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FLOW THROUGH A POROUS ANNULUS
by R. M. TERRILL

University of Liverpool, England

Summary

The problem of laminar flow through a porous annulus with constant
velocity of suction at the walls and with swirl is reduced to the solution of
four non-linear differential equations. The significance of each of these
equations is discussed. By taking the swirl to be zero series solutions are
obtained for (i) small suction or blowing (ii) when the total flow into the
channel through the walls is small. Finally the asymptotic behaviour of the
flow for large suction or blowing is discussed. k

§ 1. Introduction. During the past few years a number of so-
lutions for steady laminar flow in porous channels have appeared
in the literature. The first solution for laminar flow in a uniformly
porous channel was given by Berman?); he showed that a solution
for the flow between porous parallel plates with constant and equal
suction at both walls could be obtained by assuming that the ve-
locity component normal to the walls was independent of the
distance along the channel. The behaviour of the resultant flow
depends on a parameter R, called the suction Reynolds number.
Several series solutions of this problem can be obtained depending
on whether R is large or small, positive or negative; a full dis-
cussion of these solutions and references to other work is given in
Terrill2:3). The important characteristic of the solutions is that
they appear to be well-behaved for all values of R.

If, in a two-dimensional channel, the velocities of suction or
blowing at the wall are not equal a number of possible asymptotic
solutions arise depending on the relative magnitude of the wall ve-
locities. Proudman4) has given a complete discussion of the nature
of the asymptotic solution for this flow.

A solution for the flow in a porous pipe in which there is constant
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suction or blowing at the wall has been given by Yuan and Finkle-
stein5). They obtained series solutions for large negative R corre-
sponding to large injection and for small R. The solution for small
positive R corresponding to small suction at the wall converges
slowly and therefore White$) made a numerical investigation of the
solution for the case of suction at both walls. White showed that
for positive R there are either dual solutions or no solutions, which
indicated that the flow through a porous tube would break down
for small suction Reynolds numbers. To try to obtain solutions for
all positive R Prager?) introduced a non-zero swirl velocity and
succeeded in obtaining numerical solutions in the range of suction
Reynolds numbers for which White could not obtain a numerical
solution. Although no analytic investigation has yet been made it
seems probable that to obtain a solution that does not break down
for flow in a porous pipe when there is suction at the walls, swirl
will have to be included.

An interesting approximate solution for flow in a porous wedge
or cone has been given by G. I. Taylor8). Although Taylor’s as-
sumptions*) on the boundary condition normal to the wall are
different from those taken in the above papers his solutions exhibit
many of the same features. For instance, for large blowing at
both walls his solution indicates a discontinuity at the centre of
the wedge corresponding to a viscous layer.

As far as the author is aware the only solution for flow in a
porous annulus has been given by Berman?9). This solution is the
simple case where the amount of fluid entering through the outer
wall is equal to the amount of fluid leaving through the inner
wall. The flow in an annulus is particularly interesting in that, as
the radius ratio (the ratio of the inner radius to the outer radius
of the annulus) tends to one in the correct way the solution should
reduce to the well-behaved solution in a two-dimensional channel
whereas for small values of radius ratio and an impermeable inner
wall the flow should behave more like the flow in a porous pipe
(see § 3).

§ 2. Equations of motion. The flow to be studied is steady incom-

*) G. I, Taylor takes the wedge to be made of a porous material, the resistance of
which is proportional to the square of the velocity through it.
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pressible laminar flow through an annulus. Choose a cylindrical
polar co-ordinate system (7, 0, z) where the axis Oz lies along the
centre of the annulus. Let v, vy, and v, be the velocity components
in the directions of 7, 6 and z increasing respectively. Then if the
resultant flow is assumed to be independent of 0 the equation of
continuity is

0 0v,

(ron) + = =0 (1)

and the equations of momentum are

vy o0, vl 1 op Uy
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where

and where $ is the pressure, p the density and » is the kinematic
viscosity. Let the inner and outer walls of the annulus be given by
7 = a and ¥ = b respectively. The boundary conditions are the no-
slip conditions at the walls and the constant velocity of injection
at the walls so that
at r =a Op=—V1, v6=0, v,=0
r 1 6 z (b - (l) (5)

and at »r =10 Uy = Vg, v99=0, v,=0
The above boundary conditions imply that fluid is being extracted
with velocity V1 at 7 = a and extracted with velocity Vg at 7 = b.

To try to obtain a solution of equations (1)-(4) subject to bounda-
ry conditions (5) let us assume that the radial velocity compont is
a function of 7 alone; then we may write v, in the form

1)

vy =0V L (6)
¥

where f{#) is a non-dimensional function. The outer radius of the
annulus & has been taken to be a typical dimension of the system
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and V to be a typical velocity. The precise form of V' will be dis-

cussed later but it will be based on the velocities of suction at the

wall V1 and Vo and not the mainstream velocity in the z-direction.

The reason for this choice is that it is the cross-velocity which

produces the change from steady flow in the z-direction and is the

significant velocity in the production of viscous layers in the flow.
The equation of continuity (1) yields

vy = —bV f_f)—z + Vi), (7)

where h(r) is an arbitrary non-dimensional function of ». If the
above expressions for v, and v, are substituted into the equation
of motion (4) it immediately follows that the kinematic pressure
is given by

_ % — P{r) 22 + Q) z - R(), (8)

where P(r), Q) and R(r) are arbitrary functions of » to be de-
termined. For (2) to be consistent with (6), (7) and (8) the swirl
velocity must be of the form

rvg = Vg(r) 2 + VOok(r), 9)

where g(r) and £(r) are arbitrary non-dimensional functions of 7.
If (2) is differentiated with respect to z we obtain

1 2% 2V3g

e e L] (10)

In particular it may be noted that if there is no swirl the righthand
of (10) will be identically zero. If we use the relationship (10) to
eliminate the pressure p from equation (4) equating the C(z) coef-
ficients of z to zero yields

R — I A B3 — 1% - 3 =
= —2rg2[b% 4 »|VB{—r3f" ++ 22" — Byf" + 3f).  (11)

The above equation for f(r) can be considerably simplified by
introducing the non-dimensional independent variable # defined by

= r2b2. (12)
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If we write the functions occurring in the velocity components as

fr) = F(n)  glr) = G@) (13)
h(r) = Hn) ki) = K(n)

then equation (I1) reduces to
(mF”" + 2F"y + R(F'F" — FF") 4+ }{RG2[n%2 = O, (14)

where the prime denotes differentiation with respect to 5 and
where R = Vb/2v is a Reynolds number. The boundary conditions
which F(5) must satisfy are

F(1) = ValV, Flno) = —VmilV, s
F'(1) =0, F'(no) = 0, (15

where
o = a2/b2, (16)

The above equation for F(5) is the most important equation in the
problem being the only equation with non-zero boundary con-
ditions.

In a similar way it can be shown that H(y) satisfies the non-
linear differential equation

RKG
nH" 4+ 2H" + R(HF" — H"F) + o =0 (17)
Y
and the boundary conditions
Hino) = H(1) =0 . (18)

The absence of a third boundary condition for this third order
differential equation is not of great significance. If R == 0 then the
solution of (17) would be the usual solution for laminar incom-
pressible flow through an impermeable annulus and the third
boundary condition would be given by the total fluid crossing a
section. The third boundary condition on equation (17) may be
regarded in the same way. (It should be noted that this is different
to the solution of (14) which, having four boundary conditions,
actually gives the quantity of fluid crossing a section).

The equations for G(y) and K(x) can be obtained by substituting
for vo from (9) and (13) into (3) and equating the coefficients of z
and 20 respectively. Hence G() satisfies

nG" = R(FG' — F'G) (19)
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and the boundary conditions

Glno) = G(1) =0, (20)
and K(») satisfies
nK" = R(FK' + 1HG) (21)

and the boundary conditions
K(no) = E(1) = 0. (22)

With the assumptions that the resultant flow is independent of
¢ and that v, is a function of » alone, the problem has now reduced
to the solution of four non-linear differential equations for F(y),
G(n), H(n) and K(y). The most important differential equation is
the equation for F(y) since to obtain a solution representing flow
through a porous annulus it is necessary for F £ 0 whereas the
solutions for G(n), H(n) and K(n) may be taken to be identically
Z€ro.

We can also observe that the equations for F(n) and G(5) do not
involve H(n) and K(n). Thus in looking for a solution with or
without swirl the major question is to solve (14) and (19} and in
doing this we may take H(yn) = K(n) = 0. The equations for H ()
and K(n) are subsidiary equations in which, having found a so-
lution to the problem, we look to see if there are any eigensolutions.
It will make the discussion of the solutions of the problem easier
if no eigensolutions exist since the question of which solution the
real flow tends to far downstream does not then arise. In Terrill11)
the possibility of eigensolutions for laminar flow through a porous
channel with equally porous walls was examined and it was found
that none existed in that particular case. For the present it is
convenient to assume that H(xn)*) and K(y) are identically zero.

We now turn our attention to G(x). It has already been pointed
out that for the flow through a porous pipe White®) could not ob-
tain a solution of his equation satisfying the boundary conditions
for a certain range of suction Reynold’s number but Prager?) was
able to obtain some numerical solutions in that range by including
the swirl term. The flow through an annulus will behave like the
flow through a pipe when the ratio of the inner radius a to the

*) In fact in § 3 we will take H(y) oc F’() but the question of eigensolutions will be
ignored.
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outer radius & of the annulus is small, that is, when 5o is small.
Thus for 5o small we expect that to obtain a solution it may be
necessary to include a swirl term. Also it seems possible that the
swirl term will introduce further solutions in the range of Reynolds
number in which there is already a solution. Before we attempt
to answer these questions we should try to find some solutions for
F(n) and so in the following sections a discussion of certain so-
lutions of (14) is undertaken. A particular case of interest is when
F(n) = 0 everywhere which gives G{) = K(n) = 0 so that we are
not able to find a solutions for flow through an impermeable annulus
with swirl.

§ 3. Series solution for small suction or blowing. In the following
sections we will assume G(n) = K() = 0. If G = 0 a particular
solution of (17) with boundary conditions (18) is H(y) oc F'(n) and
this is the only non-zero H(y) which will be considered. Thus the
solutions considered in this and subsequent sections is equivalent
to assuming that the velocity components take the form

_ VF(y)
AV

where U(0) is an arbitrary constant. (If the suction commences at
z = 0 then U(0) F'(n) can be interpreted as the velocity profile at
z == 0 corresponding to flow through an annulus with impermeable
walls.)

Before we obtain some solutions for F(5) the choice of the typical
velocity V' for the Reynolds number will have to be considered.
In previous papers on flow through porous channels and pipes it
has been the convention to take the Reynolds number positive
when fluid is extracted from the channel and negative when fluid
is injected and we will follow this system. The most obvious choice
of a typical velocity would be given by bV = 6Vs + aly so that
the Reynolds number would then be based on the total fluid
entering the annulus through the walls. However if V3 and V; are
opposite in sign then 6V would not be typical of the cross-flow;
for instance, there could be a boundary layer on one wall although
bV was small. This is the main reason for rejecting the above
method and selecting the typical velocity in such a way that the
magnitude of one of the boundary conditions is unity and the

=0, = [U(O) % %} Fy), (23)
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magnitude of the other is less than one. The problem is divided
into two cases depending on whether [6Vs] = |aV1| or [bVa] < |aV;|
as follows

(i) 16Va| = |aVy1]. Choose V = Vga so that Rg = Veb/2v; the
equation for F(r) becomes

nF" 4 2F" + Ro(F'F" — FF") =0 (24)
and the boundary conditions (15) take the form
Vi
Fopo) = ———mp=—o F(l) =1, (25)
2
F'(no) = 0; F'(1) =0,

where |«| < 1. It should be noted that at the outer wall suction
and blowing correspond to Re > 0 and to Ry < O respectively.

(i) |aVi] = |bV3|. Take V = Vini so that Ry = Via/2v; the
equation for I'(n) is

"7FN + 2F" _I_ Rl(F’F” __ FF///) =0 (26)
with boundary conditions

F(no) = —1; F(1) = Vaya}[Vi=8,

F'(no) = 0; F'(1y =0, (27)

where |[f| < 1. It may be noted that suction and blowing at the
inner wall correspond to Ry > 0 and to Ry < O respectively.
The solution of cases (i) and (ii) can thus be obtained by solving
the equation
" + " + R(F'?2 — FF") =¢ (28)

where ¢ is a constant, subject to the boundary conditions

F = —oa; =
(0) oy F(1) =8, 29)
F'(no) = 0;  F/(I) =0.
Then case (i) is given by R = Ry, # = 1 and case (ii) is given by
R=Ry, «a=1.

It is fairly obvious that if we let 5o — 1 in the correct way
then (28) and (29) reduce to the flow through porous parallel
plates. (See §3 (b)). On the other hand the suggestion that as
no — 0 in the correct way the flow behaves like the flow through
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a porous pipe seems to conflict with the boundary condition
F'(no) = 0. However suppose we take o« =0, § =1, 5o = 0 and
exclude the boundary condition F’(z) = 0 in conditions (29). Then
the solution of (28) satisfying these revised conditions is the flow
through a porous pipe. Since such a solution yields F’(0) non-zero
it seems that there is a line discontinuity at » = 0. Further in-
vestigation of (28) and (29) near # = 7o shows that

log 7 :I
F'in)~A4 — 11,
) [log 1o

where A is a constant and » and %o are small. Thus there is a narrow
layer in which there is a sharp transition in F’() corresponding to
an inner solution and as 5o — O the thickness of this layer tends
to zero. The flow through a porous pipe corresponds to an outer
solution. The previous reasoning is confirmed by the behaviour of
the series solution for small R (§3 (b)) and for large negative R
(§ 5.1) as o — O. '
For small suction Reynolds numbers a solution of the form

Fy) = ) Fr(n) R7, ¢= Zjoch’, (30)

where Fy(n), ¢, are independent of R, is sought. The equation for

Fo(?]) iS
nF'y + Fg = co (31)

with boundary conditions
Fo(no) = —a;  Fofno) = 0,
Fo(l) =§; Fo(l) =0.
The solution of (31) subject to boundary conditions (32) is

(32)

AL 1 —
FO("’})——“ﬂ—I—CO{(I 277) + (logn?) (

nlogn + 1 —n)}, (33)

where co is given by

[L + S oo = @+ (34)
0g 7o 2

As V' — 0 and, therefore, R — 0 we expect the solution to reduce
to the flow through an impermeable annulus. When V' — 0 equation
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(23) gives

vy =v9 = 0; v, = U(0) Fo(n). (35)
By differentiating (33) and substituting for 5 and %o, it can be
easily shown that

B2 _ g2
v, =K [az — 72 4 W log(f/a):l, (36)
where K satisfies
(b2 — a2)2

The above solution represents the fully developed flow through an
impermeable annulus. If U is the average velocity of the fluid at
z = 0, that is, the amount of fluid entering the channel per unit
time is 7(b2 — a2) U, then it can easily be shown that

U2 — a?) = U(0) 2(f + «).
The equation for Fy(n) is
nF'| + F{ = FoFg — F? + o1 =

coln — 1)

a
=Cl+ﬁ<60+_>“
i 2

2
+ dz{logn — logZn + 71{ - 1} + cod {(2 — ) logy — u}

where
co(l — 7o)
log no

and the boundary conditions are
Fi(no) = Filno) = Fa(1) = Fi(1) = 0. (39)
The solution of (38) subject to boundary conditions (39) is

2

d ¢
Fr() = B (y1og2n) — —7;— (n—1)2 (2 —4n) +

+ d*{(n — n?) log2n 4 3n%logn — 3(n — 1)} +
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3
+ cod {%‘ri log?n — (% — 772> log n —+

n (n — 1)(Sp? — 71) } + tk(n — 1)2 + p{logn + 1 — 7}, (40)

72
where the constants g and & are given by

g 212 4 11no -+ 20
2M‘|-(1—170){500—|-%_|_1_18_Cg(’70+ no + 20)

log %o
3 —nf , 5 (L—m)
log2 no 0 4 log 1o

<c/12(1 — no) + (1 + no) log no,

k= 5(1 — n0) c§/8[2(1 — 7o) =+ (1 - 70) log 70] +
22 (1 — 50)(243n9 — 107) ¢k B
+ Beo + 1¢o(3ny + 2) + 72 1og 70
3(1 — no)2
——logz—n::— cl. (41)

Clearly to obtain any further terms of the series expansion for
small R would be extremely complicated. To make further analytic
progress it seems necessary to make some assumptions about the
ratio of the inner and outer walls of the annulus. Presumably this
would involve either letting 79 be small and obtaining a solution
resembling flow through a porous pipe or letting 7o be nearly one
and obtaining a solution similar to flow between porous parallel
plates. We will only consider the limiting solutions and show that
they agree with known results.

a. Flow in a circular pipe. To obtain fully developed laminar
flow through a circular pipe we let « —~0, -1 and 5o —O.
Equation (34) gives ¢o — —2 and the solutions for Fo(s) and F1(z),
from (33) and (40) respectively, reduce to

Foln) + REx(n) = (21 — 1) + 1o 0 — 2 (4 — ) (42

where the Reynold’s number Ry == 0Vs/2v and where 5 = #2/b2,
The above expression was first obtained by Yuan and Finkel-
stein®) for the flow in a circular pipe with constant suction or
blowing at the walls.
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b. Flow between parallel plates. The solution for the flow between
porous parallel plates of different permeability which has been given
by Terrill and Shrestha19) may be obtained by taking » = a -+ &b
and letting ¢ — 0. To derive a solution with the notation of Terrill
and Shrestha choose @ = (1 — ¢). Hence = [1 — ¢(1 — 4)]2 and
the points # = 5o and = 1 become 4 = 0 and 4 = 1 respectively.

We will only consider case (i) in which R = Ry, § = 1. Then if
we substitute for 7o in (34) and let ¢ — O we find that

cp = —30(2/283,

where ag = 1 4 «. By substituting for # and % in (33) and letting
& =0, Fy(n) is found to be

Folg) = 1 — aa(l — )2 (24 + 1), (43)

which is identical with the solution given by Terrill and Shrestha10)
lequation (22)]. Before the solution for F1(n) is obtained the suction
Reynolds number appropriate to the flow must be discussed. For
the flow between parallel plates the channel width 2 = b — a = &0,
and, therefore, the Reynolds number R = AVy/y for the flow
through parallel plates is related to Reynolds number Rg for the
annulus by
R; = 28R2.

By substituting for 5o and 5 in equations (40) and (41) and letting
& — 0 it can be shown that Fi(y) is given by

Fi(n) = 2easd®(1 — A)2-

1 o2
= = ——A3(1 — A)2 (423 — 642 + 54 — 19 44
{ = — e A1 — )3 + )}, (44)
which is the expression obtained by Terrill and Shrestha19) (equation

(25)). Thus the first two terms of the series for |Vg| > |V1] give
Fn) = Fo -+ RoFi(n).
The series solution for |Vi] = |Vs| can be obtained by a similar

method.

§ 4. A solution when « 4 B is nearly zero. When the quantity of
fluid entering through the outer wall is nearly equal to the quantity
of fluid being extracted through the inner wall a solution to (28)
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can be readily found. For this distribution of wall velocities it is
unimportant whether we choose R; or Ry to be the suction Reynolds
number. Let Ky be the typical Reynolds number and take « =
= —1 4 ¢ where ¢ is a small quantity which may be negative or
positive; the solution to both cases is given by solving

nEF" + F" 4- Ra(F? — FF") =¢ (45)
subject to boundary conditions

Flpo) =1 —¢; F(l) =1,

46
F'(no) = 0; F'(l) =0. (46)

We look for a solution of the form
Fip) =1+ 3 &F(ny); ¢c= 3 ¢, (47)

r=1 r=0

where I'y(5) and ¢, are independent of ¢. The equation for Fi(y) is
nFi —(Re— 1) Fi=0a (48)

and the required solution satisfying the boundary conditions is

Fi(n) = K{—<I ;n)z— ( 11::03?2)(’7 -1 _[%%]>}

(49)
where the constant K is given by
K(1 — 7o) 2R3(1 — no)
R D—(Re—l)po— ————5—¢r=1. (50
oy 1 e R = (50
The special cases Rg = —1,0, 1 can be obtained by finding the

limits of (49) and (50) as Rs approaches the appropriate value. For
instance, the limit as Ry tends to one gives

1o log 7o

LI () )2t gtlogy — Ho? — D),
-

Fi(n) = Kl{

where
Ki{3(ns — 1) — nolog noy = 1.

The solutions for the successive terms of the series Fa(y), Fs(n) ...
can be obtained in a similar way.
A particularly interesting solution is when the amount of fluid
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entering through the outer wall is exactly equal to the amount of
fluid leaving through the inner wall, that is, when ¢ — 0. From
(23) the velocity components are

Va Vb
VT = = ; V - OJ
e 7 ° (51)
V.= [U(Q) — 2V,[b] Fi(n),
where
1 —
Fi(n) = K {(1 — ) — 4(1‘:%123‘(1 — nRz)} (52)

and K is given by (50). The above solution was first given by
Berman?).

In certain cases the flow given by (51) will have inflexion points
in the axial profile and these indicate that the larger is R, the
sooner will the flow become unstable. To obtain points of inflexion
5 we put the second derivative with respect to » of the axial ve-
locity equal to zero so that

1 — g

pRal =
(1 — o) Ra{2R2 — 1)

no < < L.

Therefore, for a point of inflexion to lie in the range [go, 1] it is
necessary for

_ -5

(1 = 710)(R2) (2R — 1)

Thus, it may be immediately concluded that for Ry < 1 there are
no inflexion points in the flow. For Ko > 1 the existence of points
of inflexion in the flow depends on the values of o and Rg; Berman
gives a graph showing the values of (no, R2) for which they occur.
In particular he shows that the smaller the value of ng, the larger
the range of values of Ry for which inflexion points occur. Hence,
we may expect that the closer the annulus approaches to being
parallel plates the more likely the flow will be well-behaved.

Re—1
o

§ 5. The asymptotic behaviour of solutions for lavge R. The deri-
vation of a series solution for large Reynolds numbers will be
involved since it will require the use of inner expansions in the
viscous layers and outer expansions in the remainder of the flow
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region. For example, a solution for the flow between parallel porous
plates for large negative Reynolds numbers has been given by
Terrill2) by matching inner and outer expansions.

In this section we will only obtain the limiting forms of the so-
lutions. Proudman4) discusses a similar problem for flow in a
porous two-dimensional channel and, by considering the positions
of the viscous layers, obtains asymptotic solutions for large Rey-
nolds numbers. For the flow in an annulus the arguments about
the position of the viscous layers are almost identical with those
given by Proudman and therefore only the asymptotic solutions
will be given.

5.1. The case of large blowing at both walls. For large blowing
there cannot be a boundary layer on either wall so that limiting
inviscid solution must satisfy all four boundary conditions. Then
as R — —oo equation (28) yields

F? - FF" =K, (53)
where K is a constant and the boundary conditions (29) remain as

F(no) = —a; F(1) =4,

Filno) = 0;  F/(1) = 0. (54

At the point where F(x) vanishes there will be a viscous layer; let
this point be = #*. Then the required solution of (53) and (54) is

Fly) = —a sin — (;7—__-%;) 7 <7,
X (85)
Spa (D) e
where %* is given by
. _ “a—:_ﬂgo _ (56)

The solution (55) has a viscous layer at # = 5™ if F”(") is discon-
tinuous, that is, when

ol —7%)3 # Blno — 7")3. (57)

To find the structure of the viscous layer at n* when condition (57)
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is satisfied we write
Fly) = Ae + Fi(s),
where
an B
A = — = — and =% —7n*. (58)
2o — %) 2(1 — %)

By following an identical argument to that given by Proudman4)
(Section 3.6) we find that I'1(e) satisfies

(* + &) F" + F" + R{2AF{ — AeF} =0  (4* £ 0)

so that for the viscous and inertia terms to be of the same order
¢ = O(R~*) and we find that F| (¢) is given by
e}
” 1 A62
File) = a1 f exp {7 e }dﬁ + B1, (59)
0

where o1 and §; are constants of integration. The constants «; and
B1 are chosen by making F”(¢) continuous at the boundary. Hence
the solution (59) gives the behaviour in the viscous layer.

Suppose that F”(»*) is continuous for the solution (55). It can
be shown that the terms in (57) can be equal if

(a) no=n"=1
b) a=1,=07"=1

(C) oc:O,ﬁ:I, 7]*:770_

By taking the correct limit for 79 — 1, as in § 3, case (a) can be
shown to reduce to flow through parallel plates. This flow has been
discussed by Proudman4) who shows that there is always a viscous
layer present; in particular when the velocities of injection at the
wall are equal then F” is continuous but there is still a weak
viscous layer at the centre of the channel. A series solution for this
case has been given by Terrill2).

In case (b) the solution (55) reduces to

.l —x
F(n) — sin —
o) = sin 3 (=)

where 5 <C 1. All the boundary conditions except the no-slip con-
dition at 5 = 1 are satisfied. Since there is a discontinuity in
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F’(n) at = 1 there must be a shear layer at the outer wall. How-
ever if the outer wall is allowed to move in the z direction with a
velocity whech makes F'(1) = —a/[2(1 — #5)] then there will not
be a shear layer at the outer wall.

For case (c) the solution (55) becomes

. N —"No

F(n) = sin 7( [ ’70)
where 5 > o and since the no-slip condition is not satisfied at the
inner wall, there must be a shear layer at 5 = #o. If the inner
wall is allowed to move in such a way that I’ (no) = #/[2(1 — no)]
this shear layer will be absent. In particular if we let 59 — 0 and
remove the inner wall then the flow through a porous pipe is ob-
tained.

Thus to find the flow through an annulus (with fixed walls) for
large injection the behaviour of the viscous layer as well as the
outer solution has to be considered except in the particular case
where the annulus reduces to the pipe. The solution for the flow
through a porous pipe for large injection has been given by Yuan
and Finkelstein®). In particular it is interesting that for symmetric
flow through porous parallel plates a solution for the viscous layer
is required whereas this is not necessary for flow in porous pipe.

5.2. The case of large suction at both walls. For large suction we
expect there to be viscous layers present at each wall and, for R
sufficiently large, an inviscid region outside these layers. The so-
lution in the inviscid region has only to satisfy the radial velocity
boundary conditions so that

(n — 1) &+ Bln — no)
En) = ]
is the required solution outside the viscous layers.

In the neighbourhood of the wall # = o, by assuming a thin
viscous layer, (28) can be replaced by

7F" + (Ra + 1) F” =c.

The required solution of the above equation which satisfies the no-
slip condition at = %o and tends asymptotically to the outer so-

lution (60) is
o —oR

(60)
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provided that aR is sufficiently large. In particular, as «aR — oo,

F — ———(u + ) {1 — exp [~o¢R —(’7 — n9) :I}
1 — %o 7o

which is the usual boundary-layer solution.
Similarly at the outer wall the viscous layer solution is given by

By = P g ©2)

1 —no
provided that BR is sufficiently large. As SR — oo,

P iR — )
— 70
giving a boundary layer solution.

It should be noted that although a solution of the equation of
motion behaves asymptotically in the above way it does not follow
that the actual flow will. For example, in the flow through a porous
pipe there are dual solutions for large Reynolds numbers so that
the actual flow breaks down and does not reach the form given by
(60), (61) and (62). On the other hand the solution is valid for the
flow through porous parallel plates; it is expected that the solution
will be valid for a range of values of #¢ but without a numerical
investigation it is difficult to see what the limits of the range of
validity are.

5.3. The case of either « << 0, p >0 or « >0, f < 0. The flow
pattern is given by large blowing at one surface and large suction
at the other surface, so that large radial velocities occur every-
where.

Suppose that « < 0, § > 0 so that a boundary layer occurs at
the outer wall. Then we require a solution of

F'2 — FF" =k, (63)
where % is a constant, subject to the boundary conditions
F(no) = —a; F'(no) = 0; F(1) = §. (64)

(The no-slip condition at 5 = 1 has been omitted.) The solution of
(63) satisfying the boundary conditions (64) is
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F(p) = —a cos {U)— cos—1<— ﬁ)}, B+ o) <O

(I — 70)
Fip) = —a=1; B+ a=0 (65)
F(n) = —o cosh {M cosh—1 (— ﬁ)}, g+ «>0.

(I —no) o

In (65) the smallest positive value of cos~1(—pf/«) is taken. At

= 1 there is a suction boundary layer. The above solution is
similar to the solution given by Proudman4?} for flow through
porous parallel plates.

When g + « is small the solution (65) can readily be shown to
be equal to the solution (47) given in § 4 for large R.

The solution for « > 0, §# < 0 can be obtained in a similar way
to the above solution.

Received st April, 1966.
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