but also that the 
inward trace is area-summable there. Moreover, when dealing with the generali- 
zation from scalar-valued to vector-valued functions, we prove that the set of all 
jump points of each element of our class of vector-valued functions not only is 
included in the union of the set of jump points of the components, but also is 
area-equivalent to it. 

These developments are carried out in Section 3, whose final result is an 
integral-gradient formula for piecewise fit regions and for vector-valued functions 
with the regularity mentioned above. In Section 4 we first show that this formula 
applies directly to the class of simple deformations defined in [1]. We then consider 
limits of simple deformations and prove a regularity property of the trace beyond the 
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properties of limits of simple deformations established in [1]. Among other things, 
we proved there that, if (~,g,G) is the limit, in the sense of [1, Def. 4.1], of 
a sequence n ~-~ (t%, f ,)  of simple deformations from the piecewise fit region d ,  then 
g, the L~-timit of the sequence n F--~fn, has a representative go which is continuous 
on ~ .  Here, we prove that go has an inward trace go on the essential boundary of 
~ '  which is summabte there, and that gg is the L~176 of the sequence n ~-+f,+ of 
the inward traces of the functions f,.  

This result enables us to establish an integral-gradient formula, equation (4.19), 
for limits of simple deformations. We then turn to the class of structured deforma- 
tions, whose study was the main object of the paper [-1]. Each structured deforma- 
tion is a triple (~, g, G), in which fie, g) is a simple deformation and G is a tensor field 
whose properties, as proved in the Approximation Theorem in [1, Sect. 5], are 
sufficient to ensure that fie, 9, G) can be identified with a limit of simple deforma- 
tions. By repeating the procedure used in [1, Sect. 6] for the fundamental formula 
of calculus, in Section 4 of the present paper we compare the integral-gradient 
formula for (~, g, G) as a limit of simple deformations with that for (~:, g) as a simple 
deformation and obtain formula (4.20) for structured deformations. In Section 5, 
we give interpretations for the integrals appearing in the formulae (4.19) and (4.20), and 
we find that the total deformation due to microfracture admits the tensor field Vg - G 
as a volume density. This extends our earlier result [1, Sect. 6] which established 
Vg - G as a density of deformation due to microfracture along straight lines. 

2. Notation and preliminaries 

We denote by E a finite-dimensional Euclidean point space. The associated 
inner product space is denoted by ~U, and Lin ~ denotes the set of all linear 
mappings of ~ into itself. Both ~U and Lin ~U are made into normed spaces with 
the norms 

' IHvl 
M := (vv) ~, [HI := sup , v e ~F, H E Lin ~. (2.1) 

If N is the dimension of C, we denote by V and A the N-dimensional Lebesgue 
measure and the (N - 1)-dimensional Hausdorff measure on g, and we call them 
the volume measure and the area measure, respectively. If d and N are subsets of 
E, the notations 

A 
d ~ N ,  d ~ N  (2.2) 

mean that d differs from ~ by a set of volume zero and by a set of area zero, 
respectively. By int ~4, clo ~ ,  bdy sJ we denote the interior, the closure, and the 
boundary of d ,  respectively, and by N(x, 6) we denote the open ball of d ~ centered 
at x and of radius 6. 

We now recall some measure-theoretic concepts, for which we refer to [-6]. Let 
x be a point of g, and let ~ be a subset of g. Consider the limit 

v(~(x,  6) c~4) 
lira (2.3) 
,~o V(~(x, 6)) 
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We say that x is a point of density for d if the above limit exists and is 1, a point of 
rarefaction if the above limit exists and is zero, and that x belongs to the essential 
boundary of d in any other case [-6, Sect. 4.4.1]. It is clear that the three sets just 
defined, which we denote by dens d ,  r a r d ,  e b y d ,  respectively, are pairwise 
disjoint and form a partition of do. 

Let v be a unit vector in ~ .  Consider the closed hemibalt 

~ ( x ,  6,v):= {y ~ doly ~ clo ~(x,  c5), (y - x).v ~ 0}. 

We say that v is an outward normal to d at x if 

(2.4) 

An outward normal, if it exists, is unique [6, Sect. 4.5.2]. The set of alt points of 
do for which an outward normal to d exists is called the reduced boundary of d and 
will be denoted here by rby d .  It follows from equations (2.5) that, if x e rby ~4, 
then the limit (2.3) exists and equals �89 and therefore x belongs to eby d .  Thus, 

if, for each e > 0, 

rby d ~ eby d .  (2.6) 

We now consider properties of real-valued functions defined on g. We say that 
the real number d is the approximate limit of u : d o ~ R at the point x of g, and write 

d = lira u(y), (2.7) 
y ~ X  

lim V(N(x,6)c~{y ~ g[ l u ( y ) -  d[ < e } ) =  1 (2.8) 
~-~o v (~ (x ,  ~)) 

[2, Sect. 1.7.2], i.e., if x is a density point for the set {y e d ~ [u(y) - d] < e} 
[6, Sect. 4.4.2]. If .4  is a subset of g, the definition of the approximate limit ofu at 
x relative to ~4 

lira u(y) (2.9) 

is obtained from the condition (2.8) with ~(x ,b)  replaced by d c~(x,~) [6, 
Sect. 4.4.2], Let ~ be a unit vector in ~ ,  and denote by H~(x) the half-space 
{Y ~ doI(Y - x)-~ > 0}, and by u~(x) the approximate limit 

u~(x) := lira u(y). (2.10) 
y ~ x ,  y~II~(x) 

We say that x is a regular point for u if there exists a unit vector ~ such that the 
approximate limits u~(x)and u_~(x) exist. If the two limits are equal, their common 
value is the approximate limit of u at x, and x is said to be a point of approximate 
continuity for u. If the two limits are not equal, then ~ and - ~ are the only unit 
vectors for which the approximate limits in (2.10) exist, x is said to be a jump point 
for u, and c~ and - ~  are called the determining vectors at x. For  each jump point 

fim V(:/g(x,6,v)nd) = 1, lira V(Jf(x,b, -v)c~d) = 0. (2.5) 
~ o  v ( ~ ( x , ~ , v ) )  ~ o  v ( w ( x , &  - v ) )  
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x with determining vectors e and - ~ ,  the vector 

Ju(x) := (u~(x) -- u_~(x) )c~ (2.11) 

is called the directed jump of u at x [6, Sect. 4.5.4]. It is clear that Ju(x) does not 
change if c~ is replaced by -c~; thus, the vector Ju(x) is defined unambiguously. We 
extend the definition of directed jump of u to points x of approximate continuity of 
u by setting Ju(x) = 0 at those points. 

Let d be a measurable subset of g, and let x be a point in the essential 
boundary of d .  If the approximate limits 

u+(x):= lim u(y), u - (x ) := lim u(y) (2.12) 
y ~*x, y ~ ~e" y -~x,  y ~ g \ ~  

exist, they are called the inward trace and the outward trace of u at x, respectively. It 
can be proved that, if the outward normal v to d exists at x, then the inward trace 
exists if and only if the approximate limit u_ ~(x) defined by (2.10) exists and that, in 
this case, u + (x) = u_~(x). The same property and the equality u-(x)  = u~(x), hold 
for the outward trace [6, Sect. 5.1.2]. 

Let d be an open subset of g, and let u : d  ~ R be given. We say that u is 
a function of bounded variation, if u is summable on d and if the distributional 
derivative Du of u is a measure [6, Sect. 4.3.1]. The last requirement is met if and 
only if 

s u p t  f u(x)div q~(x)dVxlq) e C ~ ( d ,  ~t/), [p(x)[ =< 1Vx~ d t < + ov (2.13) 
t d ) 

[2, Sect. 5.1]. A bounded measurable set d is called a set withfinite perimeter if the 
distributional derivative of its characteristic function 7~o~ : g ~ R is a measure [-6, 
Sect. 4.2.1]. It can be proved that, if d is a set with finite perimeter, then the 
measure DL~ is concentrated on e b y ~  [-6, Sect. 5.1.1] and eby d is area-equiva- 
lent to the reduced boundary of d [-5, Sect. 4]: 

a 
e b y d  ~ r b y d .  (2.14) 

We use the notation B V ( d )  to denote the set of all functions u : d  ~ R which 
are functions of bounded variation, and we use the symbol BV for BV(g).  We list 
below some properties of the functions belonging to the space B V  which are 
relevant to our purposes. 
(BV1) If u e B V  (indeed, if u is summable [-6, Sect. 4.4.4]), the points which are not 
points of approximate continuity for u form a set of volume zero. 
(BV2) If u e BV, the points which ate not regular points for u form a set of area 
zero [-6, Sect. 4.5.5]. 
(BV3) If u e BV, then for every set d with finite perimeter the inward and the 
outward trace of u exist A-almost everywhere on e b y d  [-6, Sect. 5.1.2]. 
(BV4) If u e BV, if d is bounded and with finite perimeter, and if the inward trace 
u + is summable on eby ~4, then 

D u =  ~ u+(x)v(x)dA~, (2.15) 
d e n s d  e b y J  
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where Du is the distributional derivative of u and v(x) is the outward normal to 
eby d at x [6, Sect. 5.1.4]. 
(BV5) Let u ~ B V  and let d be a bounded set with finite perimeter. Then for every 
A-measurable subset N of eby d ,  

Du = ~ (u~(:,)(x) - u_ v(x)(x))v(x)dA~, = ~ Ju(x)dAx (2.16) 

[6, Sect. 5.1.4]. 
(BV6) For  every u ~ B V  and for every set N of area zero, 

Du = 0 (2.17) 

[6, Sect. 4.5.5]. 
(BV7) If u is a C 1 function on g with bounded support, then u ~ B V  [3, Sect. 2]. 
(BV8) If h and u are in BV,  are bounded and have bounded support, then the 
product hu is in BV,  is bounded and has bounded support [3, Sect. 3]. 

We conclude our preliminaries by recalling that a f i t  region is a subset d of 
E satisfying the following properties [3]: 

(i) ~r is bounded, 
(ii) int c l o d  = d ,  

(iii) .~r is a set with finite perimeter, 
(iv) V(bdy~4) = 0, 

and that a piecewise f i t  region is a finite union of fit regions [1]. 

3. An integral-gradient theorem for a class of piecewise C1 functions 

In this section we prove a result that is a starting point for establishing an 
integral-gradient theorem for structured deformations. We begin by defining 
a class of piecewise C 1 functions which satisfies the assumptions of the statement 
(BV4) in the preceding section. 

Lemma 3.1. Let  sJ  be a piecewise f i t  region, and let v : ~r --~ R be a C 1 function 
satisfying the following requirement: there is a finite cover { d j l j  ~ {1 . . . . .  J}} of  
d consisting of f i t  regions, such that the restriction vl.ej of v to each d j  has a C a 
extension to E. Then the function u: g --~ R defined by 

u ( x ) = { ;  (x) if x ~ 4 '  (3.1) 

is a function of  bounded variation. Moreover, u has an inward trace on the essential 
boundary of  d which is A-summable there. 

Proof. First of all, we observe that there is no loss in generality in assuming that 
the C 1 extension of each vlo4j to N has compact support. Indeed, if it is not so, it is 
sufficient to multiply the given extension by a real-valued C 1 function with 
compact support which takes the value 1 in cloA to get a C 1 extension with 
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compact support. Denote this extension by uj. Consider next the sets cgj, defined 
recursively by 

j - 1  

cgl := ~r cgj := ~ j \  U cgp, j 6 { 2 , . . . ,  J}. (3.2) 
p = l  

They form a partition of d ,  and each cgj is included in the corresponding region ~4j. 
Moreover, each cg~ is a set with finite perimeter, and the interior of each cgj is a fit 
region. This can be proved by observing that (3.2) implies J J Up=it@ = Uv=x d p f o r  
all j, and, therefore, 

j--1 j--1 

% = U = 0 ( d j \ d p t ,  (3.3) 
p = l  p = l  

j - 1  

intCgj = ~ in t (agj \dp) ,  (3.4) 
p--1 

and by recalling that the interior of the difference of two fit regions is a fit region 
and that the intersection of fit regions is a fit region [-3, Sect. 5]. cgj is a set with finite 
perimeter because it differs by a set of volume zero from int cgj, which is a fit region 
and, therefore, a set with finite perimeter. 

If we denote by Zj the characteristic function of cg i, we see that the function 
u : ~ ~ R defined by 

J 

u(x) := (3.5) 
j = l  

coincides with the function u defined in (3.1). Each function uj is of class C 1 with 
bounded support, and therefore, by (BV7), belongs to the space BV. The same 
holds for the function )0, because the characteristic function of a set with finite 
perimeter belongs to BV. In view of (BV8), we deduce that each product )~juj 
belongs to BV, and, therefore, the sum of these products, i.e., the function u, belongs 
to B V as well. 

We now use (BV 3) and the fact that a piecewise fit region is a set with finite 
perimeter to deduce that u has an inward trace u § A-almost everywhere on eby ag. 
To prove that u + is summable on eby ~r we shall show that each term ujzj  of the 
sum in (3.5) has an inward trace with respect to d that is summable on eby ~r 
Because u j: ~ ~ R is of class C *, it has a limit at every point of eby ~r equal to the 
value of u at that point, and we conclude that the inward trace u + with respect to 
sr equals Rj[ebya/. Moreover, u +J is bounded and measurable, because Uj[clod is 
bounded and uj is continuous. We next wish to verify that, for A-almost every x in 
eby sg, 

Z + {10 if x~ebysCc~ebyCgj, 
j (x) = if x e ebyag\ebyCgj. (3.6) 

Equivalently, we wish to show that 

Z. + ./ (X) = ZebyCgjc.,eby,~c'(X) (3.7) 
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for A-almost every x in eby d .  To this end, we first note a lemma of VOL'PERT [-5, 
Sect. 2.5] implies that, for i@j,  the set eby~ic~ebyCgjc~eby~ has area zero. 
Therefore, for A-almost every x e e b y d ,  there exists only one j(x) ~ { 1 , . . .  , J} 
such that x ~ ebyCg~(x~c~ebyd. The same lemma also implies that the outward 
normal V;(x)(X) to cgj(~) at x and the outward normal v(x) to sd at x agree for almost 
every x in eby d .  Therefore, for A-almost every x in eby ~4, 

1 if j = j (x) ,  
lim Zj(y)= lim Zj(Y)-- (3.8) 

y~x,x~d y~x , y~ ,  0 if j # j(x). 

This relation implies the desired relations (3.6) and (3.7). Relation (3.7) tells us 
immediately that Z -+ is measurable, because ebyCgjc~ebyd is an A-measurable J 

subset of eby d .  Therefore, we have 

(u~): j) + (x) = u + (x ) z f  (x) (3.9) 

for A-almost every x in eby ~4, which shows that (u;;gj) + is bounded and measur- 
able. Because A(eby sJ) < + oQ, it follows that (uj)(~) + is summable. [] 

We are now ready to state the integral-gradient theorem for the piecewise C 1 
functions v which form the object of the preceding lemma. 

Theorem 3.2. Let d be a piecewise fit region, and let v : d ~ R be a function 
satisfying the assumptions of Lemma 3.1. Denote by F(v) the set of all jump points of 
v and by Vv the gradient of v. Then Vv is V-summable on ag, and 

j Vv(x)dVx = - j Jv(x)dA~ + S v+(x)v(x) dA~. (3.10) 
,;d F(v) rby~r ~ 

Proof. We have just proved that the function u defined by (3.1) satisfies the 
requirements made in (BV4), so that equation (2.15) holds for u. We now claim that 

u+(x)v(x)dAx = (, v+(x)v(x)dAx. (3.11) 
e b y d  r b y d  

Indeed, because u and v agree in d ,  the inward trace of v on eby d exists and 
coincides with that ofu. The equality (3.11) then follows from the fact that, by (2.14), 
rby d differs from eby d by a set of area-measure zero. Comparison between (2.15) 
and (3.10) then shows that what remains to be proved is 

Du = ~ Vv(x)dVx + ~ Jv(x)dAx. (3.12) 
d e n s ~  d F(v) 

To prove this, we invoke again the lemma from [5, Sect. 2.5] which tells us that for 
the finite partition {~)]j ~ {1 . . . . .  J}} of W defined by (3.2), 

d e n s d  ~ densCgj u Fkl , (3.13) 
j = l  k , l = l  

k + l  
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where 

F k t  : =  rbyrgkC~rby%; (3.14) 

moreover, all the sets appearing in the right member of Eq. (3.13) are disjoint. Thus, 
by (BV6) and by the additivity of the measure Du, 

J J 

I Du= • ~ Du+ Z ~Du" (3.15) 
dens~  j =  1 densCgj k, l = 1 Fkl 

k4=l 

We assert that 

and that 

J 

Z ~ Du = ~Vv(x)dV~, (3.16) 
j = l  dens~  ~ 

J 

Z ~ Du = ~ Jv(x)dA:,. (3.17) 
k, l = i Fkl F(v) 

k + l  

To prove our first assertion, we use formula (3.2) in [-6, Sect. 5.1.3] to write 

D(UhZh) = ~hDZh + ~hDUh (3.18) 

for each h ~ {1 . . . . .  J}, where a superimposed bar denotes the average value as 
defined in [.6, Sect. 4.5.6]. Let us evaluate the measure D(Uh)~h) at the set dens cdj, for 
a fixedj ~ {1 . . . . .  J}. That the distributional derivative of a characteristic function 
is concentrated at the essential boundary and that eby Cdh ~dens cdj = 0 for all sets 
cdj, Cdh in the partition (3.2) tell us that DZh evaluated at dens cdj is zero for all h. It is 
also true that 

)~h(X)={lo ifh=J,if h + j  (3.19) 

for all x e dens cgj, so that, from (3.18), 

J 

Z D(uh)~h)= ~ Duj. (3.20) 
dens.rgj h = 1 densrdj 

Consequently, by (3.5), 

S Du= ~ Duj= ~ Vuj(x)dVx, (3.21) 
dens ~j dens ~ dens ~j 

the last step coming from the fact that uj is of class C 1, and, therefore, its 
distributional derivative is absolutely continuous with respect to volume. We can 
now use the fact that int cgj is a fit region, and, therefore, that int cgj ~ clo cgj, to 
assert that dens Cdg ~ intO@ Moreover, by (3.1) and (3.5), the equality uj(x) = v(x) 
holds for all x ~ int cgj, and this yields the desired equality (3.16). 

To prove the remaining equality (3.17), we observe that each set FkZ is 
A-measurable. Indeed, for each region cg i the essential boundary is A-measurable, 
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because cgj is a set with finite perimeter, and the reduced boundary is A-measurable, 
because it differs from eby cgj by a set of area zero. Therefore, by (3.14), Fkl is the 
intersection of A-measurable sets and therefore it is A-measurable. We can invoke 
the formula (2.16) to assert that 

S Du = ~ Ju(x )dAx  = ~ Jv(x)dAx,  (3.22) 
r~ rk~ rk~ 

where in the last step we take advantage of the fact that the inward traces of u and 
v relative to each of the sets cg; coincide. It remains to prove that, to within sets of 
area zero, the set F(v) of all jump points of v is included in the union of the sets 
Fk~ and is A-measurable. The first assertion rests on the observation that, by its very 
definition, a jump point for v is a density point for its domain d and that, because 
v is continuous in each fit region int cgj, no density point of cg~ can be a jump point 
for u. Thus, relation (3.13) tells us that, to within a set of area zero, the set F(u) is 
included in the union of the sets Fk~. The A-measurability of F(v) follows from the 
relation F(v) = F(u)\eby d ;  indeed, eby d is A-measurable because d is a set with 
finite perimeter, and F(u) is A-measurable because it is the set of jump points of 
a function in B V  [6, Sect. 5.1.6]. [] 

We now establish a version of the integral-gradient formula (3.10) for vector- 
valued functions u: d ~ ~ ,  where ~ is a finite-dimensional inner-product space. 
First of all, we note that the definition of approximate limit, given by relations (2.7), 
(2.8) and (2.10), can be extended to vector-valued functions u, with the only change 
that the symbol r" I in (2.8) now denotes the norm in q/instead of the absolute value. 
The same observation applies to the concepts of a point of approximate continuity 
of u, a jump point for u, and traces of u. By contrast, we modify the definition (2.11) 
of directed jump at a jump point x as follows: 

Ju(x)  := (u~(x) - u_~(x)) | e. (3.23) 

We collect together some properties of vector-valued functions in the following 
proposition. 

Proposition 3.3. Let  an n-dimensional inner product space ql, subsets d a n d  c~ of  g, 
x ~ d ,  and u : ~  ~ ~# be given. For each orthonormal basis {d l i  ~ {1 . . . .  , n}} of  Yg, 
let ui, i ~ { 1 , . . .  , n}, denote the components o f  u. Then 

(i) u has an approximate limit relative to c~ at x if  and only if  for  all i ~ { 1 , . . .  , n}, ui 
has an approximate limit relative to cg at x. 

(ii) u has an inward trace u + (x) [outward trace u-(x) ]  at a point x ~ ebyCg i f  and 
only if, for  all i ~ {1 . . . . .  n}, ui has an inward trace u + (x) [outward trace, u7 (x)] 
at x; in this case, 

u + (x) = ~ u+ (x)e i, (3.24) 
i = 1  

u-(x)  = ~, uff(x)e i. (3.25) 
i = 1  
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(iii) x is a jump point of u with determining vectors {~, - ~} if and only if x is a regular 
point for every component of u, x is a jump point for at least one component of u, 
and all components of u having x as a jump point have the same pair {c~, -c~} as 
determining vectors at x. 

(iv) I f  x is a jump point of u, then the directed jump Ju defined in (3.23) and the 
directed jumps Jui of the components of u, as defined in (2.11), satisfy 

Ju(x) = ~, e i | Jui(x). (3.26) 
j = l  

Proof. Item (i) follows immediately from the definitions of approximate limits for 
< n u and ui and from the inequalities [ui[< [u[ = ~i=1 [ui[, and item (ii) follows from 

the definition of approximate limit relative to c~. To verify item (iii), we assume first 
that x is a jump point for u with determining vectors {c~, -~} .  Then the approxi- 
mate limits u~(x) and u_~(x) both exist but are not equal. It follows from item (i) 
that, for all i ~ { 1 , . . . ,  n}, the approximate limits (ui)~(x) and (ui)_~(x) both exist, so 
that x is a regular point for every component of u. Moreover, because 
u~(x) 4: u_~(x), we have (ui)~(x) 4: (ui)_~(x) for at least one i ~ { 1 , . . . ,  n}. For every 
i ~ {1 . . . . .  n} at which (ui)~(x) = (ui) ~(x), ui is approximately continuous at x. 
This verifies the "only if" part of item (iii). To prove the "if" part it suffices to 
observe that the three conditions on the components of u specified in item (iii) 
imply that there is a single pair of unit vectors {c~, -~}  for which the one-sided 
approximate limits (ui)~(x) and (Ui) c~(X) exist for all i E {1 , . . .  , n}. By item (i) u~(x) 
and u_~(x) both exist. However, because there is at least one component of u that 
has a jump point at x, it follows that {a, -c~} is the only pair of vectors for which 
both u~(x) and u_~(x) exist. Thus, u has a jump point at x. This completes the proof 
of item (iii). 

Lastly, to prove item (iv), we assume that x is a jump point for u and use the 
definition (3.23) to write 

J u ( x )  = (u~(x) - u_~(x ) )  |  

= ~ ((u~(x).ei)e i - (u_~(x).ei)e i) | c~ 
i=1  

= ~ e' | ((u~(x)" e') - (u_=(x)" el))o~ 
i = 1  

= ~ e ' |  ((ui)=(x) -- (ui)_~(x))o< (3.27) 
i=1  

The last equality follows from the relation 

lim ( u ' e i ) ( y ) = (  lim u(y) ) ' e  i, (3.28) 
y ~ x, yEN ~ \ y ~x ,  yeCg 

which is valid whenever u has an approximate limit with respect to cg at x. 
Relations (3.27) and (2.11) immediately yield (3.26). [] 
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Item (iii) of Proposition 3.3 provides the following relation between F(u), the set 
of jump points of u, and {r(u , ) l i  ~ {1,... ,  n}}, the sets of jump points of the 
components of u: 

F(u) c U F(u~). (3.29) 
i = 1  

Again, according to item (iii), in order that a point x ~ E satisfy x ~ ~jT= 1 F(ui)\F(u), 
either x is not a regular point for at least one component of u or there are at least 
two components of u having jump points at x with different pairs of determining 
vectors. We prove below that U~= 1 F(ui) and F(u) are area-equivalent. 

Proposition 3.4. Let sJ be a piecewise fit region, and let u : d ---, ~ be a vector-valued 
function satisfyin9 the followin9 requirement: there is a finite cover {AjI j  ~ {1 . . . . .  J} } 
consistin9 of fit regions such that, for each j ~ {1 , . . .  , J}, the restriction ul~/j of u to 
~ j  has a C ~ extension to ~. Moreover, let an orthonormal basis {e~l i ~ { 1 , . . . ,  n}} 
of q/ be 9iven. The jump sets F(u) and F(ui), i e {1 . . . . .  n}, then satisfy not only 
(3.29), but also 

F(u) F(ui). (3.30) 
i = 1  

Proof. For each ui:~4 -~ R, we have from Lemma 3.1 that the function 

�9 (ui(x)  for x e d ,  

u~(x) := l 0 for x e o ~ \~  
(3.31) 

is of bounded variation. By (BV2), the set of points of N which are not regular 
points of u e form a set of area zero. Because the points in dens sJ that are not 
regular points for ui also are not regular points for u~, it follows that the set 5~, - of 
points of dens d that are not regular points of u~ has area zero. Consequently, 
~J~= 1 5Pi has area zero. The observation following the proof of Proposition 3.3 tells 
us that (3.30) is satisfied if the set 

there are at least two components ] 
:= x e d e n s d  of u having jump points at x with [ (3.32) 

different pairs of determining vectors J 

has area zero. In order to verify that ~ has zero area, we consider the partition 
{c~jlje { 1 , . . . ,  J}} of d obtained as in (3.2) with the scalar-valued function 
v there replaced by the given vector-valued function u, and we again use the lemma 
[-5, Sect. 2.5] whose statement contains (3.13) to write 

Y J 
A 

d e n s ~  ~ U densCgJ u ~ Fk~, (3.33) 
j = l  k , l = l  

k + l  

with Fkz given by (3.14). Moreover, according to the same lemma, at all points Xo in 
FkI the outward normals Vk(Xo) and vl(xo) to % and % satisfy 

Vk(Xo) + VI(Xo) = 0. (3.34) 
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We observe that, at each density point of cgj, u is approximately continuous, 
because Ulint~g j extends to d o as a C a function. Therefore, no component of u can 
have a jump point in J Uj=adensCgj. Consequently, the intersection of ~ and 

s ~)j=~ densC~j is empty. To complete the proof, we only need to prove that the 
intersection of ~ and J Uk,l=aFkt is also empty, i.e., that 

k + l  
J 

U (FktC~) = 0. (3.35) 
k , l =  l 

k ~el 

Moreover, that each Fk~ is a subset of the reduced boundaries of both ~k and cg z and 
that u I% and u I% each extend to g as a C a function imply that each component ui of 
u has approximate limits with respect to both Cgk and cg~ at every point in Fk~. 
Therefore, (3.34) permits us to conclude that every point Xo in Fkl is a regular point 
for each component u~, and {Vk(Xo), V~(Xo)} = {Vk(Xo), --Vk(Xo)} is a pair of deter- 
mining vectors for each ui. Consequently, all components of u share a pair of 
determining vectors at x0, and this implies that N and Fk~ are disjoint. [] 

Remark 3.5. By using the fact that, ifu~ ~ BV, then the set F(u 0 is a set of the class 
F as defined in [6, Sect.5.1.5], one can prove that the relation (3.30) holds for all 
mappings u: g ~ q /whose  components are in B V  [4]. 

We are now in a position- to extend Theorem 3.2 to vector-valued functions. 

Theorem 3.6. Let d be a piecewise fit region, and let u : d  -* ql be a vector-valued 
function satisfying the smoothness condition in Proposition 3.4. Then 

~ Vu(x)dVx= - S Ju(x)dAx + ~ u+(x)Qv(x)dA~. (3.36) 
d F(u) rby ~ '  

Proof. We choose an orthonormal basis {ei[i ~ (1 . . . . .  n}} of ~ and note that 
each component u~ = u" e ~ of u satisfies the hypothesis of Theorem 3.2. Writing 
(3.10) for each ui, taking the tensor product with e ~, and summing the resulting 
equations, we obtain 

~ el@ Vui(x)dV x -- __ ~,, ~ el@ Jui(x)dA x 
i = t  d i = 1  F(ui) 

+ ~, ~ e~| (3.37) 
i = 1  r b y d  

By (3.30), we have 

F(ui) c F(uj) ~ F(u), (3.38) 
j = l  

and we note that A-almost every point of F(u)\F(ui) is a point of approximate 
continuity for ul. Therefore, Jui(x) = 0 for A-almost every x in F(u)\F(ui). Thus, 
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r(ui) can be replaced by F(u) in (3.37), and (3.36) follows from (3.26) and the 
relations 

Vu(x) = ~ e i | Vui(x), (3.39) 
i = 1  

u(x) | v(x) = ~ e ~ | ui(x)v(x). [] (3.40) 
i = I  

4. Integral-gradient formulae for structured deformations 

Integral-gradient formulae appropriate for the classes of deformations intro- 
duced in [1] can be deduced easily from Theorem 3.6. Here we consider the classes 
of deformations Sid, LimSid, Std, defined in [1], and for each of them we write the 
appropriate integral-gradient formula. 

According to Definition 3.2 in [1], a simple deformation from a piecewise fit 
region d is a pair 0c, f) ,  where K is a subset of d of volume zero such that d \~c  is 
a piecewise fit region, and f, the transplacement associated with the given simple 
deformation, is a C 1 mapping of d \ t c  into g which, among others, has the 
following property: there is at least one finite cover of d \ ~ :  by fit regions d ;  such 
that the restriction of f t o  each d j  has a C 1 extension to 4 ~ 

For the point-valued mapping f :  d \~c  ~ do, one can define approximate limits, 
traces and the directed jump as done for vector-valued functions. If we choose 
a fixed arbitrary point o of g and define u: d \ ~  ~ • by 

u(x) :=f(x)  - o, (4.1) 

we can relate the gradient, the inward trace and the directed jump of fwi th  those of 
u by 

Vf(x) = Vu(x), f+(x)  = o + u+(x), J f(x)  = Ju(x). (4.2) 

For a simple deformation (~:, f ) ,  u satisfies the assumptions of Theorem 3.6, and 
therefore Eq. (3.36) holds. Note that the fact that K has volume zero implies 
d ~ d \K and rby ~r = rby(~r \ ~:), so that (3.36) can be written with d instead of 
d \~c. This equation, together with relations (4.2), yields 

Vf(x)dVx = - ~ Jf(x)dAx + ~ (f+(x) - o)|  v(x)dA~. (4.3) 
F ( f )  r b y d  

This is the integral-gradient formula for simple deformations. Note that the last 
integral in the formula is independent of the choice of the point o. 

Let d be a piecewise fit region of & According to [1, Def. 4.1], a limit of simple 
deformations from ~r is a triple (~c,g,G) with ~c~sJ ,  9 ~ L ~ ( d ,  do), 
G e L*(sJ ,  Lin ~/f), for which there is a sequence n F--~(~cn,fn) of simple deforma- 
tions from ~4, called a determining sequence for 0c, g, G), such that: 

tc = liminf~cn = ~) ~ to,, (4.4) 
n ~  p = l  n=p 
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lim 1[ g - f .  JILted,v) = 0, (4.5) 
n - ~ o o  

lim 11G - Vf, ]tL~(W,Lin-r) = 0. (4.6) 
t l ~ o O  

It can be proved [1, Theorem 4.10] that ~: has volume zero and that g and 
G have representatives go, Go which are continuous in d \ K .  Moreover  ([-1, 
Lemma 4.11]), n ~ f ,  and n ~--~ Vf, converge to g0 and Go uniformly, in the sense 
that for every ~ > 0 there is an n~ e N such that, for all n > n~, 

sup I L ( x ) -  go(x)l < e, (4.7) 
xeW\(rur.) 

sup ] Vf,(x) - Go(x)] < e. (4.8) 
x~W\(ru~.) 

We now prove an analogous property of uniform convergence for the inward traces 
of the functions f ,  on the essential boundary of d .  

The proof  of Theorem 3.6 shows that each of the functions u,(x) :=f,(x) - o 
has an inward trace u + defined A-almost everywhere and summable on 
eby(d\~c, )  = e b y d .  By (4.2), the same holds f o r f  +, the inward trace of f . .  We 
denote by ~ ,  the domain o f f  + , i.e., the set of all points x ~ eby d at which the 

t r a c e f  + (x) is defined, and we observe that ~ ,  ~ e b y d  by (BV3). We also denote 

by ~ o  the set 

0 O  

Yo := ~ ~ , ,  (4.9) 
n = l  

which also is a subset of eby d with full area measure. 

Theorem 4.1. Let d be a piecewise fi t  region and let n ~--~(~c,,f,) be a sequence of 
simple deformations from d .  Assume that the sequence n ~-~ f" has a uniform limit 
go := ~4\~c --* ~ in the sense of relation (4.7), with ~ given by (4.4). Then the sequence 
n ~-~ f+ of the inward traces of the functions f" on eby d has a uniform limit defined 
over the set ~o defined in (4.9). Moreover, this limit is summable in eby d and is the 
inward trace of go on eby d .  

Proof. Let e > 0, n e N, x ~ ~-, be given. For every 6 > 0, define 

~ ( n , x , ~ )  := {y r ~(x,  6)c~d\( tc ,  utc)l If+ (x) - f , (  y)[ <e} .  (4.10) 

It  is clear from the definitions of approximate limit and of trace given in Section 
2 that 

V(~(n,x,(~)) 
lira = 1. (4.11) 
~ o  v ( ~ ( x , ( ~ ) n d )  

Now let x ~ ~ o  and m, n ~ N be such that m, n > n~, where n~ e N is such that the 
inequality (4.7) holds for all n > n~. We also choose 6 such that the set 
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~ ( m ,  x, 6 ) ~ ( n ,  x, 6) has positive volume; in view of (4.11), this can be done by 
choosing 6 such that 

1 V(~4nN(x,6)) .  (4.12) m i n { V ( ~ ( m , x ,  6)), V (~ (n , x ,6 ) ) }  > 

We then choose y ~ ~ ( m ,  x, 6) c~r x, 6) and consider the inequality 

+ X i f , . (  ) - f + ( x ) l  < 1/+ (x)--fm(Y)l + } f~ (Y) -  go(Y)I 

+ I90(Y)--f,(Y)l + ]f,,(Y)--f+(x)l (4.13) 

which, by (4.10) and the property (4.7) of uniform convergence of n ~-* f,(y), allows 
us to write 

[f+(x) - f + ( x ) l  < 4e Vxe J0 -  (4.14) 

This implies that for every x e 2 o  the sequence n ~ f +  (x) is a Cauchy sequence 
and, therefore, converges to a point which we callfo(x). In this manner, we have 
constructed a mappingfo : ~o  --, g such that the sequence n ~ f +  of the inward 
traces converges pointwise to fo. Moreover, the inequality (4.14) tells us that the 
convergence is uniform on ~o ,  because n~ does not depend upon the point x in ~0.  
Finally, fo is summable because it is the L~-limit of a sequence of summable 
functions. It remains to prove that fo is the trace on eby ~ of the limit 9o of the 
sequence n ~-~ f, .  First of all we note that the uniform convergence of n ~ f +  to 
fo on Yo implies that for every e > 0 there is an n'~ e N such that n > n'~ implies that 

If,+,(x)--fo(x)l < e VXeYo.  (4.15) 

For  a fixed e > 0, we then choose x e Yo and n > max{n~,n'~}. We also let 6 > 0 be 
given and choose y e ~ ( n ,  x, 6), to get the inequality 

] f o ( x ) -  Oo(Y)l < ] f o ( x ) - f 2 ( x ) ]  + If2 ( x ) - f , ( y ) [  + I f , ( Y ) -  9o(Y)]. (4.16) 

In the right-hand side, we have ]fo(x) - f ,+(x) l  < e by (4.15), If,(Y) - 9o(Y)l < ~ by 
(4.7), and If.+(x) -f.(y)l < e by (4.10). We then conclude that 

]fo(x) - 9o(Y)] < 3e Vx6 ~-o, Vy e ~ ( n , x ,  6), (4.17) 

and we deduce from (4.11) that the set ~ ( n ,  x, 6) is sufficiently large to ensure that 
fo(x) is the inward trace of 9o at x. []  

It is now easy to obtain an integral-gradient formula for limits of simple 
deformations. Indeed, if n ~-, (~c,, f ,)  is a determining sequence for the limit of simple 
deformations (~c, g, G), writing the integral-gradient formula (4.3) for each (~c,, f ,)  

JVf,,(x)dVx = - ~ Jf,(x)dAx + ~ ( f + ( x ) - o ) |  
d r( fn)  r b y ~  

in the limit as n ~ oe we obtain from (4.6) and (4.15) that 

(4.18) 

~ G(x)dVx = - lim ~ Jf,(x)dAx + ~ (93 (x) - o) | v(x)dAx. (4.19) 
d n--*co F(fn ) r b y ~  
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Note that, whereas the limits of the first and third integral in (4.18) take an explicit 
expression in terms of the limiting fields G and gg, the same does not occur for the 
second integral. Nevertheless, (4.19) tells us that the limit of the second integral 
exists and is determined by the two remaining integrals in (4.19). 

In [1, Sect. 5], a structured deformation from a piecewise fit  region s~/ has been 
defined to be a triple (~:, g, G), in which (~c, g) is a simple deformation from d and 
G is a tensor field defined on d \ t c  and subject to appropriate regularity assump- 
tions. The Approximation Theorem, also proved in [1, Sect. 5], shows that every 
structured deformation is a limit of simple deformations. Consequently, for a struc- 
tured deformation both formula (4.3) for simple deformations and formula (4.19) 
for limits of simple deformations hold. Subtracting (4.19) from (4.3), withfreplaced 
there by g, leads to the equation. 

(Vg(x) - G(x))dVx = - ~ Jg(x)dA~ + lim 6 Jf,(x)dAx. 
o~ r(o) n--,~ F(L) 

(4.20) 

5. Applications to continua undergoing fracture 

In this section we review our earlier interpretation [1] of simple deformations, 
limits of simple deformations, and structured deformations as mathematical ob- 
jects that describe geometrical changes in a continuous body undergoing macro- 
scopic fracture (macrofracture) and microscopic fracture (microfracture). The integral- 
gradient formulae of Section 4 then permit us to identify measures of total deformation 
due to fracture, total deformation due to microfracture, and total deformation due 
to macrofracture, as well as a volumetric density of deformation due to microfrac- 
ture. 

We consider in a three-dimensional Euclidean space a continuous body that 
occupies a given piecewise fit region s~. The points of (int clo d ) \ ~ 4  are viewed as 
pre-existing crack sites or unopened cracks. Each simple deformation (~c, f )  from 
d is viewed as introducing new cracks in the body at the points of tr and then 
moving each material point x in ~ \ ~  to the point f (x)  i n f ( d \ ~ : ) .  The set of jump 
points F ( f )  is included in ~w((intclo d ) \ s ~ ) ,  the points on the new and on the 
pre-existing crack sites. At a point x in F(f ) ,  the determining vectors {v(x), - v(x)} 
distinguish the two sides of the crack, andfv(x)(x) -f_,(x)(x)  gives the displacement 
of points near x on the + v(x)-side of the crack, relative to points near x on the 
- v(x)-side of the crack. Of course, there is no reason to choose as the reference for 
measuring displacements one side (here - v  (x)) over the other. The tensor Jf(x) = 
(f~(x)(x)-f_~(x)(x))| v(x) keeps track of the relative displacement without the 
necessity of making a choice of one side of the crack site over the other, and we call 
J f  (x) the tensor of deformation due to macrofracture at the point x in F( f ) .  The area 
integral Sr(i)Jf(x)dAx then represents a net or total deformation in d due to 
macrofracture for the simple deformation (t~,f) from ~4. At a point x in d \ ~ , f i s  
differentiable, no fracture occurs, and we call Vf(x) the macroscopic deformation at 
x. Similarly, we call S~Vf(x)dV~ the total macroscopic deformation in ~4. The 
integral-gradient formula for simple deformations (4.3) can be interpreted as 



Structured Deformations 137 

follows: for a simple deformation, the total macroscopic deformation of d plus the 
total deformation in d due to macrofracture is determined by the displacements of 
the boundary of d .  

Next we consider a limit of simple deformations (t~, g, G) along with a determin- 
ing sequence n ~-+ (~cn, f ,)  of simple deformations. Because G = lim,_~ o~ Vf~ and V f ,  
measures deformation away from sites of fracture, we have called G the tensor 
of deformation without fi'acture [1, Sect. 6], and we here call ~,~G(x)dVx the 
total deformation in d without fracture. Similarly, we call the limit 
l i m , ~  Sr(~,)Jf,(x)dAx the total deformation in d due to fracture. The integral- 
gradient formula (4.19) for limits of simple deformations then admits the interpreta- 
tion: for a limit of simple deformations the total deformation in d without fracture 
plus the total deformation in d due to fracture is determined by the displacements 
of the boundary of d .  

For  a structured deformation fie, g, G), not only is fie, g) a simple deformation 
but also (to, g, G) can be regarded as a limit of simple deformations. The integral- 
gradient formula (4.20) results from subtracting the two corresponding versions, 
one for simple deformations and one for limits of simple deformations. In particu- 
lar, the displacements on the boundary of d do not appear in (4.20). The right- 
hand side of (4.20) is the total deformation in d due to fracture minus the total 
deformation in ~ due to macrofracture; therefore, we interpret the difference 

lim ~ Jf~(x)dA~- ~ Jg(x)dA~ 
n ~ o o  F(fn ) F(a) 

as the total deformation in s~ due to microfracture. Relation (4.20) now yields the 
result: the total deformation in d due to microfracture has a volume density which is 
given by the tensor M := Vg - G. 

In [1], we have called M the Burgers microfracture tensor, and we showed there 
that M is a density of deformation due to microfracture along lines. The present 
analysis extends the interpretation of M from a one-dimensional density to a three- 
dimensional density. 
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