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1. Introduction 

One of the most challenging questions in the mathematical theory of the 
Navier-Stokes equation, which in many respects is still open, is the problem of 
steady plane flow around an obstacle. Such a problem consists in determining the 
velocity v = (vl, v2) of the particles of the fluid and the associated pressure field 
p satisfying the system of equations 

Av = v. Vv + Vp + f ~ i n  f~ (1.1) 
V'v = 0  J 

where f~ (the region of flow) is a two-dimensional domain lying in the complement 
of a compact region (the obstacle) a n d f i s  a prescribed vector field (the negative of 
the body force). To (1.1) one must add the condition on v at the boundary (?f~: 

v(x)  = v,(x), x ~ cgfL (1.2) 

and at large distances 

lim v(x) = v~ (1.3) 
Ix l  ~ co 

where v. is a prescribed function and v~ is a given constant vector. For simplicity, 
we set the coefficient of kinematical viscosity equal to one. 

The investigation of the existence of solutions to problem (1.1)-(1.3) traces back 
to the work of LERAY (1933) who proved that, for sufficiently smooth data, there 
exists at least one smooth solution to (1.1), (1.2). Concerning the condition at 
infinity (1.3), LERAY was only able to show that these solutions have a finite 
Dirichlet integral, namely, 

Vv:Vv =< M, (1.4) 
f~ 

where M depends only on the data. However, it is clear that (1.4) alone is not able 
to control the convergence of v(x)  to a constant vector v 0 as Ixl tends to infinity 
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and, in fact, it is easy to find examples of solenoidal vector functions that satisfy 
(1.4) and that grow at large distances. The asymptotic behaviour of solutions to 
(1.1), (1.2) that satisfy (1.4) was first studied by GILBARC & WEINBER~ER (1974, 1978). 
They show, in particular, that the velocity field v of all these solutions correspond- 
ing to f o r  bounded support either converges in a well-defined sense to some vector 
v o or is such that the LZ-norm of v over the unit circle approaches infinity at large 
distances. Moreover, they show that the solution constructed by the method of 
LERAY (1933) is bounded and therefore converges at infinity. More recently AMICK 
(1988) has shown that any (sufficiently smooth) v satisfying (1.1), (1.2) with 
f = v. - 0 and satisfying (1.4) is necessarily bounded. The techniques used by these 
authors are essentially based on maximum principles and topological arguments. 
However, the problem of the coincidence of Vo and v~o remains open. 

Even if these solutions also satisfy (1.3), do they exhibit the basic features 
expected from the physical point of view? For  instance, we expect that they satisfy 
the energy equation and that, for vo~ + 0, the associated flow presents an infinite 
wake in the direction of v~. These properties are related to the asymptotic structure 
of solutions at large distances. In this regard, one may argue that v can be 
represented asymptotically by an expansion in "reasonable" functions of Ix l with 
coefficients independent of Ixl. However, if voo = 0, then not every such solution 
can be represented in this way, because one can exhibit examples of solutions to 
(1.1) (1.3) with voo = 0 that obey (1.4) and decay more slowly than any prescribed 
negative power of Ix] (cf. HAMEL (1916); cf also GALDI (1994b, Chapter X, Section 
2)). Motivated by these considerations and in the wake of the work of R. FINN for 
the three-dimensional case (cf, e.g., FINN (1965)), SMITH (1965) introduced the class 
of physically reasonable solutions (PR solutions) which satisfy 

v ( x )  - v ~  = O ( I x [  - 1 / 4 - ~ )  (1.5) 
for all large Ixl and some e > 0. SMITr~ showed that every (smooth) PR solution to 
(1.1) corresponding t o f  = 01 and to v~o =~ 0 possesses the desired regularity at large 
distances since it behaves there like the Oseen fundamental tensor E (cf. Section 2). 
This latter property means that there exists a (constant) vector m such that 

v ( x )  - r ~  = m . e ( x )  + ~ ( x )  (1.6) 

where .~(x) = O(Ixl llogZlx]). Observe that, due to the properties o r E  (cf Section 
2), (1.6) shows a behaviour better than that originally assumed in (1.5) and that, in 
particular, v(x) - vo~ = O(Ixl 1/2). 

Existence in the class PR was proved by FINN & SMITH (1967) and more 
recently, by a different approach and in a more general context, by GALDI (1993). 2 

The problem is then to investigate under which condition a solution to 
(1.1)-(1.3) with v~o =t = 0 and satisfying (1.4) is in the class PR. In this connection, it is 

1 This assumption is made for the sake of simplicity. The result continues to hold 
providedfdecays sufficiently fast at large distances. 

2 It is interesting to note that the results known for the uniqueness of PR solutions are 
not enough to ensure that (for small data) the solutions of FINN & SMITH coincide with those 
of GALDI. 
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interesting to recall that in the three-dimensional case, due to a result of BABENKO 
(1973) (cf also GALDI (1992)), every (smooth) solution to (1.1)-(1.3) corresponding 
t o f o f  bounded support, 3 v~ # 0, and satisfying (1.4) is in the class PR. 4 For  the 
case at hand, a recent result of AMUCK (1991) ensures that every symmetric solution 
to (1.1) (1.3) corresponding to f -  v, _= 0, vo~ # 0, and satisfying (1.4) is also in the 
class PR. We recall that if aft is symmetric about the xl-axis and voo = (a, 0) (a =t= 0), 
then a solution {v(xl, x2) = (Vx (xl, x2), v2(xx, x2)), p(xl, x2)} is said to be symmet- 
ric if vl and p are even in x2 while v2 is odd in x2. The method used by AMICK is 
again based on a clever use of maximum principles, and, while it could possibly be 
extended to non-symmetric flow, it is not obvious how to generalize it to include 
the case of non-zero body forces and boundary data. This last circumstance should 
not be overlooked, in that the pathological solutions of HAMEL (in the case voo = 0), 
which we mentioned before, are just generated by a non-zero total flux of the 
velocity field at the boundary. 

The main objective of this paper is to show the following result. Let 
{v = (vl, v2), p} be a (smooth) solution to (1.1) corresponding to f of bounded 
support s and satisfying (1.3) with v~o = (1, 0) 6 and (1.4). If for some s E (1, oe) and 
p > 0  

S [v2(x)l sdx < m,  (1.7) 
Ixl > ; 

then (v, p) is a PR solution. It is important to emphasize that our result requires the 
vanishing of neither the boundary data nor the total flux of the velocity field 
through the boundary. Our method of proof is different from those of SMITH and 
AMICK, and relies essentially on the coupling of certain Lq-estimates for the Oseen 
problem in the plane (cf. GALDI (1991, 1994a) and Section 2) with an estimate of the 
type of Saint-Venant for the Dirichlet integral of the velocity field over a suitable 
neighbourhood of infinity (cf Section 4). However, the key tool is the use of these 
Lq-estimates to show that every solution to (1.1) satisfying the assumptions stated 
previously in fact enjoys the  same summability properties as the Oseen funda- 
mental tensor. This is achieved by means of a suitable perturbation technique 
based on a simple "cut-off" argument (cf. Section 3). For  this argument to hold, it is 
of the utmost importance that certain components of the Oseen fundamental 
tensor present no "wake region", in the sense that their uniform asymptotic 
behaviour is basically isotropic and optimal. We remark that the solutions con- 
structed by FINN ~: SMITH (1967) and GALDI (1993) satisfy condition (1.7). In this 
respect, we note that hypothesis (1.7) is needed to ensure uniqueness for solutions 
to a problem which is a suitable perturbation to the Oseen problem (cf (3.1) and 

3 See footnote 1. 
4 Of course, in the three-dimensional case, the velocity field of a PR solution has 

a behaviour different from that stated in (1.5), and the estimates on the "remnant" N in (1.6) 
are likewise different, cf FINN (1959, 1965). 

5 See footnote 1. 
6 Clearly, this condition causes no loss of generality. 
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Re mark  3.1). If  we were able to show such uniqueness under  the sole assumpt ion  
that  v satisfies (1.3) and  (1.4), our  result would coincide exactly with that  p roved  by 
BABENI~O for the three-dimensional  case. 

2. Preliminaries 

Let us first in t roduce some notations.  N is the set of  all posit ive integers. IR is 
the real line and IR 2 is the two-dimensional  Euclidean space. The  disc of  radius 
R centered at  the origin is denoted by BR. By f~ we always denote  a domain  (open 
connected set) in IR 2. By fi we mean  the closure of  f~ and by 0~  its boundary .  We 
also set f~c = IR - f~. Fo r  N ~ IR 2 we indicate by 6 (~)  its diameter.  Iff~ is a domain  
which is the complemen t  of a (not necessarily connected) compac t  set f~c with 
a non-empty  interior, i.e., ~ is an exterior domain ,  then taking the origin of  
coordinates  into the interior of  f~c, we put  

aR = {xE~: lxr  < R}, 

f~R = {x~ ~:lxl  > e } ,  

f~R1R2 = {X e f~:R2 > Ixl > R1 } 

for R > 6(f~ C) and R2 > R1 > 6(~c). We indicate by C~(O) the class of functions in 
f~ which are infinitely differentiable and  of compac t  suppor t  in fL 7 Fo r  k = 1, 2 we 
set Dk = Ofl?Xk. Likewise, for c~ = (~1, ee), ai > 0, we let 

D ~ = Ox~Ox~2~, I . l  = " l  + " z .  

By  Wm'a(~),  m e NL){O}, q ~ [1, ~ ] ,  we indicate the Sobolev space of order  (m, q) 
endowed with the n o r m  

H U IIrn,q,n = (1~1~_ 0 ~ NI1/q IO~ul q )  , 

where the subscript  fl  will be omi t ted  if no confusion arises, s We have 
W~ = Lq(n) and set Ilullo,~,~ --- Ilul[~,~. 

For  m e N u { 0 }  and q e (1, oe), we define the homogeneous Sobolev space (cf  
SIMADER & SOHR (1994, Chap te r  I), GALDI (1994a, Chap te r  I)) 

D m'q = D"'q(f~) = {u E Llo~(f l):Dtu ~ Lq(n) ,  ]l[ = m}.  

One can prove  that  if u ~ Dm'a(f~), then 

D t u e L q ( f g ) ,  0 <-_ ]/1 < m for all compac t  fl '  with ~ '  c f~. 

7 As a rule, if Y denotes a space of scalar functions, we use the same symbol to denote the 
space of vector functions with components in Y. 

8 Unless their use clarifies the context, we also omit the infinitesimal volume and surface 
elements in the integrals. 
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In D"'g(f~) we introduce the seminorm 

\~lq 
lulm'q'~ = Is~,~ ~n Io=ulq) ' 

where, as before, the subscript f~ will be omit ted if no confusion arises. It is simple 
to show that  {D "'q, [. Ira,q} is a complete normed  space, provided that  we identify 
two functions ul,u2eDm'q(f  0 whenever  [ u l -  u2]m,q = 0; that is, when ul and 
u2 differ by a polynomial  of degree m - 1 at most. 

We now recall some known properties concerning the Oseen system in IR 2 

#u 
Au - F + VTr, V . u  = 9 ,  (2.1) 

0xa 

where F and 9 are given functions. Specifically, we have the following result (cf 
GALDI, 1994a, Chapter  VII, Section 4). 

Lemma 2.1. Given 

F E Lq(lR2), g ~ W l'q(lR2), 1 < q < o0, 

there exists a pair of functions u, rc with 

u ~ W 2'q(BR), rc ~ W I'q(BR) for every R > O, 

satisfyin 9 a.e. the Oseen system (2.1). Moreover, 

c?u 2 u ~ D2'q(IR2), Uz e DI'q(IR2), ~x l  e Lq(IR ), 7t E Da'q(IR2), 

c3u 
lU2lx,q + ~ q + lul2,q + I~la,q = c(llFllq + I/gll~,q). 

In addition, the following properties hold. I f  1 < q < 3, then 

ii ~ D 1'3q/(3 -q)(IR2),  

lull,3q/(3-q) < c(llFIlq 4- [Igllx,q). 

I f  l < q < 2, then 

I f  l < q < 3 then 

U 2 ~ L 2q/(2-q)(]m2), 7"g ~_ L 2q/(2 q)(]R2), 

[lu2 ][2q/(z-q) 4- 11~]12~/~2-~) _-< e(/IF41~ + Itg II1,~). 

U @ L 3q/(3 - 2q)(lR2), 

[]uH3q/(3-2q) =< e(HFII~ +/Iglll ,~),  
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where the constant c depends only on q. Finally, if(w, z) is another solution to (2.1) 
with 

#w 
E Lq(IR2), Dzw ff Lq(IR2), 1 < q < o% 

then 

0w 0u 
DZw = Deu, ~ = r + c o n s t .  a.e. in IR e . 

~X 1 - -  ~X 1, 

We end this section by recalling some properties of the Oseen fundamental  
tensor. Fo r  more  detailed information and for the proof  of the stated results, see 
GALDI (1994a, Chapter  VII, Section 3). Following OSEEN (1927, Section 4), for 
(x, y ) e  IRa we denote  by E and e a tensor field and a vector field such that  
(i,j = 1, 2) 

E i j ( x  - y) = ~jA ~y~y ~(x - y), 

(2.2) 

~ e , ( x - y ) = -  ~yj (A  - ~y~)  ~(x  - y) 

where 

1 Yl 
�9 (x - y) - 27c ~ {log x/(z - xa) a + (x2 - y2) 2 

xl 

+ K0(�89 x/(z - x l )  2 + (x2 - y2) 2) e (~-xl)}dz (2.3) 

with Ko (z) the modified Bessel function of the second kind of order  zero. Moreover ,  

1 x i - y j  
e j ( x -  y ) - 2 r c l x _  y[2, i , j =  1,2. 

By a direct (and tedious) calculation, one can show that 

( A + ~ y ~ 8 ) E i j ( x - y ) - ~ y e j ( x - y ) = 0 ,  

ay~ Ezj(x - y) = 0 

for all x 4= y.9 Denot ing by d the exterior of any circle centered at the origin, from 
(2.2) and (2.3) one can deduce the uniform bound  1~ 

IE(x)l < clx1-1/2 for all x ~ d .  (2.4) 

9 We adopt the Einstein summation convention over repeated indices. 
lo Notice that E depends on x, y only through x - y. 
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In addition, setting 

E1 = (Eli,  E12), 

we obtain the summability properties 

E 1 �9 L q ( ~ )  

.E 2 �9 L q ( ~  r 

OEz 
- - �9  
Oxl 

~3Ei 
- -  �9 L q ( d )  
Ox2 

E 2 = (E12 , E22) ,  

for all q > 3, 

for all q > 2, 

for a l l q > l , i =  1,2, 

for all q >3,  i = 1,2. 

(2.5) 

3. Summability properties at large distances 

The aim of this section is to give conditions on the velocity field v of a solution 
to the problem (1.1) tending to a nonzero vector at large distances, ensuring that its 
components vl, v2 satisfy the same summability properties (2.5) as the vectors 
E l ,  E 2 ,  respectively. As we show in the next section, these conditions allow us to 
conclude that the solution is physically reasonable in the sense of FXNN, that is, it 
behaves pointwise at large distances like the Oseen fundamental tensor. 

We begin by showing some existence and uniqueness results for a suitable 
linearization of (1.1). Specifically, let us consider the problem 

0u c3u 
a u  - : a - xl + A u 2  + w + a ,  v . u  = g, (3.1) 

where a, A, G and 9 are prescribed functions. 

Lemma 3.1. Let 

G�9 g �9  q �9  3) 

A �9 L2( ]R2) ,  a �9 L ~ ( ~ 2 ) .  

Moreover, let (u, ~) be any solution to (3.1) such that 

~U 2 
U 2 E Lzq/ (2-q) ( ]R2) ,  and D2u'  E �9 Lq(]R )' for  some Cl �9 (1, 2) 

lim ul(x) = O. 
Ixl ~ oo 

Then, there exists a positive constant c = c(q, ~t) (cf. (3.4) and (3.12)) such that if 

Ilalloo + ]IAII= < 4  
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u ~ D2'q(IRZ)~D 1' 3q/(3- q)(iR2)nL3q/(3 - 2q)(iR2), 

U2 ~Dt,CI(IR2)~L2q/(2 - q) ( I R 2 ) ,  

(re - rCo ) ~ D~'~(IR i )c~L 2q/~2-q)(IR 2) 

f o r  some ~o e IR. 

Proof. Let Xq,  1 < q < 3, denote 
w ~ L~o~ (IR e) such that the norm 

the Banach space of solenoidal functions 

[IwPlx~: = IIw2rlm~/<2-q)+ IlVw211q + w~D~x~ 

+ IlVwll3q/<3 q)+ ][O2wlJq + ]lwl13q/<3-2q) 

is finite. Denote by _q~<a) the hall in Xq of radius 3( > 0) and consider the map 

n(h) 
~ :WI E 1 ) q  ---> W ~ S q ,  

where w satisfies the ,problem 

0w 0w' 
A W - O x ~ = a ~ + A w ' 2 + V z + G ,  V ' w = g .  (3.2) 

For  all q ~ (1, 2), we have 

a OW' Aw'2 q Ow' q , } ~ x +  < Ilall+ ~ + []A[121lw2[]2q/t2-q) (3.3) 

by the H61der inequality. Thus, by the hypotheses made on G and g, the map 2 a is 
well defined for all q ~ (1, 3)- Furthermore, by Lemma 2.1 and (3.3), we find that 

[Iwllx~ _-< cll-(llalloo + I[1 H2)llw'llxq + IlSll~ + Ilgllx,~] 

/~(a) and for some cl = cl(q).  Thus, assuming (for instance) that for all w' ~ ~q 

1 
/lall+ + II/112 < 2cl (3.4) 

and choosing b => 2c1( II G llq + II g II ~,~), we find that s transforms oq/#) into itself. 
Moreover, from (3.2) with G- -  g - 0, and by (3.3), (3.4) we obtain 

Ilw Ilx~ =< �89 Hw' [Ix+ 
and so the existence of a solution w, z to (3.1) with w ~ Xq follows from the 
contraction mapping theorem. Moreover, z ~DI'q(IR 2) and therefore by the 
Sobolev theorem, z -  Zo ~ Leq/(2-q)(lRe), for some Zo ~ IR. We now show that 
u = w, z = 7z + const'a.e, in 11t 2. To this end, we let 

I'~ .= W - -  U, S = T - - T Z ,  
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so that 

A # -  

It is easy to show that 

W2 @ L2q/(2 -cD (JR2), 

To this end, it is enough to prove that 

W 2 �9 L 2q/(2 -q)(]R2),  

9~ 0~ 
= a ~ q- AU) 2 -k Vs, V" 1~ = 0. (3.5) 

0Xl 

0~ 
�9 

8X1 �9 Lq(]R2). (3.6) 

Assume that q < ci (the other case q > ~ can be treated likewise by interchanging 
the role of q and c7). Since w �9 DZ'q(lRZ), q < 2, by the Sobolev theorem we have 

W2 �9 Dl'Zq/(2-q)(IR2). (3.7) 

Since w2 �9 L 20/(2 -q)(]R2), from (3.7), and from known embedding results in exterior 
domains (cf, e.9., Remark 7.2 in Chapter II of GALDI (1994a)) we obtain 

W 2 �9 L~176 

which proves the firs( relation in (3.6). Furthermore, by the properties 

0w 
E �9 

and a well-known interpolation inequality of NIRENBERG (1959, Theorem at p. 125), 
we find that 

0w 
- -  �9 Ls(]R 2) for all s �9 [q, 2], 
0 x l  

and also the second relation in (3.6) follows. From (3.4) with w' replaced by ~ we 
thus conclude that 

3~ 
F = a ~ + Aw2 �9 Lq(]R2). 

Therefore, in view of Lemma 2.1, the problem 

& 
A z - - - = F + V ~ ,  V ' z = 0  

0xl 

admits at least one solution w*, s* such that 

HD2w*llq + 11w'112~/(2_~ + ~ < c2lIg]J 4 

<c2(l lal[oo+llAl[2)(  0~x~ 1 ) 
g 

(3.8) 
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with cz = c 2 ( q ) .  We now show that  

0 ( w *  - ,~) 
D 2 ( w  * - -  Iv) = =-- 0, w* = WE. (3.9) 

0x~ 

Actually, with v = w* - #, p = s* - s, it follows that  

0~ 
Av - V p ,  V ' v = 0 .  

0x~ 

We now use a local representa t ion for v in terms of the Oseen-Fuj i ta  t runca ted  
fundamenta l  tensor  (cf GALDI (1994a, p. 400)): 

D % i ( x ) =  - [. ~ j ( x -  y)D~vi(y)dy 
B R (x)  

- [. og,~[])(x -- y)D~(w*(y) -- wi(y) - ui(y))dy. (3.10) 
BR(x) 

Here,  for any fixed x, ~ J ~ ) ( x -  y) is an infinitely differentiable function with 
compac t  suppor t  in BR(X) satisfying the est imate 

~f(R)tx = (3.11) u t - y ) l  < CR-3/2 

for all large R with C independent  of R. Recalling the summabi l i ty  propert ies  of  w*, 
w and u and using (3.11) and  the H6tder  inequali ty on the r ight -hand side of  (3.10) 
for var ious values of  c~, we can easily show the validity of  (3.9). Fo r  instance, with 
I~1 = 2 we find that  

ID2vj(x)l < Cl[R-3/2R2(1-1/q)(lrl2,c~ + lul2,o) + R-3/ZR2(t-1/q)lwl2,q], 

and so, noticing that  - 3 + 2(1 - 1/s) < 0 for all s < 4, we prove  the first relation 
in (3.9) by letting R ~ oe in this last inequality. The  other  relations in (3.9) follow in 
a similar manner .  F r o m  (3.9) and  (3.8) we then obtain  

~ < c2(llall~ + 111112) ~ o +  11~2112~/(2-~) �9 IIDN~llq + 11~2[12~/<2-~ + ~x~ 0 

Thus, if 

1 
Ilalloo + IIA 112 < 2z"c--' (3.12) 

we conclude that  

~ ( w  - . )  
D 2 ( w - -  u )  ~ - -  --= 0, w2 = u2 ,  

~3xa 

and the l emma follows f rom the propert ies  o f w  and the fact that  ul tends to zero as 
Ix[ tends to infinity. 
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Remark 3.1. We do not  know if the conclusion of L e m m a  3.1 continues to hold 
under  the al ternat ive hypotheses  on u :  

D2u, ]u ~ L2(IR2), l im u(x) = O. 
oxl  Ixl ~ o~ 

If  it did, then assumpt ion  (3.14) in the ma in  T h e o r e m  3.1 could be weakened  to 
require only tha t  v2(x) tend to zero uniformly as [xl ~ oe. Nevertheless,  we can 
treat  the case c] = 2 if we suppose  that  A = 0, as shown in 

L e m m a  3.2. Let (u, 7z) be a solution to (3.1) with A - O, such that 

U E O2'2(~x2), ~ 1  E L2(]R2). 

Suppose, further, that 

G~Lr(IR2) ,  96 WI'r(IR 2) for some r~(1,2). 

Then, there exists a positive constant c = c(r) such that if 

[la [I o~ < c, 

then 

D2u' ~ ~ Lr(]R2). 

Proof.  Reasoning exactly as in the p roo f  of L e m m a  3.1, we can show the existence 
of a solut ion w, z to p rob lem (3.1) with A -- 0 satisfying 

~w w ~ Dz'r(IR2), z E DI'r(IR2), ~ e DI'r(IR2). 

Lett ing a ,  = w - u ,  s = z - ~, we find that  

A # - 0 x - ~ = a ~ - - V s ,  V ' w = 0 .  
vxl 

Again as in the p roof  of L e m m a  3.1, we m a y  use the Nirenberg  in terpola t ion 
inequali ty to show that  

a Ox~ s Lg(IR2)' 

and so, by L e m m a  2.1, and  by means  of the same procedure  used in L e m m a  3.1, we 
obta in  

IlDZrv[]2 + < clla[l~ 
2" 
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Therefore,  if I[ a ][ 0o is sufficiently small, we find that  

and the lemma is proved. 

3#  
D 2 ~  ' = - -  ----- 0 ,  

0xl 

With these lemmas in hand, we are now able to establish the main result of this 
section. 

Theorem 3.1. Let  (v, p) be a solution to the Navier-Stokes system (1.1) in ~ with 
f E Lq(~P) for all q ~ (1, 2] and for some p > 46(~ c) such that 

Assume, further, that 

Then 

v e DI"z(f~P), lim v~(x) = 1. (3.13) 
I x l  ~ co  

v2 ~ L~(f~P), for some s ~ (1, oo). (3.14) 

where Po is a constant. 

(va -- 1) ~ U~(~ p) for all ta > 3, 

U 2 ~ Lt2(~~ p) for all t 2 > 2, 

Or1 
- - ~  U~(f] p) for all t3 > 2, 
•x2 

0vl Vv2 e U'(f~ p) for all t4 > 1, 
~X 1 ' 

(P - Po)~ Us(s176 for all t5 > 2, 

Proof.  F r o m  the assumption on v and Lemma X.3.2 of GALDI (1994b) it follows 
that  

Vv E W ~'2(n~ (3.15) 

This condition, in turn, combined with (3.14) and Remark  7.2 in Chapter  II of 
GaLDI (1994a), yields 

lim Vz(X) = 0, 

and so, setting e~ = (1, 0), we find that  

lira v(x) = el .  (3.16) 
IxF ~ oo 

F r o m  the hypothesis, (3.15), (3.16) and (1.1) we also have 

Vp e L2(f~P). (3.17) 
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For R > p, let ~R be a smooth cut-off function defined by 

~0 if ,x, <R/2 ,  
~PR(X) = ~1 if IX] >= R. 

Setting 

U = O R ( V - - e l ) = O R g ,  ~=~ORP, 

from (1.1) we deduce that (u, ~z) satisfies the system 

where 

Clearly, 

k u  - - -  - c~x~ (~'R/2~)&~-x~ + u2 + V~ + G1, 

V ' u  = 9 ,  

G1 = O a f +  2V~R'Vv + AORg--  

= e" V~'R. 

34'R v~ v aOR _ pV~'R, 
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(3.18) 

G 1 E Lq(IR2) ,  9 e W l'q(lR2) for all q e (1, 2]. 

Moreover, we observe that in view of the assumption, if we take R sufficiently large, 
then the quantities 

0v 

can be made less than any prescribed constant. Setting 

2s 
4 = - -  (<2), 

2 + s  

by the H61der inequality and assumption we find that 

& 
u2 ~x2 ~ Lq(IR2)" 

Thus by Lemma 3.2 with a = ~n/2ffl, G = G1 + U2(~/OX2, r = q, by (3.15), (3.18), 
and by the properties of ~e, we deduce that 

& 
D2v, ~ E Lel(~R). 

From this and (3.14) we find that 

3u 
u E L 2q/(2-el)(]R2), D2u, ~x 1 E Lq(IR2). (3.19) 
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We next apply  L e m m a  3.1 with a = @R/ZVl ,A  = ~IR/2 63V/('~X 1 and G = 6;1. In view 
of (3.16), (3.18), (3.19), and the propert ies  of  0R we find that  for any given q E (1, 3) 
there exists an R so large that  

(V 1 __ 1) EL3q/(3 2q)(~')R), 

V 2 E L 2q/(2 - q)(~R), 

8Vl @ L 3q/(3 -q)(~')R), 

c~x2 

(~Vl V u  2 E Lq(~)R), 
(~x1 ' 

(P --  Po) E L 2q/(2 q)(~R).  

These conditions, along with (3.15)-(3.17), and the Sobolev embedding  theorem, 
allow us to conclude the validity of the summabi l i ty  propert ies  stated in the 
theorem. 

4. Asymptotic structure 

In  this final section we prove  that  any solution to (1.1) satisfying the assump-  
tions of  Theo rem 3.1 and corresponding to a body  force of bounded  suppor t  11 is 
physically reasonable  in the sense of FINN, that  is, behaves at large distances like the 
Oseen fundamenta l  tensor. We do this by showing that  the velocity field r of  every 
such solution satisfies 

v = el + O(Ixl ~) for some 6 > �88 

with el = (1, 0), since this condition, in turn, implies the desired result; cf  SMITH 
(1965). 

We begin by mak ing  some estimates of the type of de Saint-Venant  on the 
Dirichlet n o r m  of v - et .  In what  follows, we set 

u = v - - e  1 . 

L e m m a  4.1. Let  v satisfy the assumptions o f  Theorem 3.1 with f =  O. Then for  all 
R > p > 6(~c), the following estimate holds: 

Vu:Vu ~ c R  -1 /3+~  
f~a 

where ~ is an arbitrary positive number and c is independent of  R.12 

u See footnote 1. 
12 Of course, c depends on s in such a way that c --* oe as e --* 0. 
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Proof. Multiplying (1.1) by u and integrating by parts over ~R.R,, P < R < R, ,  we 
find that 

Vu:Vu = F(R) + F(R,) (4.1) 
~R, R* 

where 

F ( r ) =  . 

QBr 

Using the summability properties of u, p, we can show that there exists at least one 
sequence {Rk}k~N with Rk ~ GO as k ~ oo such that F(Rk) goes to zero. Thus, 
replacing R ,  by Rk in (4.1) and letting k ~ oo, we find that 

where 

G(R) = F(R) (4.2) 

G(R) = ~ Vu'Vu. 
f~R 

Taking into account that, by Theorem 3.1, 

u" Vu ~ L I ( ~ ' ) ,  

we find that 

f ~u 
gl(R) = U.~neLl(p , oo). (4.3) 

cSB R 

Furthermore, recalling that v ~ L~~ by Young's inequality we obtain 

R-~g2(R)=_R-~lu2v.n, ~Cl{R-~q'+l-[-~il2q t 
(~B R OB R ) 

for c~ > 0, and so, by Theorem 3.1, 

R ~g2(R) ~ LI(p, oo) for all ~ > ~-. (4.4) 

Finally, again by Young's inequality, 

R-~g3(R)=R-~ ,pu.n[<=cz{R-~S'+l+ ~ ,p,Slu,S}. 
6nBR 3 B  R 

Since, by Theorem 3.1, pu e LS(ff~ ~ for all s > 6, we deduce that 13 

R ~g3(R) 6 Ll(p, oo) for all ~ > ~. (4.5) 

Observing that 

R-~G(R) < R-~(gl(R) + gz(R) + g3(R)), 

13 We may take, without loss of generality, the constant Po in Theorem 3.1 to be zero. 
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from (4.3)-(4.5) we find that 

R - ' G ( R )  ~ L~(p, Go) for all c~ > 2 

and since 

G'(R)  = --  ~ V u ' V u  < O, 
c3B R 

we conclude from the identity 

that 

R 1-~G(R) = p~ ~G(p) + 

which proves the lemma. 

R 

d f drr (rl-~G(r)) dr 

P 

G(R) < c R -  1 +o: 

Our next task is to show that all solutions satisfying the assumptions of Lemma 
4.1 are physically reasonable in the sense of F~NN. To this end, we recall that every 
solution of Lemma 4.1 satisfies the asymptotic representation (cf e.g., GALDI 
(1994b, p. 211)) 

Uj(X) -= , /~iEij(x)  -t- ~ Eij(x  -- y)ul(y)Dtui(y)dy + sj(x) (4.6) 
fi 

where 

~ i  = - ~ [ T . ( u ,  p ) -  ~ l ludn l ,  
off 

is the complement of some closed ball which contains Oc and the support of f ,  T 
is the stress tensor associated with u, p, and E is the Oseen fundamental tensor. 
Finally, s satisfies 

O=s(x) = 0(Ix1-~2+1~1~/2), 

Lemma 4.2. Let  r satisfy the assumptions of  Lemma 4.1. Then, for all large I x 1, 

u(x)  = O(Ix] -1/4-") for some ~l > O. 

Proof. In view of (4.6) and of the bound (2.4), to show the result it is enough to 
prove that 

Nj(x)  - ~ Eij(x - y)ul(y)Dlui(y)dy = O([x]- l /4-") .  (4.7) 

To this end, setting Ix[ = 2R (sufficiently large), we split N thus: 

N j ( x )  = ~ E i j ( x -  y ) u , ( y ) D , u i ( y ) d y  + ~ E i j ( x -  y ) u t ( y ) D l u i ( y ) d y  
fir fi~ 

(1) ~ (2) ( 4 . 8 )  =- IVj + N)  . 



Steady Flow of a Viscous Fluid 117 

Since Ix - y[ ~ R = [x[/2 for y e ~R, by (2.4) we find that 

I N('I)J I ~ , c  ~ lu'Vu[. 

Therefore, taking into account that u" Vu ~ L ~ (~) by Theorem 3.1 we conclude that 

C1 
IN}X) I ~ ixl,/~-- ~. (4.9) 

By the H61der inequality we obtain 

--(2) iElq [Vul 2 N j <= lul S'~ a/s 

where 

(4.10) 

1 1 1 
+ - (4.11) 

s q 2" 

Choosing, for instance, s = q = 4 and using Theorem 3.1, Lemma 4.1 and (2.4) we 
deduce that 

(2) C2 
II~]j < = [X[~ 

for arbitrary 7 < -~. From this condition, (4.6), (4.8) and (4.9) we thus obtain 

lu(x)[ < c3 for arbitrary ~ < {. (4.12) 
= I x r  

We now use (4.12) to improve the uniform bound o n  N (2). TO this end, we observe 
that, by (2.5), we can take the exponent q in (4.11) to be any number greater than 
3 which, in turn, by Theorem 3.1, implies that we can choose s arbitrarily in the 
interval (3, 6). Thus, writing 

lul s = l u l 6 - ~ - ~ I u l L  (4 .13)  

with arbitrary small positive e, and with a arbitrarily close to 3 - e, from Lemma 
4.1, (4.10) and (4.12) we deduce that 

1 1 c2 N(2) 
j ~ C2 

Ixl , Ixl"~/s - i x l , .  +~/sr 

Since a/s can be taken arbitrarily close to �89 this latter estimate yields 

(2) C2 

[lwj < ixl~----- ;, 

for arbitrary 71 < �88 This condition together with (4.6), (4.8) and (4.9) then gives 

C3 
[u(x)] <__ ixl~, for arbitrary 71 < �88 (4.14) 
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Using this estimate,  we can give a further improvemen t  on the bound  for N (2) 
which then leads to (4.7). We again use (4.10), (4.13) and (4.14) to deduce that  

1 1 
IX~2)l = < c2 

Thus,  recalling the propert ies  of 7, a/s and 71 we conclude that  

1 
IN}2)[ < c3 - -  

for some ?2 > �88 which together  with (4.9) and  (4.7) implies (4.6), and the l emma  is 
proved.  

L e m m a  4.2 in conjunct ion with the result of SMITH (1965) leads at once to the 
following main  theorem. 

Theorem 4.1. Let v be a solution to (1.1), with f of  bounded support, 14 that satisfies 
the assumptions of  Theorem 3.1. Then, there exists a constant vector m such that 

v(x) = el + m ' E ( x )  + O(Ixl-llogZ]x[) 

for all sufficiently large ]x]. 
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