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1. I N T R O D U C T I O N  

Anyone who has recently had the opportunity to teach elementary probability 

and statistics to college students is probably aware of some misconceptions 
that these students possess prior to, and possibly after, a formal course in 
probability. Students often believe, for example, that when tossing three 
coins, the probability of getting 3 heads is 1/4, since the outcomes are 3H, 
2H and IT,  1H and 2T, and 3T. Outcomes are frequently judged to be equally 
likely by the beginning probability student. Students also tend to feel that 
The probability of a tail is greater on the seventh toss after a run of six heads. 
This belief, known as the Gambler's Fallacy, arises because people expect even 
short runs of  coin flips to reflect the fairness of a coin. One author [1] has 
referred to this phenomenon as the "Law of Small Numbers." 

Students also have misconceptions about probability due to their inexperi- 
ence with the rapid growth and decay of combinatorial expressions. It has 
been found [2] that college students who are unfamiliar with counting tech- 
niques greatly underestimate the number of possible batting orders of  nine 
players on a baseball team. Combinatorial growth tends to be underestimated 
by students who are inexperienced with counting principles. Similarly, college 
students tend to believe that a group of 180 or more people are needed so that 
the probability that at least two people from the group have the same birthday 
exceeds 1/2. Factors affecting combinatorial decay tend to be overestimated 
by college students who are inexperienced with counting principles [2]. 

Some misconceptions of  probability may be of a mathematical sort, the 
result of a person's inexperience with the mathematical laws of probability. 

Thus, it may be possible to clear up such misunderstandings by familiarizing 
a person with the concepts of sample space, simple probability, counting 
principles, independent events, and uniform and non-uniform probability 
distributions. However, there is considerable evidence that suggests that mis- 
conceptions about probability are sometimes of a psychological sort, and that 
mere exposure to the laws of probability may not be sufficient to overcome 
some misconceptions of probability. Cohen [3, 4], Cohen and Hansel [5], 
Edwards [6], Fischbein et al. [7-9],  and Kahneman and Tversky [1, 10-13] 
are among those authors who have investigated peoples' understanding of 
probability from a psychological point of view. The studies of Daniel Kahneman 
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and Amos Tversky provided motivation and a psychological basis for the 

author 's own investigations. Thus it is fitting to describe some of  their work 
in more detail. 

2. THE USE OF H E U R I S T I C S  IN E S T I M A T I N G  THE 

L I K E L I H O O D  OF P R O B A B I L I S T I C  EVENTS 

Kahneman and Tversky claim that people who are combinatorially naive 

utilize certain strategies when they are asked to estimate the likelihood of  

complex probabilistic events. These strategies are devices by which a person 
can reduce a complex probability problem to a simpler problem. Kahneman 

and Tversky call these strategies heuristics. According to Kahneman and 
Tversky, the use o f  heuristic principles in estimating the likelihood of  a prob- 
abflistic event may be a helpful simplifying device and may,  indeed, lead a 
person to a reasonable estimate for the probability o f  an event. However, 

Kahneman and Tversky also propose that the use o f  heuristics may lead to 
bias and systematic error in probability estimates. 

Two specific heuristics, or strategies, which Kahneman and Tversky charac- 

terized in their research are called the representativeness heuristic and the 
availability heuristic. 

According to the representativeness heuristic, people tend to make decisions 
about the likelihood of  an event based upon how similar (i.e. representative) 
the event is to the distribution from which it was drawn, or upon how similar 

the event is to the process by which the sample space is generated [7]. For 

example, a long string of  heads does not appear to be representative of  the 
random process of  tossing a coin. People who were employing the represen- 

tativeness heuristic would tend to believe that tails will be more likely to occur 

than heads on a subsequent toss since the process is random and the number o f  

heads and tails should 'even out. '  In a similar way, a person who judges that 

the probability is 1/2 that the outcome 2H and 2T will occur from tossing four 
coins may be using representativeness to make his estimate. The event 2H and 

2T appears to be representative o f  the distribution of  heads in the population 

o f  outcomes for flipping one coin once. 
Kahneman and Tversky [10] summarize the pervasiveness of  the represen- 

tativeness heuristic by indicating that representativeness can be shown to 
account for fallacies in prediction that arise from: 

(i) insensitivity to prior probabilities and disregaxd for population proportions, 
( i i )  insensitivity to the effects of sample size on predictive accuracy, 
( i i i )  unwaxranted confidence in a prediction that is based upon invalid input data, 
( i v )  misconceptions of chance, such as the Gamblers' Fallacy, 
(v) misconceptions about the tendency for data to regress to the mean. 
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Availability may also be used in assessing the likelihood of an event. According 
to the availability heuristic, people tend to make decisions about the likelihood 
of an event based upon the ease with which instances of that event can be con- 
structed or called to mind [9]. For example, when asked whether there are 
more distinct three-person committees or more distinct nine-person com- 
mittees that can be formed from a group of twelve members, people who 
rely upon the availability heuristic tend to guess that there are more possible 
three-person committees. It  is easier to construct instances of three-person 
committees than nine-person committees. Similarly, if a person is asked to 
estimate the local divorce rate or to estimate the probability of  being involved 
in an automobile accident, the frequency of his/her personal contact with these 

events (perhaps through friends or relatives) may influence the probability 
estimates. Kahneman and Tversky [9] claim that the availability heuristic 
causes systematic bias in probability estimates because people tend to believe 
that those outcomes which can easily be brought to mind will also be more 
likely to actually occur. 

In summary, Kahneman and Tversky suggest that combinatorially naive 
people often do not apply the theory of mathematical probability in estimat. 
ing the likelihood of  events. Instead, people tend to employ heuristic principles 
such as representativeness or availability when they are asked to make prob- 
ability estimates. 

Most of  the subjects involved in this series of studies by Kahneman and 
Tversky [1, 7-9] were combinatorially naive college students who had no 
prior training in probability or statistics. It is not altogether surprising that 
these students were found to rely upon such heuristics as representativeness 
and availability when predicting the likelihood of events. However, Kahneman 
and Tversky [1] also found that psychologists who had a substantial back- 
ground in probability and statistics were subject to the same types of mis- 
conceptions about probability as the combinatorially naive college students. 
Evedently, exposure to the theory of probability and statistics is not necessarily 
sufficient to overcome the systematic biases that ar6 induced by the heuristics 
of  availability and representativeness. In fact, Kahneman and Tversky found 
such strong and widespread evidence for the use of  representativeness and 
availability in estimating the likelihood of  events that they suggest that mis- 
conceptions of probability and statistics that arise from the use of these 
heuristics may be very difficult to overcome. 

3. THE PROBLEM 

The investigations of  Kahneman and Tversky, Edwards, Cohen and Hansel, and 
others pose a challenge to mathematical education. The evidence from these 
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studies indicates that students enter a course in elementary probability and 
statistics with a set of misconceptions about probability and statistics, and with 
a set of heuristic principles that could propagate and maintain their miscon- 
ceptions about probability and statistics. Prior to any formal course work in 
probability, students have had experience in and have dealt almost exclusively 
with 'subjective probability.' Suddenly, students are confronted in a formal 
course with a completely mathematized model of  what Carnap [14] calls 
'statistical probability.' The challenging problem for mathematical education 
that arises is this: How shouM elementary probability and statistics be taught 
so as to maximize the students'chances o f  overcoming their misconceptions o f  
probability and statistics? In partictdar, is there an effective way of teaching 
elementary probability so that students would learn to rely upon probability 
theory in making estimates for the likelihood of events rather than relying 
upon heuristic principles which may bias probability estimates? The author 
does not presume to have a complete answer to this problem. He would, 
however like to suggest that a conventional lecture approach to the teaching of 
elementary probability and statistics may not be the best way to overcome 
students' misconceptions about probability. The author would like to present 

some experimental evidence that suggests that a small-group, activity-based, 
model building approach to elementary probability and statistics can help under- 
graduates to overcome some of their misconceptions about probability, and 
can reduce reliance upon heuristics such as availability and representativeness. 

4. AN EXPERIMENT 

During the 1976-1976 academic year an experimental activity-based course in 
elementary probability and statistics was developed by the author at Michigan 
State University. Comparisons were made between groups of college students 
who took this experimental course and groups that took a lecture-based course 
in elementary probability. The comparisons were made to test the relative 
effectiveness of a lecture-based approach in overcoming certain misconceptions 
that college students have about probability. The misconceptions that were 
investigated were those that arise from reliance upon the heuristics of re- 
presentativeness and availability. A detailed report of the statistical results 
of  the experiment and comparisons made between the groups can be found in 
[2]. It was found that the experimental course was more effective in over- 
coming some misconceptions that are attributable to the use of representative- 
ness and availability. In this paper we shall describe the experimental course 
and discuss the results of the subjects' responses to several of the items that 
were used to test for misconceptions of probability. 
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The experimental activity-based course was constructed as an alternative to 
the lecture method for an undergraduate course in finite mathematics. A series 
of  nine activities in probability, combinatorics, game theory, expected value, 
and elementary statistics were developed by the author. Students in the experi- 
mental course worked together in class on the activities in small groups of four 
or five members. Each activity required the groups to perform experiments, 
gather data, organize and analyze the data, and finally reach some conclusions 
which could be stated in the form of a mathematical principle or mathematical 
model. The students were strongly encouraged to co-operate with one another, 
to solve problems as a group rather than individually, and to help all the mem- 
bers of their group to understand the concepts and problems of each activity. 
The groups were changed often so that everyone had a chance to work with 
everyone else during the course. 

The role of the instructor in the experimental course was that of organizer, 
diagnostician, devil's advocate, and critic. During each activity the instructor 
circulated among the groups, clarifying students' questions and assisting 
groups which had stalled on a particular problem. Instructor assistance usually 
came in the form of questions put to the groups, questions that were intended 
to lead the group from a point which they already understood step-by-step 
back up to the source of their original question. This technique of 'answering' 
a question with another question was used in order to encourage the groups to 
work problems out for themselves and to keep the investigation on each 
activity guided, but also as open-ended as possible. 

Several texts were used to supplement and re-inforce the in-class activities. 
The texts used in the experimental course were Statistics by Example: Explor- 
ing Data and Weighing Chances [15] ; Fifty Challenging Problems in Probability 
[16] ; and How to Lie With Statistics [27]. Reading assignments and problem 
assignments were selected from these texts for work outside class. Each student 
was also required to write ten careful critiques of  instances that he (she) found 
of  misuses of  statistics. The misuses could be from advertisements, newspaper 

or magazine articles, or any other source that the student could uncover. 
The lecture-based course was taught from a text called Finite Mathematics 

[Weiss and Yoseloff, 18]. The mathematics content of  both the experimental 
and lecture courses was quite similar, although the order of the topics was 
different. The experimental course introduced some elementary statistics in 
place of  a segment that was devoted to linear programming in the lecture 
course. A summary of the order of the topics and the time spent on the topics 
in each course isgiven in Table 4.1. 

A small-group, problem-solving and model-building approach was undertaken 
in the experimental groups for two reasons. First, perhaps the transition for 
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TABLE 4.1 
Order and duration of topics 

Experimental course Lecture Course 

(lst) Probability Models } (lst) Counting Principles} 
(2nd) Counting Principles 4 ~ weeks (2rid) Probability Models 4 { weeks 
(3rd) Game Theory 2 weeks (3rd) Linear Programming 3 weeks 
(4th) Statistics 3 weeks (4th) Game Theory 2 weeks 

students from preconceptions and misconceptions of probability to math- 
ematizations of probabililtic laws can be facilitated if students are encouraged 
to experience elementary probability and statistics as a process of describing 
observed experimental phenomena more and more accurately, rather than as a 
system of rules, axioms, and counting techniques that must be learned and 
applied to problems. Second, the process of building models gets students 
involved in a part of  applied mathematics that is sorely neglected in lower 
level mathematics courses. PoUak [19], Thompson [20], Klamldn [21], 
Fitzgerald [22], and Freudenthal [23] have all made pleas for teaching math- 
ematics in  such a way that students can build their own mathematical models 
and think problems through for themselves. 

5. BACKGROUND OF THE SUBJECTS 

In the Spring term of 1976, students at Michigan State University registered 
into seven sections of a finite mathematics course. Four sections were ran- 
domly selected for this experiment. The sections were randomly assigned to 
either the experimental activity-based course or to the lecture-based course in 
finite mathematics. The subjects consisted of 80 college undergraduate students, 
48 men and 32 women. Personal background information was gathered from a 
form filled out by each student. A summary of  class level, major field of study, 
previous college mathematics courses, and prior exposure to probability and 
statistics is given in Tables 5.1 and 5.2. The course in finite mathematics at 
Michigan State University was created primarily to serve the needs of  students 
who were majoring in business, agriculture, or biology. The subjects in this 
study were primarily freshmen business or accounting majors [Table 5.2]. 
There is a prerequisite course in College Algebra which all of the subjects had 
successfully completed. In addition, a substantial number of the subjects (51) 
indicated that they had taken at least one of two secondary-school level 
remedial algebra courses prior to enrolling in the College Algebra [Table 5.1]. 
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Previous mathematics course work 
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Group N Math 101 Math 102 Previous Probability 

Lt 26 1 14 2 
L 2 14 2 6 1 
E 1 20 5 14 2 
E 2 20  1 17 2 

TOTAL 80' 9 51 7 

L = lecture-based E = Activity-based 

TABLE 5.2 
Class level and major 

Group Freshman Upperclassmen Business Accounting Other 
majors majors majors a 

L1 19 7 7 9 9 
L2 9 5 3 3 8 
E 1 9 11 8 4 8 
E 2 14 6 10 1 10 

TOTAL 51 29 28 17 35 

a Primarily agriculture majors or as yet undecided about major field. 

These courses, Mathematics 101 and 102, correspond respectively to a first 

year  and third year high school algebra course. The subjects in this s tudy,  

therefore,  def'mitely did not  have strong backgrounds in mathematics.  Exposure 

to probabi l i ty  prior to the course was minimal within the groups, as only 

seven students in the sample indicated that  they had had any previous work 

in probabi l i ty .  

6. THE E X P E R I M E N T A L  C O U R S E  

The nine activities that  were carried out in small groups o f  four or five students 

in the experimental  sections provided the focal point  for the experimental  

course. The day-by-day occurences within one o f  the experimental  groups 

were recorded in a journal  kept  by the experimenter.  This section describes 

the activities and discusses some o f  the observations made by  the experimenter  

while the activities were being performed in small groups by  the students in 

one of  the experimental  sections. 

Activity 1. This activity begins by asking the members o f  each small group 

to guess the probabi l i ty  o f  getting various number of  heads in tossing six 
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coins. The groups then performed the experiment 48 times, recording the 
number of heads. Experimental probabilities for the outcomes 6 heads, 5 heads, 

. . . .  0 heads were calculated from the data using the relative frequency model. 
The groups had difficulty setting up a theoretical mathematical model for 

this experiment. The students did not have a clear concept of what a math- 

ematical model involved during this first activity. Furthermore, the groups 

could not agree among themselves how to list the outcomes. Some students 

felt that only the number of heads should determine 'an outcome'. For these 

students there were seven outcomes, from 0 heads to 6 heads. There were 
other students who felt that the position of the heads among the six coins 

changed the outcome. The issue was debated hotly in the small groups. Eventu- 

ally the first approach to a model was abandoned, for it suggested assigning a 
probability of 1/7 to each of the outcomes, and the experimental data had 

indicated that it was unlikely that the outcomes '6 heads' and '3 heads' were 

equally likely to occur. (The outcomes 6 heads occured only once in the 

pooled small-group experimental data.) The second approach to a model was 
adopted, but it soon became apparent to the students that there were a large 

number of outcomes to list. The first attempts by the groups at listing the 
outcomes as sequences of heads and tails failed because they had not yet 
developed a systematic way of enumerating the outcomes. Gradually, the 
groups discovered that if they held values of some of the coins fixed while 
changing others, the list of outcomes became more manageable. The groups, 
of  course, had no introduction to counting principles at this time in the course. 

When the 64 outcomes in the model had been listed, theoretical prob- 
abilities for the number of heads were calculated. Many students were surprised 

that their guesses for the probabilities were so far off. Over half the students 
had guessed that the probability that three heads would occur was at least 1/2. 

The probability of three heads based upon their experimental data was about 
.30,  and was 20/64 based upon their mathematical model. They were also 
surprised that the probability of 6 heads was so small. Only a few students 

had estimated the probability of 6 heads to be below 10%. 

Activity 2. In the second activity, a model for tossing three tacks, listing the 
outcomes, and assigning probabilities to the outcomes was developed by the 
students. The groups first had to find an estimate for the probability P(U) that 

a thumbtack lands point up. The range of values for P(U) obtained by the 
students in 72 trials was from 0.48 to 0.76. As a result of the wide range of 

outcomes for P(U), a discussion arose concerning the factors that may have 
affected the outcomes - the way the tack was dropped, the height from which 

it was dropped, the surface on which it landed, etc. The class decided to rerun 
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the experiment to estimate P(U) while attempting to control for as many 

nuisance variables as possible. The class decided that P(U) was approximately 
2/3 after careful 'quality controls' were introduced into the experiment of  
tossing the tack. There was agreement among the subjects that the outcomes 

point up (U) and point down (D), tack on its side, were not equally likely to 
occur, based upon the experimental evidence. However, when the subjects con- 

structed a mathematical model for tossing three of  these tacks, each outcome 
was assigned a probability of  1/8. The groups had actually performed the 

experiment o f  tossing the three tacks, and had experimental evidence that the 

8 outcomes were not equally likely to occur, since UUU, UDU, and UUD 
occurred much more frequently than did DDD, DDU, or DUD. Nevertheless, 

the subjects persisted in their belief that the eight outcomes should be equally 

likely. The subjects wrote in their logs that their was probably something 

wrong with the tacks. 'Theoretically, U and D should be equally likely, even 

though experimentally they were not , '  was written in many of  the students 
reports on this activity. This feeling among the students that every prob- 

ability model was really a uniform model was difficult to overcome. Mani- 

festations of  this belief persisted throughout the experimental course. The 

instructor assisted the groups in discovering a model for the non-uniform 

case by means o f  a series of  questions. 

Instructor: Suppose that three tacks were tossed on the table 1200 times. You have 
decided that P(U) = 2[3. in how many of those 1200 tosses would you 
expect to f'md the first tack land upright? 

Student: 800, because that is 2/3 of 1200. 
Instructor: Now, of those 800, in how many cases would expect to see the second 

tack land down? 
Student: 1/3 of the 800. 

In this manner, the model of  multiplying probabilities of  independent out- 

comes was slowly elicited from the groups. 

Activity 3. This activity on modeling the outcomes for tossing three dice was 
similar to the coin and tack experiments. The difficulties with 'equally likely 
vs. unequally outcomes'  or 'the best way to model the outcomes'  (as ordered 
triples or as the sum of  the three faces) that appeared in the first two activities 
were not  as troublesome for the students in activity 3. The subjects were not 

happy about having to list the 216 outcomes in order to make a mathematical 

model. However, many of  them discovered patterns during the process o f  
making their list o f  outcomes for this experiment, or noticed the symmetry o f  
the frequency distribution. This simplified the job of  listing the outcomes. At 
the conclusion o f  this tedious listing process, the subjects were demanding that 
we investigate some 'easier' way of  counting the outcomes for an experiment. 
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A c t i v i t y  4. The fourth activity was constructed to lead subjects to discover 
several counting principles for themselves. The instructor gave a brief talk on 
counting, and led the students to a point where they could state the sequential 
principle in their own words, the multiplication principle. 

The activity began with a seres of questions on 'spelling problems'. How 
many distinct words can be written from the letters L A Z K using each letter 
once, if  every arrangement of the letters spells a 'word' in our language? The 
outcomes for the first few problems were listed longhand. Eventually the 
students began to see that the sequential counting principle could help them 
list the outcomes for the number of words that could be spelled from the 
letters L Z A K E. It was 5 x 4 x 3x 2 x 1 = 120, using each letter once. It 
took the groups a long time to discover what to do when some of the letters 
occurred more than once. I f  the letters were L Z A K L, or L Z A L L, the first 
conjecture made in each group was that only 1/2 (respectively 1 /3)of  the 120 
possibilities would actually be distinct. The instructor encouraged the subjects 
to list the outcomes. When only 20 outcomes for words from L Z A L L could 
be found, the groups began searching for an alternative explanation. They 
fmaily discovered that although the first L in L Z A L L accounted for three 
redundancies per word, the second L still accounted for two additional redun- 
dancies per word. Thus, they first divided the total number of 120 arrange- 
ments of the five letters by 3, and then reduced the remaining 40 by one-half, 
for the number of redundancies from the next L. After many examples of this 
sort, the groups produced the formula n ! [ ( k l ! k 2 !  • • • k, .!) ,  where n is the total 
number of  letters in the word, and ki  is the number of repetitions of the/i l l  
letter. The subjects were elated when they discovered this formula. The room 
was filled with triumphant smiles. 

Other counting formulae were developed as special cases of  this formula, 
and a wide variety of  counting problems were then presented to the groups 
in which the principles they discovered were applied in different ways. The 
process of  counting the number of groups of x people that could be chosen 
from a group o f y  people was seen to be equivalent to the process of  counting 
the number of  distinct words that could be spelled with x C's and (y - -x )  N's, 
where C stands for 'chosen' and N for 'not chosen'. 

A c t i v i t y  5. In this activity three games were played by pairs of students in 
order to provide an introduction to two-person game theory. In the first 
game one or two fingers were thrown by the players. Hayer 1 received payoffs 
of  $10 or $30 when different numbers of fingers were shown. Hayer two 
received $20 whenever there was a match. After playing the game 20 times, 
the results in the small groups indicated that there was a tendency for player 
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two, the matcher, to win. The subjects generally attributed the success of the 
winner to his ability to 'psyche out '  the other player and guess what the other 
player would do. None of the students indicated that they thought the game 
was rigged in favor of the marcher. The instructor suggested that the game be 
simulated with random choices to make it difficult for either player to pick up 
a pattern in the other player's strategy. Every pair o f  students simulated an 
equally likely game, making their choices on a 50:50 schedule with coin 
tosses. It did not occur to the subjects that perhaps a 50: 50 schedule was not 
in the best interest of both players: 

The advantages of carefully alternating among the choices in a game became 
more apparent to the subjects when they played the second game. This 4 x 4 
two-person game had black and red cards from an ordinary deck as the entries 
in the payoff matrix. Player-black tried to make a choice that would result 
in obtaining points equal to the face value of a black card in the matrix, player- 
red did the same but for red cards. Choices were made independently and then 
the entry in the chosen row and column tallied for the winning color. There 
were so many more choices in this game than in the first game that the 
students began to develop strategies for playing. Rows or columns with too 
many of  the opponents' entries were disdained, or altogether avoided. There 
was a tendency to pick the 'safer' rows (or columns) which had two cards of  
each color. High payoff cards like nines and tens that were imbedded in a row 
that otherwise contained all opponent's cards were only occasionally gambled 
upon. The beginnings of some naive 'mixed strategies' were used by the students 
in this game. 

The last game was a 4 x 4 game that contained a saddle point, pairs of  
students decided upon a strategy in this game. Of the 8 pairs of  students who 
played this game, 5 pairs chose the saddle point, and the other three pairs 
picked one of  the two co-ordinates of  the saddle point. The students had no 
game theory prior to this activity. At the end of the activity the subjects were 
already displaying some intuition for both 'mixed' and 'pure' strategies in their 
choices while playing a two-person game. 

Activity 6. This activity on expected value consisted primarily of working 
out solutions to problems and games in order to calculate the long-run payoffs. 
A brief lecture on expected value of a 2 x 2 game was given by the instructor. 
The optimal strategy for playing a 2 x 2 two-person game was simulated for 
several different games. The subjects were surprised at how close the mean 
payoff in 25 plays came to the theoretical payoff calculated from the optimal 
mixed (or pure) strategy. 
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Activity 7. This was the first of two activities on the effects of sample size 

upon measure of central tendency and variability. The subjects guessed the 

number of cards that they would have to turn over to have at least a 50% 

chance of getting at least one ace from an ordinary well-shuffled deck of 

cards. The guesses were mostly from 12 to 15 cards. Experimental data on 

the number of cards necessary to obtain an ace were gathered for sample sizes 
of 10, 20, and 100 trials. The median was used by the subjects as an estimate 

for the number of cards necessary to have at least a 50% chance of getting an 

ace. Medians for sample size 10 ranged from 4 to 13, for sample size 200 from 
5 to 9, and the median for sample size 100 was 7. Techniques learned in 

earlier activities (2 and 4) were used to calculate the theoretical value at 9. 
The guesses made by the subjects indicated that they were more aware of 

the deceptive nature of the probability of disjunctive events than they had 

been at the beginning of the course. Only one student guessed that it would 
take 26 cards to have at least a 50% chance. A pre-test question administered 
to all the subjects prior to the course asked for an estimate of the number of 
people needed so that there was at least a 50% chance that two people had 
the same birthday (classical birthday problem). 62 out of the 80 subjects 
responded that it would take 183 or more people. The tendency to use 50% 

as a representative multiplier [10] of the total population had practically 
disappeared in the experimental group by the time activity 7 was carried out, 

about 6 1/2 weeks into the experimental course. 

Activity 8. Means and standard deviations for sets of two-digit numbers of 

various sample sizes were calculated in this activity. The samples of size 5 
yielded means from 31 to 71, while samples of size 25 had means from 43 to 

52. The parameters were calculated for random numbers chosen from the set 

00 to 99. The standard deviations calculated for samples of size 5 and 25 
resulted in a similar 'narrowing' of  the range of observations in the samples of 

larger size. The subjects hypothesized that measures of central tendency and 
variability are rather unstable for small samples, and may not be very accurate 

indicators of the true population parameters. 

Activity 9. The students were presented with a challenge which was much less 
structured than the first eight activities. The problem was to design and carry 
out on experiment to test the truth of the statement 'Pulse rates go up when 
taken by a member of the opposite sex.'* The design of the experiment was set 
up by the experimental class during an open class discussion. The class decided 

* Courtesy of Professor William Fitzgerald, Michigan State University. 
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to carry out the experiment on themselves. Pulses were taken on the temple 

or the neck in order to maximuze the chance of raising the pulse rates. Each 

person in the class took his (her) own pulse first. The pulse-by-self outcome 

was used by the students as a basis of comparison with pulse rates found by 

members of the same sex and members of the opposite sex. The data were 

organized into 2 x 2 contingency tables of the forms below. 

TABLE A TABLE B 
up not up up not up 

males same sex 

females opposite sex 

The students used chi-square statistics (learned in a reading assignment from 

Statistics by Example [15]) to test for the independence of males vs. females 

or same sex vs. opposite sex with respect to raising the pulse rates. They found 

no  significant differences. However, they had a lot of fun conducting the 

experiment. 

This activity was performed at the end of the course after the students had 

already analyzed many articles in newspapers and magazines for misuses of 

statistics. Written reports on this activity contained the following sorts of 

suggestions and criticisms of the pulse-rate experiment. 

1. We all knew each other and that may have biased the results. It would have been 
interesting to have done this activity at the beginning of the course to see if there were 
any differences. 

2. It would be better to have one fixed person of each sex take everyone's pulse. This 
should be done by a very handsome man and a very beautiful woman and they should be 
expert at taking pulses. We are not very good at taking pulses and this may have biased 
the results. 

3. Knowing who is taking your pulse might affect the pulse rate. Thus the design of 
this experiment might not really help answer the original question. The subjects should 
be blindfolded so that any bias that might occur from knowing the pulse-taker could be 
controlled. (On the other hand, being blindfolded might make your pulse go up indepen- 
dently of having your pulse taken by a person of the opposite sex, so this might bias the 
experiment also.) 

The subjects in the experimental class realized that their experiment admitted 

many sources of bias due to uncontrolled nuisance variables. 

At the end of the experimental course the students in the experimental 

sections were asked to respond to a questionnaire. They were asked to com- 

ment  on working in small groups, keeping a log of all their reports on activities 

and problems, the texts, what they liked about the course and what they 
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disliked. Responses were generally in the form of a letter to the instructor. There 

was a strong feeling among the students that the log kept by each student was 

essential to the course. It provided a study guide, a reference book, and a 

tremendous sense of accomplishment for the students in the experimental 

course. It was also universally agreed that working in groups was an excellent 
way to learn mathematics. Interaction and co-operation in solving mathematics 
problems were new experiences for these students. Their comments on the 

evaluation forms indicated that they thoroughly enjoyed working in small 
groups. Several students did mention that a few of their group members had a 
tendency to rely on other people's work and to not contribute to the group 

very much. However, most of the students were very active and co-operated 
well in the groups. Several evaluations mentioned that the activities really 
helped to 'prove' the theory that was being learned in the course. 

Overall attitude towards the experimental course was very positive. Almost 
every evaluation indicated that the students had enjoyed the class. Several 
students wrote that they were 'amazed to think that they had actually enjoyed 

a mathematics class.' Initial frustration at not having the answers or rules or 
formulas provided for them by the instructor had disappeared for most of 

the students by the end of the course. 

7. RESULTS ON SOME REPRESENTATIVENESS AND 
AVAILABILITY ITEMS 

The 80 subjects were pre-tested and post-tested on instruments developed by 

the author. The instruments tested for knowledge of some probability con- 

cepts and for reliance upon representativeness and availability in estimating 

the likelihood of events. Many items were similar to or the same as items 

used by Kahneman and Tversky in their research [10, 12]. The results on 
these items provided some measure of the subjects' use ofheutistics vs. use of 

probability theory to estimate probability, both before and after exposure to 

probability via one of the two courses, lecture-based or activity-based. The 
subjects were asked to s u p p l y  a reason for each of their responses. In this 
way it was possible to gain some insight into the thinking process of the 

students as they answered the questions. 
A thorough analysis of the results of the experiment can be found in [2]. 

The experimental activity-based classes were more successful at overcoming 
reliance upon representativeness (p <0.05 ,  d f =  2) and tended to be more 
successful at overcoming reliance upon availability (p <0.19 ,  d f = 2 ) .  The 
results of several of the 'representativeness' and 'availability' items are reported 

below. 
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Personal background information indicated that the subjects for this experi- 

ment were weak in mathematics, and did not have very positive attitudes 

towards mathematics. A majority of  the subjects had taken a remedial high- 

school level algebra course in college prior to taking this course. Furthermore, 
the post-test was administered at the end of  the term, about four weeks after 

the subjects had studied probability principles. The subjects were also told that 
the test items would in no way count towards their grade in the course. They 

had only 50 minutes to answer about 20 questions and supply a reason for 

their answer in each case. The students' background, time constraints, time 

elapsed since studying probability and the fact that the test did not count 
should all be considered in interpreting the results. It is likely that each of  

these factors contributed to some of  the failures on the items. 

Some Representativeness Items 

R1 : The probability o f  having a baby boy is about 1/2. Which of  the 
following sequences is more likely to occur for having six children? 

(a) B G G B G B (b) B B B B G B (c) about the same chance for each 

Give a reason for your  answer. 

TABLE 7.1 
Pretest responses to R1 Posttest responses to R1 

BGGBGB BBBBGB Same BGGBGB BBBBGB Same 

Lecture 27 0 9 22 1 17 
Experimental 23 2 9 12 2 24 

(Entries in the tables represent the frequencies of the responses) 

Students who chose B G G B G B indicated that this sequence fit more 

closely with a 50 : 50 expected ratio of  boys to girls. B G G B G B appears to 

be a more 'representative' outcome than B B B B G B, although the outcomes 

are equally likely to occur. Reliance upon the representativeness heuristic was 
heavy on the pre-test, 50 out o f  the 80 subjects chose B G G B G B (Table 7.1). 

The posttest responses indicated that there was less reliance upon represent- 
ativeness in the experimental activity-based groups. 

R2: (same assumptions as R1) Which sequence is more likely to occur 
for having six children? 

(a) B G G B G B (b) B B B G G G (c) about the same chance 

Give a reason for your  answer. 
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TABLE 7.2 
Pretest responses to R2 Posttest responses to R2 

BGGBGB BBBGGG Same Same BGGBGB BBBGGG Same Same 
3 B's correct 3 B's correct 

Lecture 15 0 11 8 9 1 13 16 
Experimental 13 0 12 9 4 0 8 26 

In their research Kahneman and Tversky [ t 0] did not  offer the option ' the 

same chance' on items similar to this one. They found that  subjects heavily 

favored B G G B G B, since B B B G G G does not  appear to be representative 

of  the random process of  having children. In the present study, many students 

picked 'the same chance' ,  but  gave as a reason "because each outcome has 3 

boys and 3 girls." This reasoning is also indicative of  reliance upon represent- 

ative of  the expected number of  boys, 1/2 of  the number of  trials. Table 7.2 

shows that  there was a greater tendency for the lecture-based students to still 

be t rapped by  representativeness on this i tem after a formal course in prob- 

ability. 

R3: What is the probabi l i ty  that  in 6 children, 3 will be girls? (same 

assumptions as R1) 

Give a reason for your  answer. 

TABLE 7.3 
Pretest responses to R3 Posttest responses to R3 

1/2 20/64 Other 1/2 20/64 Other 

Lecture 23 0 10 19 0 21 
Experimental 23 1 8 9 8 23 

On the pretest,  46 of  the 80 subjects indicated that  the probabi l i ty  of  3 

boys and 3 girls was 1/2 (or 50 : 50, 50%, etc.). These subjects, who were at the 

time naive about  the binomial distribution, used the probabil i ty  of  one head on 

one toss as a representative estimate for the distribution of  heads in multiple 

trials. The results of  the posttest  indicate that  the experimental  groups has 

much less tendency to employ the representative predictor  1/2 than the lecture 

groups did. 

On each of  the items R1, R2, and R3, the greater success of  the subjects in 

the experimental  groups on the posttest  could (hopefully)  be the result of  

actually performing activity 1 with the six coins. As ment ioned earlier, mere 

exposure to probabil i ty  concepts in a lecture format is not  likely to be 
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sufficient for overcoming the strong influence of  the representativeness heur- 

istic. The difficulty in overcoming representativeness is suggested by the num- 

ber of  failures on these three items, even in the experimental  course. 

R4: Which is more l ikely to occur? 

(a) Pulling one red ball from a jar containing 10 red and 90 white balls or (b) 

Pulling four red balls in a orw from a jar containing 50 red and 50 white balls? 

(with replacement)  

Give a reason for your answer. 

TABLE 7.4 
Pretest Results on R4 Posttest Results on R4 

(b) 4 red (a) correct (a) (b) 4 red (a) correct (a) 
in a row reasoning guessed in a row reasoning guessed 

Lecture 23 10 6 17 10 12 
Experimental 22 10 6 8 26 6 

On the pretest,  the subjects tended to use the probabil i ty  of  getting one red 

ball on one pull from the 50 : 50 distr ibution as a representative predictor  of  

the probabi l i ty  of  four reds in a row. Many students wrote that  the probabil i ty  

o f  getting 4 reds in a row was actually equal to 1/2. Table 7.4 shows that the 

experimental  groups improved much more than the lecture groups on this item. 

R5: The chance that  a baby is born a boy  is about 1/2. Over the course 

of  an entire year, would there be more days when at least 60% of  

the babies born were boys in. 

(a) a large hospital (b) a small hospital (c) makes no difference 

Give a reason for your  answer. 

TABLE 7.5 
Pretest Responses on R5 Posttest Responses on R5 

Small Large No Difference Small Large No Difference 

Lecture 6 9 25 14 3 22 
Experimental 11 6 23 27 1 12 

48 of  the subjects chose 'makes no difference'  on the pretest.  This supports 

Kahneman and Tversky's claim that subjects tend to believe that  both  hospitals 

should be 'equally representative'  of  the populat ion propor t ion  o f  boys to girls. 
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Thus, for most of the subjects, sample size makes no difference. Reliance upon 
representativeness diminished substantially in the experimental groups on this 

item on the posttest. 27 of the 40 subjects in the experimental groups correctly 

chose the small hospital. The lecture-based groups did not exhibit this change 

on the posttest. In activities 7 and 8 the experimental groups had performed 

experiments to test the effects of sample size upon measures of central tend- 

ency and variability. The lecture-based groups had not carried out such experi- 
ments. Performing the experiments in these activities may have contributed to 

the greater success of the experimental groups on this item. 

Some A vailability Items 

A1 : Consider the grids below. 

Grid A 

X X X X X X X X  
X X X X X X X X  
X X X X X X X X  

Grid B 

X X  
X X  

X X  
X X  
X X  
X X  
X X  
X X  
X X  

Are there: 

(a) More paths in grid A 
(b) More paths in grid B 
(c) about the same number 

of paths in each? 

(Note: A 'path' was carefully defined for the subject as a sequence of line seg- 

ments starting from the top row running down through each row to the 

bottom row, meeting one and only one symbol in each (horizontal) row of the 

array. Some subjects may have been misled on this problem by miscounting the 
number of rows in Grid B.) 

TABLE 7.6 
Pretest Responses on A1 Posttest Responses on A1 

Same Grid A Grid B Same Grid A Grid B 

Lecture 7 25 5 13 17 6 
Experimental 8 28 3 22 12 1 

According to Kahneman and Tversky [12] subjects favor grid A over grid B 

because there appear to be more paths 'available' in grid A. This was indeed the 
ease on the pretest, as 53 out of the 80 subjects favored grid A. The reasons 
given for the choice of grid A included "there are more X's in grid A", and, "it 
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is easier to draw a path in grid A than in grid B." There was still some tendency 
for subjects to favor grid A on the posttest, even after they had been exposed 

to counting principles. Reliance upon availability was less pronounced in the 
experimental groups on this item on the posttest than in the lecture groups. 
The extensive work in activity 4 in which the students in the experimental 
sections discovered their own counting principles may have contributed to the 

greater success of  the experimental groups on this item. 

A2: 

(a) 
(b) 
(c) 

A man must select committees from a group of  10 people. Would 

there be: 

More distinct possible committees o f  8 

More distinct possible committees o f  2 

About  the same number o f  committees of  8 as committees o f  2? 

Give a reason for your  answer. 

TABLE 7.7 
Pretest Responses on A2 Posttest Responses on A2 

Same Comm. of 2 Comm. of 8 Same Comm. of 2 Comm. of 8 

Lecture 9 25 4 11 16 12 
Experimental 10 22 3 17 14 8 

There was an overwhelming tendency on the pretest for the subjects to 
choose 'committees of  2. '  These subjects used the availability heuristic because 

they felt that examples of  committees of  2 were easier to construct than 
examples of  committees of  8, and therefore the former must be more numer- 
ous than the latter. It is somewhat surprising that on the posttest more students 
did not get the item correct. Both the experimental activity-based and the 
lecture-based courses had covered such counting problems in detail. The sub- 
jects apparently did not see the complimentary nature o f  the problem, that a 
committee o f  8 is equivalent to choosing a non-committee o f  2. Perhaps reten- 
tion was low because it had been four weeks since the students had worked any 

counting problems. The results on this item suggest that the availability heur- 
istic is also a difficult crutch to overcome. 

8. SUMMARY 

The day-by-day observations made by the experimenter during one of  the 
activity-based classes indicate that college students c a n  learn to discover some 

elementary probability models and formulas for themselves while working on 
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probability experiments in small groups. Furthermore, the effects of sample 
size upon measures of central tendency and variability can be learned by 
students working on activities such as those developed for the experimental 
course in this study. Making guesses for the probability of events and checking 
guesses with a hand-held calculator seems to help college students to be more 
cautious about probability estimates, and helps to make them aware about 
some of their own misconceptions about probability. Small-group problem 
solving, keeping a log of all class work and acitivities, and investigating the 
misuses of statistics all appeared to have a positive effect upon college students' 
attitudes towards mathematics, as indicated in the questionnaires tidied out by 
the subjects in the experimental sections. 

The present results of this study support the hypotheses of Kahneman and 
Tversky [10, 12] which claimed that combinatorially naive college students 
rely upon availability and representativeness to estimate the likelihood of 
events. Kahneman and Tversky were skeptical about the possibility of  helping 
students to overcome their reliance upon availability and representativeness. 
The results on the posttest in this study suggest that the manner in which 
college students learn probability makes a difference in their ability to over- 
come misconceptions that arise from availability and representativeness. Mere 

exposure to probability concepts is not sufficient to overcome certain miscon- 
ceptions of probability. Fischbein [9] notes that the "synthesis between the 
necessary and the possible - which is the basis of  probabilistic thinking - does 
not in fact take place spontaneously . . . .  " He claims that science education 
emphasizes only the deterministic aspect, and neglects the study of uncertainty. 
Thus peoples' intuition of probabilistic thinking is distorted by science edu- 
cation's emphasis on the necessary, and neglect of  the possible. This experiment 
suggests that the course methodology and the teaching model used in an 
elementary probability course can help develop peoples' intuition for prob- 
abilistic thinking. A course in which students carry out experiments, work 
through activities to build their own probability models, and discover counting 
principles for themselves can help students to overcome their misconceptions 
about probability, and can help restore the synthesis between the necessary 
and the possible which is essential to probabihstic thinking. 

Oregon State University 
Corvallis 
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