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Summary 
The problem Of laminar  flow th rough  a porous annulus  wi th  cons tan t  

ve loc i ty  of suct ion a t  the  walls and wi th  swirl is reduced to  the  solut ion of 
four non-l inear  differential  equations.  The  significance of each of these 
equat ions  is discussed. By  tak ing  the  swirl to  be zero series solutions are 
obta ined for (i) small  suct ion or blowing (ii) when the  to ta l  f low into  the  
channel  th rough the  walls is small. F ina l ly  the  a sympto t i c  behav iour  of the  
flow for large suct ion or blowing is discussed. 

§ 1. Introduction.  During the past few years a number of so- 
lutions for steady laminar flow in porous channels have appeared 
in the literature. The first solution for laminar flow in a uniformly 
porous channel was given by Bermanl) ; he showed that  a solution 
for the flow between porous parallel plates with constant and equal 
suction at both walls could be obtained by assuming that  the ve- 
locity component normal to the walls was independent of the 
distance along the channel. The behaviour of the resultant flow 
depends on a parameter R, called the suction Reynolds number. 
Several series solutions of this problem can be obtained depending 
on whether R is large or small, positive or negative; a full dis- 
cussion of these solutions and references to other work is given in 
Terrill 2, 3). The important characteristic of the solutions is that  
they appear to be well-behaved for all values of R. 

If, in a two-dimensional channel, the velocities of suction or 
blowing at the wall are not equal a number of possible asymptotic 
solutions arise depending on the relative magnitude of the wall ve- 
locities. Proudman 4) has given a complete discussion of the nature 
of the asymptotic solution for this flow. 

A solution for the flow in a porous pipe in which there is constant 
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suction or blowing at the wall has been given by Yuan and Finkle- 
steinS). They obtained series solutions for large negative R corre- 
sponding to large injection and for small R. The solution for small 
positive R corresponding to small suction at the wall converges 
slowly and therefore White 6) made a numerical investigation of the 
solution for the case of suction at both walls. White showed that  
for positive R there are either dual solutions or no solutions, which 
indicated that  the flow through a porous tube would break down 
for small suction Reynolds numbers. To try to obtain solutions for 
all positive R Prager v) introduced a non-zero swirl velocity and 
succeeded in obtaining numerical solutions in the range of suction 
Reynolds numbers for which White could not obtain a numerical 
solution. Although no analytic investigation has yet been made it 
seems probable that  to obtain a solution that  does not break down 
for flow in a porous pipe when there is suction at the walls, swirl 
will have to be included. 

An interesting approximate solution for flow in a porous wedge 
or cone has been given by G. I. Taylor s). Although Taylor's as- 
sumptions*) on the boundary condition normal to the wall are 
different from those taken in the above papers his solutions exhibit 
many of the same features. For instance, for large blowing at 
both wails his solution indicates a discontinuity at the centre of 
the wedge corresponding to a viscous layer. 

As far as the author is aware the only solution for flow in a 
porous annulus has been given by Berman 9). This solution is the 
simple case where the amount of fluid entering through the outer 
wall is equal to the amount of fluid leaving through the inner 
wall. The flow in an annulus is particularly interesting in that, as 
the radius ratio (the ratio of the inner radius to the outer radius 
of the annulus) tends to one in the correct way the solution should 
reduce to the well-behaved solution in a two-dimensional channel 
whereas for small values of radius ratio and an impermeable inner 
wall the flow should behave more like the flow in a porous pipe 
(see § 3). 

§ 2. Equations o/motion. The flow to be studied is steady incom- 

*) G. I. Taylor takes the wedge to be made of a porous material ,  the resistance of 
which is proport ional  to the square of the velocity through it. 
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pressible laminar  flow through an annulus. Choose a cylindrical 
polar co-ordinate system (r, 0, z) where the axis Oz lies along the 
centre of the annulus. Let  vr, vo, and Vz be the velocity components  
in the directions of r, 0 and z increasing respectively. Then if the 
resul tant  flow is assumed to be independent  of 0 the equation of 
cont inui ty  is 

1 0 OVz 
r Or (rVr)+ Oz - - 0  (1) 

and the equations of momen tum are 

0vr 8vr v~ 1 8p ( 
Vr 0~- @- vz OZ ~ -  - -  p 0~- -['- V \V2Vr - -  -- 

Ovo Ovo wvo ( vo ) 
v ~ - r  + v~ ~ + - ~  e2vo 

r ~ ' 

8Vz 8Vz 1 Op 
Vr ~ -  r + v~ Oz p 8z + vVZvz' 

where 
82 1 0 82 

V2---- + - -  - - +  - -  
Or 2 r Or 8z 2 

Vr) , (2) 

(3) 

(4) 

and where ib is the pressure, p the densi ty and v is the kinematic 
viscosity. Let  the inner and outer walls of the annulus be given by  
r = a and r = b respectively. The boundary  conditions are the no- 
slip conditions at the walls and the constant  velocity of injection 
at  the walls so tha t  

at  r = a v r =  --V1,  vo = O, vz = O 

and at  r = b Vr =- V2, vo = O, Vz =- O (b > a) (5) 

The above boundary  conditions imply tha t  fluid is being extracted 
with velocity V1 at  r = a and extracted with velocity V2 at  r = b. 

To t ry  to obtain a solution of equations (1)-(4) subject to bounda- 
ry  conditions (5) let us assume tha t  the radial velocity compont  is 
a function of r alone; then we m a y  write Vr in the form 

Vr = bV--,/(r) (6) 
1" 

where ](r) is a non-dimensional function. The outer radius of the 
annulus b has been taken to be a typical  dimension of the system 



FLOW THROUGH A POROUS ANNULUS 207 

and V to be a typical velocity. The precise form of V will be dis- 
cussed later but it will be based on the velocities of suction at the 
wall V1 and V2 and not the mainstream velocity in the z-direction. 
The reason for this choice is that  it is the cross-velocity which 
produces the change from steady flow in the z-direction and is the 
significant velocity in the production of viscous layers in the flow. 

The equation of continuity (1) yields 

v~ = - - b V  l'(r) z + Vh(r), (7) 
f 

where h(r) is an arbitrary non-dimensional function of r. If the 
above expressions for Vr and Vz are substituted into the equation 
of motion (4) it immediately follows that  the kinematic pressure 
is given by 

P 
- -  P ( r )  z ~ + Q(r) z + R(r ) ,  (8) 

p 

where P(r), Q(r) and R(r) are arbitrary functions of r to be de- 
termined. For (2) to be consistent with (6), (7) and (8) the swirl 
velocity must be of tile form 

rvo = Vg(r) z + Vbk(r), (9) 

where g(r) and k(r) are arbitrary non-dimensional functions of r. 
If (2) is differentiated with respect to z we obtain 

1 ~2p 2V2g 

p ~r~z r3 
(gz -}- bk). (10) 

In particular it may  be noted that  if there is no swirl the righthand 
of (10) will be identically zero. If we use the relationship (10) to 
eliminate the pressure p from equation (4) equating the C(z) coef- 
ficients of z to zero yields 

r 2 { l ' t "  - 11,,,} + r { 3 l l "  - 1 '~}  - 311'  = 

= --2rg2/b 2 -t- v/Vb{--r3/"V + 2r~/'' - -  3r/" -k 3/'}. (11) 

The above equation for ](r) can be considerably simplified by 
introducing the non-dimensional independent variable ~ defined by 

= r2/b 2. (12) 
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If we write the functions occurring in the velocity components as 

/(r) = F(B) g(r) = G(B) 
(13) 

h(,,) = H(,~) k(r) = K(n)  

then equation (11) reduces to 

(rtF "V 4- 2F" )  + R ( F ' F "  - -  F F ' )  4- ~}RGZ/r] 2 = O, (14) 

where the prime denotes differentiation with respect to ~ and 
where R ---- Vb/2~, is a Reynolds number. The boundary conditions 
which F(~) must satisfy are 

F(1) = v21v, F(~o) = - v l ~ o l V ,  
( i s )  

F'(1) = 0, F'(Vo ) = 0, 
where 

~o = 12/b2. (16) 

The above equation for F(~) is the most important equation in the 
problem being the only equation with non-zero boundary con- 
ditions. 

In a similar way it can be shown that H(~) satisfies the non- 
linear differential equation 

~H" + 2H" + R ( H F "  - -  H " F )  4- 

and the boundary conditions 

H(~0)  = Z4(I) = 0 .  

R K G  
- -  0 ( 1 7 )  

2~ 2 

(18) 

The absence of a third boundary condition for this third order 
differential equation is not of great significance. If R = 0 then the 
solution of (17) would be the usual solution for laminar incom- 
pressible flow through an impermeable annulus and the third 
boundary condition would be given by the total fluid crossing a 
section. The third boundary condition on equation (17) may be 
regarded in the same way. (It should be noted that  this is different 
to the solution of (14) which, having four boundary conditions, 
actually gives the quanti ty of fluid crossing a section). 

The equations for G(~) and K(~) can be obtained by substituting 
for Vo from (9) and (13) into (3) and equating the coefficients of z 
and z0 respectively. Hence G(~) satisfies 

~G" = R(FG' -- F'G) (19) 
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and the boundary conditions 

G(~0) = G(1) = 0, (20) 

and K(~) satisfies 

~]K" = R(FK'  + ½HG) (21) 

and the boundary conditions 

K(~0) = K(i)  = O. (22) 

With the assumptions that  the resultant flow is independent of 
0 and that Vr is a function of r alone, the problem has now reduced 
to the solution of four non-linear differential equations for F(~), 
G(~), H(~) and K(V). The most important differential equation is 
the equation for F(V) since to obtain a solution representing flow 
through a porous annulus it is necessary for F J: 0 whereas the 
solutions for G(V), H(V) and K(V) may be taken to be identically 
zero. 

We can also observe that  the equations for F(~) and G(~) do not 
involve H(~) and K(~). Thus in looking for a solution with or 
without swirl the major question is to solve (14) and (19) and in 
doing this we may take H(~) ~ K(~) ~- 0. The equations for H(~) 
and K(~) are subsidiary equations in which, having found a so- 
lution to the problem, we look to see if there are any eigensolutions. 
It  will make the discussion of the solutions of the problem easier 
if no eigensolutions exist since the question of which solution the 
real flow tends to far downstream does not then arise, In Terril111) 
the possibility of eigensolutions for laminar flow through a porous 
channel with equally porous wails was examined and it was found 
that  none existed in that  particular case. For the present it is 
convenient to assume that H(~)*) and K(~/) are identically zero. 

We now turn our attention to G(~). It  has already been pointed 
out that  for the flow through a porous pipe White 6) could not ob- 
tain a solution of his equation satisfying the boundary conditions 
for a certain range of suction Reynold's number but  Prager 7) was 
able to obtain some numerical solutions in that  range by  including 
the swirl term. The flow through an annulus will behave like the 
flow through a pipe when the ratio of the inner radius a to the 

*) Ill fact ill § 3 we will take H(~?) oc F'(~/) but  the question of eigensolutions will be 
ignored. 
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outer radius b of the annulus is small, that  is, when 70 is small. 
Thus for 70 small we expect that  to obtain a solution it may be 
necessary to include a swirl term. Also it seems possible that  the 
swirl term will introduce further solutions in the range of Reynolds 
number in which there is already a solution. Before we at tempt 
to answer these questions we should t ry to find some solutions for 
F(7 ) and so in the following sections a discussion of certain so- 
lutions of (14) is undertaken. A particular case of interest is when 
F(7) ~ 0 everywhere which gives G(7) = K(7) = 0 so that  we are 
not able to find a solutions for flow through an impermeable annulus 
with swirl. 

§ 3. Series solution/or small suction or blowing. In the following 
sections we will assume G(7) = K(7) ~ 0. If G ~ 0 a particular 
solution of (17) with boundary conditions (18) is H(7) oc F'(7 ) and 
this is the only non-zero H(7 ) which will be considered. Thus the 
solutions considered in this and subsequent sections is equivalent 
to assuming that  the velocity components take the form 

Vr--  ~ / 7 '  vo=O,  vz-~ -- F'(~), (23) 

where U(0) is an arbitrary constant. (If the suction commences at 
z ---- 0 then U(0) F'(7 ) can be interpreted as the velocity profile at 
z = 0 corresponding to flow through an annulus with impermeable 
walls.) 

Before we obtain some solutions for F(7 ) the choice of the typical 
velocity V for the Reynolds number will have to be considered. 
In previous papers on flow through porous channels and pipes it 
has been the convention to take the Reynolds number positive 
when fluid is extracted from the channel and negative when fluid 
is injected and we will follow this system. The most obvious choice 
of a typical velocity would be given by bV ~- bV2 + aV1 so that  
the Reynolds number would then be based on the total fluid 
entering the annulus through the walls. However if V2 and V1 are 
opposite in sign then bV would not be typical of the cross-flow; 
for instance, there could be a boundary layer on one wall although 
bV was small. This is the main reason for rejecting the above 
method and selecting the typical velocity in such a way that  the 
magnitude of one of the boundary conditions is unity and the 



FLOW THROUGH A POROUS ANNULUS 211 

magni tude  of the other is less than  one. The problem is divided 
into two cases depending on whether  IbV2] >~ [aVll or IbV2] <~ [aVl[ 
as follows 

(i) IbV21 >~ ]aVll. Choose V = V2 so tha t  R2 = V~b/2v; the 
equat ion for F(~) becomes 

~ f  "v @ 2F" + R2(F'F" -- FF")  = 0 (24) 

and the boundary  conditions (15) take the form 

Vx 
F(Wo) --  ~ = --c~; F( i )  = 1, (25) 

V~ 

F'(~o)  = o;  f ' ( 1 )  = o, 

where Ia] <~ 1. I t  should be noted tha t  at  the outer wall suction 
and blowing correspond to R2 > 0 and to R2 < 0 respectively. 

(ii) lagl[ >~ IbV2r. Take V = V I ~  so tha t  R1 = Vla/2v; the 
equat ion for F(~/) is 

~ f  '~ 4- 2F" + RI (F 'F"  -- FF")  = 0 (26) 

with boundary  conditions 

F(~o) = --1;  F(1) = Vz~o}/V1 = 13, 
(27) 

F' (~o)  = o;  5"(1)  = o, 

where Jill ~ 1. I t  m a y  be noted tha t  suction and blowing at the 
inner wall correspond to R1 > 0 and to R1 < 0 respectively. 

The solution of cases (i) and (ii) can thus  be obtained by  solving 
the equat ion 

~F" + F" + R ( F  '2 -- FF") = c (28) 

where c is a constant ,  subject to the boundary  conditions 

f ( ~ 0 )  = - ~ ;  f ( 1 )  = ~, 
(29) 

F'(Bo) = 0; F'(1) = 0. 

Then case (i) is given by  R = R2, fl = 1 and case (ii) is given by  
R = R 1 ,  a = l .  

I t  is fairly obvious tha t  if we let ~0-+ 1 in the correct way 
then  (28) and (29) reduce to the flow through porous parallel 
plates. (See § 3 (b)). On the other hand  the suggestion tha t  as 
~0 -+ 0 in the correct way the flow behaves like the flow through 
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a porous pipe seems to conflict wi th  the b o u n d a ry  condit ion 
F'(~o) = 0. However  suppose we take  e = 0, /3 = I, ~0 = 0 and 
exclude the bounda ry  condit ion F'(~o) = 0 in conditions (29). Then  
the solution of (28) satisfying these revised condit ions is the flow 
through a porous pipe. Since such a solution yields F'(O) non-zero 
it  seems tha t  there  is a line discont inui ty  at  ~ = 0. Fu r the r  in- 
vest igat ion of (28) and (29) near  ~ = ~o shows tha t  

A r l°g-  1], F'(~) 
k log 70 J 

where A is a constant  and ~ and 70 are small. Thus  there  is a nar row 
layer  in which there  is a sharp t ransi t ion in F'(~) corresponding to 
an inner solution and as fl0 -+ 0 the  thickness of this layer  tends 
to zero. The flow through  a porous pipe corresponds to an outer  
solution. The  previous reasoning is confirmed b y  the behaviour  of 
the  series solution for small R (§ 3 (b)) and for large negat ive R 

(§ 5.1) as 2/0 -+ 0. 
For  small suction Reynolds  numbers  a solution of the form 

c o  o o  

v(~)  = y, f @ )  Rr, c = Z c~Rr, (30) 
r = O  r - - O  

where Fr(~), Cr are independent  of R, is sought. The equat ion  for 

Fo(~) is 
" " (31) ~F 0 + F 0 = co 

with bounda ry  conditions 

Fo(,7o) = - - ~ ;  F~,(,7o) = o, 
(32) 

Fo(1) = / 3 ;  F~(1) = 0. 

The  solution of (31) subject  to bounda ry  condit ions (32)is  

(1 - ~)~ 
F0(@ = ~ + co 2 

where co is given by  

E (1 - -  ~0) 2 + _ _  

log 70 

( 1 - - ~ 7 o )  ( T l ° g f l - 4 -  1 - -~7)~ ,  (33) 
+ - log ~o ) 

1 3 
" "  / co = - ( ~  + /3). (34) 

2 J 

As V --> 0 and, therefore,  R -+ 0 we expect  the solution to reduce 
to  the  flow through  an impermeable  annulus. When  V -+ 0 equat ion  
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(23) gives 
vr = vo = o;  v~ = u ( o )  F6(7 ) .  (35) 

By differentiating (33) and subst i tut ing for 7 and 70, it can be 
easily shown tha t  

vz = K Ia2 -- r2 + (b2 -- a~) log(r/a)l, (36) 
log(b/a) 

where K satisfies 

K [  (b2 - a~)2 1 log(a/b) + b4 -- a4 = 2(8 q- ~) U(0). (37) 

The above solution represents the fully developed flow through an 
impermeable  annulus. If U is the  average velocity of the fluid at 
z = 0, tha t  is, the amount  of fluid entering the channel  per unit  
t ime is s(b 2 --  a 2) U, then it can easily be shown tha t  

u(b2  - a~) = u ( o )  b2(~ + ~). 

The equat ion for FI(7) is 
/ / /  t t  / I  7F1 + F 1 : FoF o -- F62 q- Cl = 

= cl + fi (co + d )  2 

{ 1 
+ d  2 l o g 7 - - 1 o g  2 7 + - -  

7 

4 ( 7  - 1)~ + 

1 } + c o d { ( 2 _ 7 )  log 7 (72-27 1)}, 

where 

d --  co(1 --  70) 
log *]0 

(38) 

and the boundary  conditions are 

Fl(70 ) ~- Fl(70 ) = FI(1) = Fi(1) = 0. 

The solution of (38) subject to boundary  conditions (39) is 

d c] 
F1(7) ~ - "  fl ~-  (7 log2 7) --  ff~- (7 --  1) 2 (72 --  47) + 

(39) 

+ d2{½(7 --  72) log 2 7 + 372 log 7 --  3(7 - -  1)} @ 
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+ c o d { ~ l o g ~ -  ( 1 ~ - -  ~,) log ~ + 

(~ - -  1)(5~ 2 - -  71)  1 + 72 ÷ ½k(~ ~ 1) 2 ÷ #{log*1 ÷ 1 -- ~}, (40) 
J 

where the constants # and k are given by  

Co ~ (2~o ~ + a l~o + 20) 
2# ÷ (1 -- ~o) rico ÷ --2- ÷ ~A~c~ log ~o ÷ 

3(1 --.1)~ 5 (1 --.1o) 4 
-~ c ~ -  

log 2 ~o 4 log .1o 

• c~/[2(1 - .1o) + (I + ~o) log ~o], 

k = 5(1 --  ~o) 3 c~/8E2(1 -- ~o) + (1 ÷ .1o) log .1o~ ÷ 

1 2 2 (1 -- .1o)(243.1o -- 107) Co 2 
+ t%o + ~Co(3.1o + 2) + 

72 log .1o 

_ 3 ( 1  - -  .1o) 2 c~. (41) 
log 2 .1o 

Clearly to obtain any  further  terms of the series expansion for 
small R would be extremely complicated. To make fur ther  analytic  
progress it  seems necessary to make some assumptions about  the 
ratio of the inner and outer walls of the annulus. Presumably  this 
would involve either let t ing ~0 be small and obtaining a solution 
resembling flow through a porous pipe or let t ing .1o be nearly one 
and obtaining a solution similar to flow between porous parallel 
plates. We will only consider the limiting solutions and show tha t  
they  agree with known results. 

a. Flow in a circular pipe. To obtain fully developed laminar  
flow through a circular pipe we let ~ ~ 0, fi--> 1 and .10--> 0. 
Equat ion (34) gives c0 ~ --2 and the solutions for Fo(V) and FI(*1), 
from (33) and (40) respectively, reduce to 

Re 
Fo(~) ÷ RFI(~) = (2~1 -- .12) + ~ -  (~ -- 1) 2 (4* 1 -- .12) (42) 

where the Reynold 's  number  R2 = bV2/2v and where ~ = r~'/bL 
The above expression was first obtained by  Yuan and Finkel- 
stein 5) for the flow in a circular pipe with constant  suction or 
blowing at  the walls. 



FLOW THROUGH A POROUS ANNULUS 215 

b. Flow between parallel plates. The solution for the flow between 
porous parallel plates of different permeabi l i ty  which has been given 
by  Terfill and Shrestha 10) m a y  be obtained by  taking r = a + eb,~ 
and let t ing s -+ 0. To derive a solution with the notat ion of Terrill 
and Shrestha choose a = b(, -- s). Hence ~ ---= [1 -- s(, -- 2)] 2 and 
the points ~ = ~0 and ~ = 1 become ~ = 0 and 2 = 1 respectively. 

We will only consider case (i) in which R = R 2 ,  /5 = 1. Then if 
we subst i tu te  for ~0 in (34) and let e -+ 0 we find tha t  

co = --3o~2/2e 3, 

where ~2 ----- 1 Jr ~. By  subst i tu t ing for ~ and ~o in (33) and let t ing 
e -+ 0, Fo(~) is found to be 

F0(W) = 1 --  ~2(1 -- 2) 2 (22 + 1), (43) 

which is identical with the solution given by  Terrill and Shrestha 10) 
[equation (22)1. Before the solution for FI(~) is obtained the suction 
Reynolds number  appropriate to the flow must  be discussed. For  
the flow between parallel plates the channel width  h = b -- a = eb, 
and, therefore, the Reynolds number  R~ = hV2/v for the flow 
through parallel plates is related to Reynolds number  R 2  for the 
annulus by  

R~ = 2sR2. 

By  subst i tu t ing for ~o and ~ in equations (40) and (41) and let t ing 
s ~ 0 it can be shown tha t  FI(~) is given by  

FI(~) ~ 2 ~ 2 2 2 ( 1  - -  2) 2.  

"{ 2' 22(1 - 2)2 (42  - 622 + 54 - ,9)}, (44) 

which is the expression obtained by  Terrill and Shrestha lo) (equation 
(25)). Thus the first two terms of the series for IV21 >~ IVlI give 

F(~) = F0 + R2FI(~). 

The series solution for IVlI >~ IV21 can be obtained by  a similar 
method.  

§ 4. A solution when c~ + fl is nearly zero. When the quan t i ty  of 
fluid entering through the outer wall is nearly equal to the quan t i ty  
of fluid being ext racted through the inner wall a solution to (28) 
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can be readily found. For  this distribution of wall velocities it is 
un impor tan t  whether  we choose R1 or R2 to be the suction Reynolds 
number.  Let  R2 be the typical Reynolds number  and take e = 
= --1 + s where e is a small quan t i ty  which m a y  be negative or 
positive; the solution to both  cases is given by  solving 

~ F "  + F "  + R 2 ( F  '~ - -  .FF") = c (45) 

subject to boundary  conditions 

F(wo) = 1 - - e ;  F(1) = 1 ,  
(46) 

F'(~0) = 0; F'(1) = 0. 

We look for a solution of the form 

o o  c o  

F(~)  = 1 -}- E erFr(rl) ; c = ~ Cre r, (47) 
r = l  r=O 

where Fr(~) and Cr are independent  of s. The equation for FI(~) is 
/H r t  

v F 1  - -  (R2 - -  1) F 1 = cl (48) 

and the required solution satisfying the  boundary  conditions is 

{ ( ~ _ _ ~ ) 2  ( I _ _ W O ) (  I / f i~+l__  1 
FI(~]) = K --  --  1 --  ~0 R~ W --  1 -- R2 + 1 I)} 

(49) 
where the constant  K is given by  

K ( l - - ~ o )  { 2 R 2 ( 1 - - ~ o ) }  
2(R2 + 1) (R2 + 1) - -  (R2 --  1) Wo -- 1 --  W~ ---- 1. (50) 

The special cases R2 = --1, 0, 1 can be obtained by  finding the 
limits of (49) and (50) as R2 approaches the appropriate  value. For  
instance, the limit as R2 tends to one gives 

FI( ) : K1 { olog o 1)2+  21og _ 1)}, 
1 - -  ~ o  x .  

where 
KI{½(~ -- l) -- 7o log ~0} ---- I. 

The solutions for the successive terms of the series F2(~), -F3(~) ... 
can be obtained in a similar way. 

A particularly interesting solution is when the amount of fluid 
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entering through the outer wall is exactly equal to the amount of 
fluid leaving through the inner wall, that  is, when e--> 0. From 
(23) the velocity components are 

V2 V2b 
Vr = - -  ; Vo = O, 

V~ r (51) 

Vz = [U(O) - -  2V,/b] Fi(~), 
where 

F;(~) = K{(1 --~1) ( 1 - - W 0 )  } 
1 - - r ] f  ~ (1 - - r f i=)  (52) 

and K is given by (50). The above solution was first given by 
Bermang). 

In certain cases the flow given by (51) will have inflexion points 
in the axial profile and these indicate that  the larger is R,  the 
sooner will the flow become unstable. To obtain points of inflexion 

we put the second derivative with respect to r of the axial ve- 
locity equal to zero so that  

~ R ~ - I  = *~0 ~< ~ ~< 1. 
(1 - -  ~0) R2(2R2 - -  1) 

Therefore, for a point of inflexion to lie in the range EV0, 1] it is 
necessary for 

1 - -  ~]0 R'  
R -I 1. 

(1 -  0)(R )(2R2 - 1)  

Thus, it may be immediately concluded that  for R2 < 1 there are 
no inflexion points in tile flow. For R2 > 1 tile existence of points 
of inflexion in the flow depends on the values of ~0 and R2; Berman 
gives a graph showing the values of (~0, R2) for which they occur. 
In particular he shows that  the smaller the value of ~0, the larger 
the range of values of R2 for which inflexion points occur. Hence, 
we may expect that  the closer the annulus approaches to being 
parallel plates the more likely the flow will be well-behaved. 

§ 5. The  asymptot ic  behaviour o/ solutions /or large R.  The deri- 
vation of a series solution for large Reynolds numbers will be 
involved since it will require the use of inner expansions in the 
viscous layers and outer expansions in the remainder of the flow 
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region. For example, a solution for the flow between parallel porous 
plates for  large negative Reynolds numbers has been given by 
Terrill 2) by matching inner and outer expansions. 

In this section we will only obtain the limiting forms of the so- 
lutions. Proudman 4) discusses a similar problem for flow in a 
porous two-dimensional channel and, by considering the positions 
of the viscous layers, obtains asymptotic solutions for large Rey- 
nolds numbers. For the flow in an annulus the arguments about 
the position of the viscous layers are almost identical with those 
given by Proudman and therefore only the asymptotic solutions 
will be given. 

5.1. The  case o/ large blowing at both walls .  For large blowing 
there cannot be a boundary layer on either wall so that  limiting 
inviscid solution must satisfy all four boundary conditions. Then 
as R -+ --co equation (28) yields 

F '2 - -  F F "  = K ,  (53) 

where K is a constant and the boundary conditions (29) remain as 

F(r/o) = - - . ;  F(1) = fl, 
(54) 

F'(~0) ---- O; F'(1) = O. 

At the point where F(~) vanishes there will be a viscous layer; let 
this point be ~ = ~*. Then the required solution of (53) and (54) is 

F ( ~ ) =  --•sin 2 \ ~ * - - ~ o , ]  ~ < ~ '  

(55) 

= / 5  sin - ~  1 - -  ' ~ / > ~ '  

where ~* is given by 

- ( 5 6 )  

The solution (55) has a viscous layer at ~ /=  ~/* if F"(~*) is discon- 
tinuous, that  is, when 

- ¢ - ( 5 7 )  

To find the structure of the viscous layer at ~* when condition (57) 
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is satisfied we write 

where 
F(W) = A t  + Fl(e), 

a~ /5~ A --  --  and e = ~ - - ~ * .  (58) 
2( o - 2 ( 1  - 

B y  following an identical  a rgument  to tha t  given b y  P roudman  4) 
(Section 3.6) we find tha t  Fl(e) satisfies 

(~* + e) F'; + F'~ + R{2AF{ -- AeF1} = 0 (~* • O) 

so tha t  for the  viscous and inertia terms to be of the same order 
e = O(R-½) and we find tha t  F~'(e) is given by  

eR½ 

f F'~(e) = ~1 exp 2 W* dO + ill, (59) 

0 

where el  and f l l  a r e  constants  of integration. The constants  el  and 
/51 are chosen b y  making F"(e) continuous at the boundary .  Hence  
the  solution (59) gives the behaviour  in the  viscous layer. 

Suppose tha t  F"(~*) is continuous for the solution (55). I t  can 
be shown tha t  the terms in (57) can be equal if 

(a) ~ o = W * =  1 

(b) ~ =  1, / 5 = 0 , ~ / * =  1 

(c) ~ = 0, /5 = 1, ~ * =  ~0. 

B y  taking the correct limit for ~0 ~ 1, as in § 3, case (a) can be 
shown to reduce to flow through parallel plates. This flow has been 
discussed b y  P roudman  4) who shows tha t  there is always a viscous 
layer present ;  in part icular  when the velocities of injection at the 
wall are equal then F" is cont inuous bu t  there is still a weak 
viscous layer at  the  centre of the  channel. A series solution for this 
case has been given b y  TerrilD). 

In  case (b) the  solution (55) reduces to 

F ( ~ )  = s i n  1- - -  ~0  

where ~ < I. All the  boundary  conditions except  the  no-slip con- 
dition at ~ = 1 are satisfied. Since there is a discontinui ty in 
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F'(U ) at 7 = 1 there must be a shear layer at the outer wall. How- 
ever if the outer wall is allowed to move in the z direction with a 
velocity whch makes F'(1) = --;~/[2(1 -- 70)1 then there will not 
be a shear layer at the outer wall. 

For case (c) the solution (55) becomes 

F01 ) = s i n ~ -  i - - 7 0  

where 7 > 70 and since the no-slip condition is not satisfied at the 
inner wall, there must be a shear layer at 7 = 70. If the inner 
wall is allowed to move in such a way that F'(70) = ~/[2(1 -- 70)] 
this shear layer will be absent. In particular if we let 7o ~ 0 and 
remove the inner wall then the flow through a porous pipe is ob- 
tained. 

Thus to find the flow through an annulus (with fixed walls) for 
large injection the behaviour of the viscous layer as well as the 
outer solution has to be considered except in the particular case 
where the annulus reduces to the pipe. The solution for the flow 
through a porous pipe for large injection has been given by Yuan 
and Finkelstein 5). In particular it is interesting that for symmetric 
flow through porous parallel plates a solution for the viscous layer 
is required whereas this is not necessary for flow in porous pipe. 

5.2. The case o/large suction at both walls. For large suction we 
expect there to be viscous layers present at each wall and, for R 
sufficiently large, an inviscid region outside these layers. The so- 
lution in the inviscid region has only to satisfy the radial velocity 
boundary conditions so that  

(7 - 1) + 8 ( 7  - 70) 
F(7) = (60) 

1 - -  70 

is the required solution outside the viscous layers. 
In the neighbourhood of the wall 7----70, by  assuming a thin 

viscous layer, (28) can be replaced by  

7 F " q - ( R ~ z +  1) F" = c. 

The required solution of the above equation which satisfies the no- 
slip condition at 7 = 7o and tends asymptotically to the outer so- 
lution (60) is 

F'(7) (~ -}- fi) { 1 -- (61) 
1 - -  7 0  \ - ~ - o /  ) 
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provided tha t  ~R is sufficiently large. In particular, as ~R --~ c~a, 

F '  -+ 1 -- exp - 
1 - -  U o  U o  

which is the usual boundary- layer  solution. 
Similarly at  the outer wall the viscous layer solution is given by 

(~ + 8) 
F'(r/) = {1 -- tieR}, (62) 

1 - -  */o 

provided tha t  f i r  is sufficiently large. As f iR --> co,  

F '  -~ (~ + 8) 
- -  {1 --  expE--flR(1 --  "q)~} 

1 - -  ~ 0  

giving a boundary  layer solution. 
I t  should be noted tha t  a l though a solution of the equation of 

motion behaves asymptot ical ly  in the above way  it does not  follow 
tha t  the actual  flow will. For  example, in the flow through a porous 
pipe there are dual  solutions for large Reynolds numbers so tha t  
the actual  flow breaks down and does not reach the form given by  
(60), (61) and (62). On the other hand  the solution is valid for the 
flow through porous parallel plates; it is expected tha t  the solution 
will be valid for a range of values of ~0 but  wi thout  a numerical  
investigation it is difficult to see what  the limits of the range of 
val idi ty  are. 

5.3. T h e  case o/ either ~ < 0, fl > 0  or ~ > 0 ,  f i < 0 .  The fl0w 
pa t te rn  is given by  large blowing at  one surface and large suction 
at  the other surface, so tha t  large radial velocities occur every- 
where. 

Suppose tha t  a < 0, fi > 0 so tha t  a boundary  layer occurs at 
the outer wall. Then we require a solution of 

F '~ - -  f f "  = k, (63) 

where k is a constant ,  subject to the boundary  conditions 

F(~70 ) = --~;  F'(U0 ) = 0; F(1) = 8. (64) 

(The no-slip condition at U = 1 has been omitted.) The solution of 
(63) satisfying the boundary  conditions (64) is 
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F(•) = --m cos (1 -- */0) COS-1 - -  ; (~ -j- cX) < 0 

F(r])- - - - - -m= I; f l q - ~ = O  (65) 

{(r/--r]o)  cosh_l (___f l ) } ;  f l q - ~ > O .  F ( w ) = - - m c o s h  (1 --70) 

In (65) the smallest positive value of cos-l(--fl/~) is taken. At 
= 1 there is a suction boundary layer. The above solution is 

similar to the solution given by Proudman 4) for flow through 
porous parallel plates. 

When fi + c, is small the solution (65) can readily be shown to 
be equal to the solution (47) given in § 4 for large R. 

The solution for a > 0, fl < 0 can be obtained in a similar way 
to the above solution. 

Received 1st April, 1966. 
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